Kinetic Modeling of Ammonia SCR for Cu-Zeolite Catalysts

Chapter
Part of the Fundamental and Applied Catalysis book series (FACA)

Abstract

In this chapter, kinetic models for ammonia SCR over Cu-zeolites are described. Both global and detailed models are presented and both commercial materials as well as model samples are used. In the SCR system, several reactions are important in order to describe the mechanism and these reactions are discussed below.

Keywords

Titania Hydrolysis Hydroxyl Urea Zeolite 

References

  1. 1.
    H. Sjövall, L. Olsson, E. Fridell, and R. J. Blint, Applied Catalysis B 64 (2006) 180.Google Scholar
  2. 2.
    H. Sjövall, E. Fridell, R. J. Blint, and L. Olsson, Topics in Catalysis 42–43 (2007) 113.Google Scholar
  3. 3.
    J.-H. Park, H. J. Park, J. H. Baik, I.-S. Nam, C.-H. Shin, J.-H. Lee, B. K. Cho, and S. H. Oh, Journal of Catalysis 240 (2006) 47.Google Scholar
  4. 4.
    S. Kieger, G. Delahay, B. Coq, and B. Neveu, Journal of Catalysis 183 (1999) 267.Google Scholar
  5. 5.
    J. A. Sullivan, J. Cunningham, M. A. Morris, and K. Keneavey, Applied Catalysis B: Environmental 7 (1995) 137.Google Scholar
  6. 6.
    K. Rahkamaa-Tolonen, T. Maunula, M. Lomma, M. Huuhtanen, and R. L. Keiski, Catalysis Today 100 (2005) 217.Google Scholar
  7. 7.
    A. Pant and S. J. Schmieg, Industrial & Engineering Chemistry Research 50 (2011) 5490.Google Scholar
  8. 8.
    A. Grossale, I. Nova, E. Tronconi, D. Chatterjee, and M. Weibel, Topics in Catalysis 52 (2009) 1837.Google Scholar
  9. 9.
    P. S. Metkar, V. Balakotaiah, and M. P. Harold, Catalysis Today 184 (2012) 115.Google Scholar
  10. 10.
    L. Olsson, H. Sjovall, and R. J. Blint, Applied Catalysis B-Environmental 81 (2008) 203.Google Scholar
  11. 11.
    L. Olsson, H. Sjövall, and R. J. Blint, Appl. Catal. B: Environmental. 87 (2009) 200.Google Scholar
  12. 12.
    H. Sjövall, R. J. Blint, and L. Olsson, Appl. Catal. B 92 (2009) 138.Google Scholar
  13. 13.
    H. Sjövall, L. Olsson, and R. J. Blint, J. Phys Chem. C 113 (2009) 1393.Google Scholar
  14. 14.
    G. Delahay, S. Kieger, N. Tanchoux, P. Trens, and B. Coq, Applied Catalysis B: Environmental 52 (2004) 251.Google Scholar
  15. 15.
    N. Wilken, K. Wijayanti, K. Kamasamudram, N. W. Currier, R. Vedaiyan, A. Yezerets, and L. Olsson, Appl. Catal. B 111 (2012) 58.Google Scholar
  16. 16.
    N. Wilken, K. Kamasamudram, N. W. Currier, J. Li, A. Yezerets, and L. Olsson, Catalysis Today 151 (2010) 237.Google Scholar
  17. 17.
    A. Delabie, K. Pierloot, M. H. Groothaert, B. M. Weckhuysen, and A. Schoonheydt, Microporous and mesoporous materials 27 (2000) 209.Google Scholar
  18. 18.
    J. H. Kwak, D. Tran, S. D. Burton, J. Szanyi, J. H. Lee, and C. H. F. Peden, Journal of Catalysis 289 (2012) 272.Google Scholar
  19. 19.
    L. Wang, W. Li, G. S. Qi, and D. Weng, Journal of Catalysis 289 (2012) 21.Google Scholar
  20. 20.
    I. Nova, L. Lietti, E. Tronconi, and P. Forzatti, Chemical Engineering Science 56 (2001) 1229.Google Scholar
  21. 21.
    B. Roduit, A. Wokaun, and A. Baiker, Industrial & Engineering Chemistry Research 37 (1998) 4577.Google Scholar
  22. 22.
    J. A. Dumesic, N.-Y. Topsoe, H. Topsoe, Y. Chen, and T. Slabiak, Journal of Catalysis 163 (1996) 409.Google Scholar
  23. 23.
    L. Lietti, I. Nova, E. Tronconi, and P. Forzatti, Catal. Today 45 (1998).Google Scholar
  24. 24.
    D. Chatterjee, T. Burkhardt, M. Weibel, E. Tronconi, I. Nova, and C. Ciardelli, SAE 2006-01-0468 (2006).Google Scholar
  25. 25.
    S. A. Stevenson, J. C. Vartuli, and C. F. Brooks, Journal of Catalysis 190 (2000) 228.Google Scholar
  26. 26.
    S. Malmberg, M. Votsmeier, J. Gieshoff, N. Söger, L. Mußmann, A. Schuler, and A. Drochner, Topics in Catalysis 42–43 (2007) 33.Google Scholar
  27. 27.
    D. Chatterjee, T. Burkhardt, M. Weibel, I. Nova, A. Grossale, and E. Tronconi, SAE 2007-01-1136 (2007).Google Scholar
  28. 28.
    H. Sjovall, R. J. Blint, A. Gopinath, and L. Olsson, Industrial & Engineering Chemistry Research 49 (2010) 39.Google Scholar
  29. 29.
    E. Tronconi, I. Nova, C. Ciardelli, D. Chatterjee, B. Bandl-Konrad, and T. Burkhardt, Catalysis Today 105 (2005) 529.Google Scholar
  30. 30.
    C. Busco, A. Barbaglia, M. Broyer, V. Bolis, G. M. Foddanu, and P. Ugliengo, in Thermochimica Acta Vol. 418 (1–2), 2004, p. 3.Google Scholar
  31. 31.
    P. Felix, C. Savill-Jowitt, and D. R. Brown, Thermochimica Acta 433 (2005) 59.Google Scholar
  32. 32.
    G. Boskovic, T. Vulic, E. Kis, and P. Putanov, Chemical Engineering & Technology 24 (2001) 269.Google Scholar
  33. 33.
    W. B. Williamson, D. R. Flentge, and J. H. Lunsford, J. of Catal. 37 (1975) 258.Google Scholar
  34. 34.
    W. B. Williamson and J. H. Lunsford, J. of Phys. Chem. 80 (1976) 2664.Google Scholar
  35. 35.
    T. Komatsu, M. Nunokawa, I. S. Moon, T. Takahara, S. Namba, and T. Yashima, Journal of Catalysis 148 (1994) 427.Google Scholar
  36. 36.
    M. Colombo, I. Nova, and E. Tronconi, Applied Catalysis B-Environmental 111 (2012) 433.Google Scholar
  37. 37.
    I. Nova, D. Bounechada, R. Maestri, E. Tronconi, A. K. Heibel, T. A. Collins, and T. Boger, Industrial & Engineering Chemistry Research 50 (2011) 299.Google Scholar
  38. 38.
    J. H. Baik, S. D. Yim, I. S. Nam, Y. S. Mok, J. H. Lee, B. K. Cho, and S. H. Oh, Industrial & Engineering Chemistry Research 45 (2006) 5258.Google Scholar
  39. 39.
    S. D. Yim, S. J. Kim, J. H. Baik, I.-S. Nam, Y. S. Mok, J.-H. Lee, B. K. Cho, and S. H. Oh, Ind. Eng. Chem. Res. 43 (2004) 4856.Google Scholar
  40. 40.
    T. C. Watling, M. R. Ravenscroft, and G. Avery, Catalysis Today 188 (2012) 32.Google Scholar
  41. 41.
    C. Ciardelli, I. Nova, E. Tronconi, D. Chatterjee, T. Burkhardt, and M. Weibel, Chemical Engineering Science 62 (2007) 5001.Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Competence Centre for Catalysis, Chemical EngineeringChalmers University of TechnologyGothenburgSweden

Personalised recommendations