Pathophysiology of Portal Hypertension

  • Yasuko Iwakiri
  • Roberto J. Groszmann


Portal hypertension is the hemodynamic abnormality most frequently associated with serious liver disease, although it is recognized less commonly in a variety of extrahepatic diseases. Many of the most lethal complications of liver disease are directly related to the presence of portal hypertension, including ascites, portal-systemic encephalopathy, and hemorrhage from gastroesophageal varices. This chapter discusses an overview of current knowledge of the circulatory derangements observed in portal hypertension. In particular, we discuss three major areas: (1) structural and (2) functional aspects of the regulatory mechanisms of the hepatic vascular resistance, and (3) factors that control the hyperdynamic splanchnic circulation.


Portal Hypertension Cirrhotic Liver Portal Pressure Portal Blood Flow Liver Sinusoidal Endothelial Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    McIndoe A. Vascular lesions of portal cirrhosis. Arch Pathol. 1928;5:23–40.Google Scholar
  2. 2.
    Baldus WP, Hoffbauer FW. Vascular changes in the cirrhotic liver as studied by the injection technic. Am J Dig Dis. 1963;8:689–700.PubMedCrossRefGoogle Scholar
  3. 3.
    Beker S, Valencia-Parparcen J. Portal hypertension syndrome. A comparative analysis of bilharzial fibrosis and hepatic cirrhosis. Am J Dig Dis. 1968;13:1047–54.PubMedCrossRefGoogle Scholar
  4. 4.
    Ramos OL, Saad F, Leser WP. Portal hemodynamics and liver cell function in hepatic schistosomiasis. Gastroenterology. 1964;47:241–7.PubMedGoogle Scholar
  5. 5.
    Schaffner F, Poper H. Capillarization of hepatic sinusoids in man. Gastroenterology. 1963;44:239–42.PubMedGoogle Scholar
  6. 6.
    Kawada N, Tran-Thi TA, Klein H, Decker K. The contraction of hepatic stellate (Ito) cells stimulated with vasoactive substances. Possible involvement of endothelin 1 and nitric oxide in the regulation of the sinusoidal tonus. Eur J Biochem. 1993;213:815–23.PubMedCrossRefGoogle Scholar
  7. 7.
    Wiest R, Groszmann RJ. The paradox of nitric oxide in cirrhosis and portal hypertension: too much, not enough. Hepatology. 2002;35:478–91.PubMedCrossRefGoogle Scholar
  8. 8.
    Groszmann RJ, Loureiro-Silva M, Tsai MH. The biology of portal hypertension. In: Arias IM, Jakoby WB, Schachter DA, Schafritz DA, Boyer J, editors. New York: Lippincott Williams & Wilkins; 2001. p. 679–97.Google Scholar
  9. 9.
    Groszmann RJ, Abraldes JG. Portal hypertension: from bedside to bench. J Clin Gastroenterol. 2005;39:S125–30.PubMedCrossRefGoogle Scholar
  10. 10.
    Iwakiri Y, Groszmann RJ. The hyperdynamic circulation of chronic liver diseases: from the patient to the molecule. Hepatology. 2006;43:S121–31.PubMedCrossRefGoogle Scholar
  11. 11.
    Iwakiri Y. Endothelial dysfunction in the regulation of cirrhosis and portal hypertension. Liver Int. 2012;32(2):199–213.PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Ueno T, Bioulac-Sage P, Balabaud C, Rosenbaum J. Innervation of the sinusoidal wall: regulation of the sinusoidal diameter. Anat Rec A Discov Mol Cell Evol Biol. 2004;280:868–73.PubMedCrossRefGoogle Scholar
  13. 13.
    Iwakiri Y, Groszmann RJ. Vascular endothelial dysfunction in cirrhosis. J Hepatol. 2007;46:927–34.PubMedCrossRefGoogle Scholar
  14. 14.
    Morales-Ruiz M, Cejudo-Martin P, Fernandez-Varo G, Tugues S, Ros J, Angeli P, et al. Transduction of the liver with activated Akt normalizes portal pressure in cirrhotic rats. Gastroenterology. 2003;125:522–31.PubMedCrossRefGoogle Scholar
  15. 15.
    Liu S, Premont RT, Kontos CD, Huang J, Rockey DC. Endothelin-1 activates endothelial cell nitric-oxide synthase via heterotrimeric G-protein betagamma subunit signaling to protein jinase B/Akt. J Biol Chem. 2003;278:49929–35.PubMedCrossRefGoogle Scholar
  16. 16.
    Liu S, Premont RT, Kontos CD, Zhu S, Rockey DC. A crucial role for GRK2 in regulation of endothelial cell nitric oxide synthase function in portal hypertension. Nat Med. 2005;11:952–8.PubMedCrossRefGoogle Scholar
  17. 17.
    Graupera M, March S, Engel P, Rodes J, Bosch J, Garcia-Pagan JC. Sinusoidal endothelial COX-1-derived prostanoids modulate the hepatic vascular tone of cirrhotic rat livers. Am J Physiol Gastrointest Liver Physiol. 2005;288:G763–70.PubMedCrossRefGoogle Scholar
  18. 18.
    Graupera M, Garcia-Pagan JC, Abraldes JG, Peralta C, Bragulat M, Corominola H, et al. Cyclooxygenase-derived products modulate the increased intrahepatic resistance of cirrhotic rat livers. Hepatology. 2003;37:172–81.PubMedCrossRefGoogle Scholar
  19. 19.
    Frisbee JC, Stepp DW. Impaired NO-dependent dilation of skeletal muscle arterioles in hypertensive diabetic obese Zucker rats. Am J Physiol Heart Circ Physiol. 2001;281:H1304–11.PubMedGoogle Scholar
  20. 20.
    Gryglewski RJ, Palmer RM, Moncada S. Superoxide anion is involved in the breakdown of endothelium-derived vascular relaxing factor. Nature. 1986;320:454–6.PubMedCrossRefGoogle Scholar
  21. 21.
    Karaa A, Kamoun WS, Xu H, Zhang J, Clemens MG. Differential effects of oxidative stress on hepatic endothelial and Kupffer cell eicosanoid release in response to endothelin-1. Microcirculation. 2006;13:457–66.PubMedCrossRefGoogle Scholar
  22. 22.
    Jackson TS, Xu A, Vita JA, Keaney Jr JF. Ascorbate prevents the interaction of superoxide and nitric oxide only at very high physiological concentrations. Circ Res. 1998;83:916–22.PubMedCrossRefGoogle Scholar
  23. 23.
    Ting HH, Timimi FK, Boles KS, Creager SJ, Ganz P, Creager MA. Vitamin C improves endothelium-dependent vasodilation in patients with non-insulin-dependent diabetes mellitus. J Clin Invest. 1996;97:22–8.PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Taddei S, Virdis A, Ghiadoni L, Magagna A, Salvetti A. Vitamin C improves endothelium-dependent vasodilation by restoring nitric oxide activity in essential hypertension. Circulation. 1998;97:2222–9.PubMedCrossRefGoogle Scholar
  25. 25.
    Hernandez-Guerra M, Garcia-Pagan JC, Turnes J, Bellot P, Deulofeu R, Abraldes JG, et al. Ascorbic acid improves the intrahepatic endothelial dysfunction of patients with cirrhosis and portal hypertension. Hepatology. 2006;43:485–91.PubMedCrossRefGoogle Scholar
  26. 26.
    Merkel SM, Kamoun W, Karaa A, Korneszczuk K, Schrum LW, Clemens MG. LPS inhibits endothelin-1-mediated eNOS translocation to the cell membrane in sinusoidal endothelial cells. Microcirculation. 2005;12:433–42.PubMedCrossRefGoogle Scholar
  27. 27.
    Kamoun WS, Karaa A, Kresge N, Merkel SM, Korneszczuk K, Clemens MG. LPS inhibits endothelin-1-induced endothelial NOS activation in hepatic sinusoidal cells through a negative feedback involving caveolin-1. Hepatology. 2006;43:182–90.PubMedCrossRefGoogle Scholar
  28. 28.
    Thiele GM, Duryee MJ, Freeman TL, Sorrell MF, Willis MS, Tuma DJ, et al. Rat sinusoidal liver endothelial cells (SECs) produce pro-fibrotic factors in response to adducts formed from the metabolites of ethanol. Biochem Pharmacol. 2005;70:1593–600.PubMedCrossRefGoogle Scholar
  29. 29.
    Jarnagin WR, Rockey DC, Koteliansky VE, Wang SS, Bissell DM. Expression of variant fibronectins in wound healing: cellular source and biological activity of the EIIIA segment in rat hepatic fibrogenesis. J Cell Biol. 1994;127:2037–48.PubMedCrossRefGoogle Scholar
  30. 30.
    Yokoyama H, Fukuda M, Okamura Y, Mizukami T, Ohgo H, Kamegaya Y, et al. Superoxide anion release into the hepatic sinusoid after an acute ethanol challenge and its attenuation by Kupffer cell depletion. Alcohol Clin Exp Res. 1999;23:71S–5.PubMedCrossRefGoogle Scholar
  31. 31.
    Hasegawa T, Kikuyama M, Sakurai K, Kambayashi Y, Adachi M, Saniabadi AR, et al. Mechanism of superoxide anion production by hepatic sinusoidal endothelial cells and Kupffer cells during short-term ethanol perfusion in the rat. Liver. 2002;22:321–9.PubMedCrossRefGoogle Scholar
  32. 32.
    Whipple AO. The problem of portal hypertension in relation to the hepatosplenopathies. Ann Surg. 1945;122:449–75.PubMedCrossRefGoogle Scholar
  33. 33.
    Vorobioff J, Bredfeldt JE, Groszmann RJ. Increased blood flow through the portal system in cirrhotic rats. Gastroenterology. 1984;87:1120–6.PubMedGoogle Scholar
  34. 34.
    Kowalski HJ, Abelmann WH. The cardiac output at rest in Laennec’s cirrhosis. J Clin Invest. 1953;32:1025–33.PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Genecin P, Polio J, Groszmann RJ. Na restriction blunts expansion of plasma volume and ameliorates hyperdynamic circulation in portal hypertension. Am J Physiol Gastrointest Liver Physiol. 1990;259:G498–503.Google Scholar
  36. 36.
    Morgan JS, Groszmann RJ, Rojkind M, Enriquez R. Hemodynamic mechanisms of emerging portal hypertension caused by schistosomiasis in the hamster. Hepatology. 1990;11:98–104.PubMedCrossRefGoogle Scholar
  37. 37.
    Aller R, de Luis DA, Moreira V, Boixeda D, Moya JL, Fernandez-Rodriguez CM, et al. The effect of liver transplantation on circulating levels of estradiol and progesterone in male patients: parallelism with hepatopulmonary syndrome and systemic hyperdynamic circulation improvement. J Endocrinol Invest. 2001;24:503–9.PubMedGoogle Scholar
  38. 38.
    Abraldes JG, Iwakiri Y, Loureiro-Silva M, Haq O, Sessa WC, Groszmann RJ. Mild increases in portal pressure upregulate vascular endothelial growth factor and endothelial nitric oxide synthase in the intestinal microcirculatory bed, leading to a hyperdynamic state. Am J Physiol Gastrointest Liver Physiol. 2006;290:G980–7.PubMedCrossRefGoogle Scholar
  39. 39.
    Tsai MH, Iwakiri Y, Cadelina G, Sessa WC, Groszmann RJ. Mesenteric vasoconstriction triggers nitric oxide overproduction in the superior mesenteric artery of portal hypertensive rats. Gastroenterology. 2003;125:1452–61.PubMedCrossRefGoogle Scholar
  40. 40.
    Iwakiri Y, Tsai MH, McCabe TJ, Gratton JP, Fulton D, Groszmann RJ, et al. Phosphorylation of eNOS initiates excessive NO production in early phases of portal hypertension. Am J Physiol Heart Circ Physiol. 2002;282:H2084–90.PubMedGoogle Scholar
  41. 41.
    Chen YC, Gines P, Yang J, Summer SN, Falk S, Russell NS, et al. Increased vascular heme oxygenase-1 expression contributes to arterial vasodilation in experimental cirrhosis in rats. Hepatology. 2004;39:1075–87.PubMedCrossRefGoogle Scholar
  42. 42.
    Fernandez M, Mejias M, Angermayr B, Garcia-Pagan JC, Rodes J, Bosch J. Inhibition of VEGF receptor-2 decreases the development of hyperdynamic splanchnic circulation and portal-systemic collateral vessels in portal hypertensive rats. J Hepatol. 2005;43:98–103.PubMedCrossRefGoogle Scholar
  43. 43.
    Huang HC, Haq O, Utsumi T, Sethasine S, Abraldes JG, Groszmann RJ, Iwakiri Y. Intestinal and plasma VEGF levels in cirrhosis: the role of portal pressure. J Cell Mol Med. 2012;16:1125–33.PubMedCentralPubMedCrossRefGoogle Scholar
  44. 44.
    Fernandez M, Bonkovsky HL. Increased heme oxygenase-1 gene expression in liver cells and splanchnic organs from portal hypertensive rats. Hepatology. 1999;29:1672–9.PubMedCrossRefGoogle Scholar
  45. 45.
    Fernandez M, Lambrecht RW, Bonkovsky HL. Increased heme oxygenase activity in splanchnic organs from portal hypertensive rats: role in modulating mesenteric vascular reactivity. J Hepatol. 2001;34:812–7.PubMedCrossRefGoogle Scholar
  46. 46.
    De las Heras D, Fernandez J, Gines P, Cardenas A, Ortega R, Navasa M, et al. Increased carbon monoxide production in patients with cirrhosis with and without spontaneous bacterial peritonitis. Hepatology. 2003;38:452–9.CrossRefGoogle Scholar
  47. 47.
    Fernandez M, Bonkovsky HL. Vascular endothelial growth factor increases heme oxygenase-1 protein expression in the chick embryo chorioallantoic membrane. Br J Pharmacol. 2003;139:634–40.PubMedCrossRefGoogle Scholar
  48. 48.
    Angermayr B, Mejias M, Gracia-Sancho J, Garcia-Pagan JC, Bosch J, Fernandez M. Heme oxygenase attenuates oxidative stress and inflammation, and increases VEGF expression in portal hypertensive rats. J Hepatol. 2006;44:1033–9.PubMedCrossRefGoogle Scholar
  49. 49.
    Naik JS, Walker BR. Heme oxygenase-mediated vasodilation involves vascular smooth muscle cell hyperpolarization. Am J Physiol Heart Circ Physiol. 2003;285:H220–8.PubMedGoogle Scholar
  50. 50.
    Cruse I, Maines MD. Evidence suggesting that the two forms of heme oxygenase are products of different genes. J Biol Chem. 1988;263:3348–53.PubMedGoogle Scholar
  51. 51.
    Wagner JA, Varga K, Ellis EF, Rzigalinski BA, Martin BR, Kunos G. Activation of peripheral CB1 cannabinoid receptors in haemorrhagic shock. Nature. 1997;390:518–21.PubMedCrossRefGoogle Scholar
  52. 52.
    Ros J, Claria J, To-Figueras J, Planaguma A, Cejudo-Martin P, Fernandez-Varo G, et al. Endogenous cannabinoids: a new system involved in the homeostasis of arterial pressure in experimental cirrhosis in the rat. Gastroenterology. 2002;122:85–93.PubMedCrossRefGoogle Scholar
  53. 53.
    Batkai S, Jarai Z, Wagner JA, Goparaju SK, Varga K, Liu J. Endocannabinoids acting at vascular CB1 receptors mediate the vasodilated state in advanced liver cirrhosis. Nat Med. 2001;7:827–32.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Internal Medicine/Digestive DiseasesYale University School of MedicineNew HavenUSA

Personalised recommendations