Skip to main content

MicroRNAs in Epithelial Mesenchymal Transition and Breast Cancer Progression

  • Chapter
  • First Online:
MicroRNA in Development and in the Progression of Cancer

Abstract

Breast cancer remains a serious public health issue despite early diagnosis and aggressive treatment. This chapter discusses the molecular mechanism by which epithelial mesenchymal transition (EMT) occurs and its implication for metastasis. The chapter also discusses how the different subsets, including cancer stem cells, contribute to cancer evasion and resistance, through dormancy. Included in the discussion are studies on mesenchymal stem cells as protection for the cancer cells from immune clearance. We reviewed the growing information on microRNA (miRNA) in the cellular mechanisms of EMT and its role in facilitating metastasis and/or dormancy of the cancer cells. Overall, this chapter provides a “snapshot” of EMT and miRNA in breast cancer dormancy and metastasis.

Grant support: This work was funded by the Department of Defense.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Al-Hajj M, Wicha MS, Benito-Hernandez A, et al. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci. 2003;100:3983–8.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  2. Arvey A, Larsson E, Sander C, et al. Target mRNA abundance dilutes microRNA and siRNA activity. Mol Syst Biol 2010; 6:363, doi: 10.1038/msb.2010.24.

    Google Scholar 

  3. Bader AG. miR-34: A microRNA replacement therapy is headed to the clinic. Frontiers in Genetics 2012; 3:120. doi: 10.3389/fgene.2012.00120.

    Google Scholar 

  4. Bartel DP. MicroRNAs: Target recognition and regulatory functions. Cell. 2009;136:215–33.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  5. Batlle R, Alba-Castellon L, Loubat-Casanovas J, et al. Snail1 controls TGF-[beta] responsiveness and differentiation of mesenchymal stem cells. Oncogene (In press).

    Google Scholar 

  6. Bendre MS, Margulies AG, Walser B, et al. Tumor-derived interleukin-8 stimulates osteolysis independent of the receptor activator of nuclear factor- + ¦B ligand pathway. Cancer Res. 2005;65:11001–9.

    Article  PubMed  CAS  Google Scholar 

  7. Binaco P. Minireview: The Stem Cell Next Door: Skeletal and Hematopoietic Stem Cell ‘Niches’ in Bone. Endocrinol. 2011;152:2957–62.

    Article  CAS  Google Scholar 

  8. Braun S, Vogl FD, Naume B, et al. A pooled analysis of bone marrow micrometastasis in breast cancer. N Engl J Med. 2005;353:793–802.

    Article  PubMed  CAS  Google Scholar 

  9. Braun S, Auer D, Marth C. The prognostic impact of bone marrow micrometastases in women with breast cancer. Cancer Invest. 2009;27:598–603.

    Article  PubMed  CAS  Google Scholar 

  10. Castano Z, Tracy K, McAllister SS. The tumor macroenvironment and systemic regulation of breast cancer progression. Int J Dev Biol. 2011;55:889–97.

    Article  PubMed  Google Scholar 

  11. Chaffer CL, Thompson EW, Williams ED. Mesenchymal to epithelial transition in development and disease. Cells Tissues Organs. 2007;185(1–3):7–19.

    Article  PubMed  Google Scholar 

  12. Cho JA, Park H, Lim EH, et al. Exosomes from breast cancer cells can convert adipose tissue-derived mesenchymal stem cells into myofibroblast-like cells. Int J Oncol. 2012;40:130–8.

    PubMed  CAS  Google Scholar 

  13. Corcoran KE, Trzaska KA, Fernandes H, et al. Mesenchymal stem cells in early entry of breast cancer into bone marrow. PLoS ONE. 2008;3:e2563.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  14. Decker T, Fischer G, Bucke W, et al. Increased number of regulatory T cells (T-regs) in the peripheral blood of patients with Her-2/neu-positive early breast cancer. J Cancer Res Clin Oncol (In press).

    Google Scholar 

  15. Deng G, Chen LC, Schott DR, et al. Loss of heterozygosity and p53 gene mutations in breast cancer. Cancer Res. 1994;54:499–505.

    PubMed  CAS  Google Scholar 

  16. Feng B, Wang R, Chen LB. Review of MiR-200b and cancer chemosensitivity. Biomed Pharmacother (In press).

    Google Scholar 

  17. Fidler IJ. The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nat Rev Cancer. 2003;3:453–8.

    Article  PubMed  CAS  Google Scholar 

  18. Flugel D, Gorlach A, Michiels C, et al. Glycogen synthase kinase 3 phosphorylates hypoxia-inducible factor 1alpha and mediates its destabilization in a VHL-independent manner. Mol Cell Biol. 2007;27:3253–65.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  19. Goldstein RH, Reagan MR, Anderson K, et al. Human bone marrow-derived MSCs can home to orthotopic breast cancer tumors and promote bone metastasis. Cancer Res. 2010;70:10044–50.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  20. Gompel A. Breast cancer incidence rates in US women are no longer declining. Climacteric. 2011;14:690–1.

    PubMed  Google Scholar 

  21. Grisendi G, Bussolari R, Veronesi E, et al. Understanding tumor-stroma interplays for targeted therapies by armed mesenchymal stromal progenitors: the Mesenkillers. Am J Cancer Res. 2011;1:787–805.

    PubMed Central  PubMed  CAS  Google Scholar 

  22. Guise TA, Yin JJ, Taylor SD, et al. Evidence for a causal role of parathyroid hormone-related protein in the pathogenesis of human breast cancer-mediated osteolysis. J Clin Invest. 1996;98:1544–9.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  23. Guzy RD, Schumacker PT. Oxygen sensing by mitochondria at complex III: the paradox of increased reactive oxygen species during hypoxia. Exp Physiol. 2006;91:807–19.

    Article  PubMed  CAS  Google Scholar 

  24. Han M, Liu M, Wang Y, et al. Antagonism of miR-21 reverses epithelial-mesenchymal transition and cancer stem cell phenotype through AKT/ERK1/2 inactivation by targeting PTEN. PLoS ONE. 2012;7:e39520.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  25. Hanahan D, Weinberg R. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.

    Article  PubMed  CAS  Google Scholar 

  26. Hart IR, Fidler IJ. Role of organ selectivity in the determination of metastatic patterns of B16 melanoma. Cancer Res. 1980;40:2281–7.

    PubMed  CAS  Google Scholar 

  27. Hauschka PV, Mavrakos AE, Iafrati MD, et al. Growth factors in bone matrix. Isolation of multiple types by affinity chromatography on heparin-Sepharose. J Biol Chem. 1986;261:12665–74.

    PubMed  CAS  Google Scholar 

  28. Hockel M, Vaupel P. Biological consequences of tumor hypoxia. Semin Oncol. 2001;28:36–41.

    Article  PubMed  CAS  Google Scholar 

  29. Holmgren L, O’Reilly MS, Folkman J. Dormancy of micrometastases: balanced proliferation and apoptosis in the presence of angiogenesis suppression. Nat Med. 1995;1:149–53.

    Article  PubMed  CAS  Google Scholar 

  30. Horlock C, Stott B, Dyson PJ, et al. The effects of trastuzumab on the CD4 + CD25 + FoxP3 + and CD4 + IL17A + T-cell axis in patients with breast cancer. Br J Cancer. 2009;100:1061–7.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  31. Hynes RO. Integrins: bidirectional, allosteric signaling machines. Cell. 2002;110:673–87.

    Article  PubMed  CAS  Google Scholar 

  32. Jorgensen K. Is the tide turning against breast screening? Breast Cancer Res. 2012;14(4):107.

    Article  PubMed Central  PubMed  Google Scholar 

  33. Karnoub AE, Dash AB, Vo AP, et al. Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature. 2007;449:557–63.

    Article  PubMed  CAS  Google Scholar 

  34. Kim R, Emi M, Tanabe K. Cancer cell immune escape and tumor progression by exploitation of anti-inflammatory and pro-inflammatory responses. Cancer Biol Ther. 2005;4(9):924–33.

    Article  PubMed  CAS  Google Scholar 

  35. Ko LJ, Prives C. p53: puzzle and paradigm. Genes Dev. 1996;10:1054–72.

    Article  PubMed  CAS  Google Scholar 

  36. Le Blanc K, Mougiakakos D. Multipotent mesenchymal stromal cells and the innate immune system. Nat Rev Immunol. 2012;12:383–96.

    Article  PubMed  CAS  Google Scholar 

  37. Lim PK, Bliss SA, Patel SA, et al. Gap junction-mediated import of MicroRNA from bone marrow stromal cells can elicit cell cycle quiescence in breast cancer cells. Cancer Res. 2011;71:1550–60.

    Article  PubMed  CAS  Google Scholar 

  38. Lowe SW, Ruley HE. Stabilization of the p53 tumor suppressor is induced by adenovirus 5 E1A and accompanies apoptosis. Genes Dev. 1993;7:535–45.

    Article  PubMed  CAS  Google Scholar 

  39. Lv K, Liu L, Wang L, et al. Lin28 mediates paclitaxel resistance by modulating p21, Rb and Let-7a miRNA in breast cancer cells. PLoS ONE. 2012;7:e40008.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  40. Manel N, Unutmaz D, Littman DR. The differentiation of human TH-17 cells requires transforming growth factor-[beta] and induction of the nuclear receptor ROR[gamma]t. Nat Immunol. 2008;9:641–9.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  41. Mathiesen RR, Borgen E, Renolen A, et al. Persistence of disseminated tumor cells after neoadjuvant treatment for locally advanced breast cancer predicts poor survival. Breast Cancer Res. 2012;14:R117.

    Article  PubMed Central  PubMed  Google Scholar 

  42. Mishra PJ, Mishra PJ, Glod JW, et al. Mesenchymal stem cells: flip side of the coin. Cancer Res. 2009;69:1255–8.

    Article  PubMed  CAS  Google Scholar 

  43. Moharita AL, Taborga M, Corcoran KE, et al. SDF-1alpha regulation in breast cancer cells contacting bone marrow stroma is critical for normal hematopoiesis. Blood. 2006;108:3245–52.

    Article  PubMed  CAS  Google Scholar 

  44. Mukherji S, Ebert MS, Zheng GXY, et al. MicroRNAs can generate thresholds in target gene expression. Nat Genet. 2011;43:854–9.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  45. Norton L, Massague J. Is cancer a disease of self-seeding? Nat Med. 2006;12:875–8.

    Article  PubMed  CAS  Google Scholar 

  46. Ochsenbein AF, Klenerman P, Karrer U, et al. Immune surveillance against a solid tumor fails because of immunological ignorance. Proc Natl Acad Sci. 1999;96:2233–8.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  47. Paget S. The distribution of secondary growths in cancer of the breast. 1889. Cancer Metastasis Rev. 1989;8:98–101.

    PubMed  CAS  Google Scholar 

  48. Parr C, Watkins G, Jiang WG. The possible correlation of Notch-1 and Notch-2 with clinical outcome and tumour clinicopathological parameters in human breast cancer. Int J Mol Med. 2004;14:779–86.

    PubMed  CAS  Google Scholar 

  49. Patel SA, Meyer JR, Greco SJ, et al. Mesenchymal stem cells protect breast cancer cells through regulatory T cells: role of mesenchymal stem cell-derived TGF-beta. J Immunol. 2010;184:5885–94.

    Article  PubMed  CAS  Google Scholar 

  50. Patel SA, Dave MA, Murthy RG, et al. Metastatic breast cancer cells in the bone marrow microenvironment: novel insights into oncoprotection. Oncol Rev. 2011;5:93–102.

    Article  PubMed Central  PubMed  Google Scholar 

  51. Pelger RCM, Hamdy NAT, Zwinderman AH, et al. Effects of the bisphosphonate olpadronate in patients with carcinoma of the prostate metastatic to the skeleton. Bone. 1998;22:403–8.

    Article  PubMed  Google Scholar 

  52. Plumas J, Chaperot L, Richard MJ, et al. Mesenchymal stem cells induce apoptosis of activated T cells. Leukemia. 2005;19:1597–604.

    Article  PubMed  CAS  Google Scholar 

  53. Rao G, Patel PS, Idler SP, et al. Facilitating role of preprotachykinin-I gene in the integration of breast cancer cells within the stromal compartment of the bone marrow. Cancer Res. 2004;64:2874–81.

    Article  PubMed  CAS  Google Scholar 

  54. Reya T, Clevers H. Wnt signalling in stem cells and cancer. Nature. 2005;434:843–50.

    Article  PubMed  CAS  Google Scholar 

  55. Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature. 2001;414:105–11.

    Article  PubMed  CAS  Google Scholar 

  56. Rhodes DJ, O’Connor MK, Phillips SW, et al. Molecular breast imaging: a new technique using technetium Tc 99m scintimammography to detect small tumors of the breast. Mayo Clinic Proc. 2005;80:24–30.

    Article  Google Scholar 

  57. Ryo A, Nakamura M, Wulf G, et al. Pin1 regulates turnover and subcellular localization of [beta]-catenin by inhibiting its interaction with APC. Nat Cell Biol. 2001;3:793–801.

    Article  PubMed  CAS  Google Scholar 

  58. Sarkar FH, Li Y, Wang Z, et al. Implication of microRNAs in drug resistance for designing novel cancer therapy. Drug Resist Updates. 2010;13:57–66.

    Article  CAS  Google Scholar 

  59. Shackleton M, Vaillant F, Simpson KJ, Stingl J, Smyth GK, Asselin-Labat ML, Wu L, Lindeman GJ, Visvader JE. Generation of a functional mammary gland from a single stem cell. Nature. 2006;439:84–8.

    Article  PubMed  CAS  Google Scholar 

  60. Shi Y, Massague J. Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell. 2003;113:685–700.

    Article  PubMed  CAS  Google Scholar 

  61. Solakoglu O, Maierhofer C, Lahr G, et al. Heterogeneous proliferative potential of occult metastatic cells in bone marrow of patients with solid epithelial tumors. Proc Natl Acad Sci. 2002;99:2246–51.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  62. Subramaniam K, Hirpara JL, Tucker-Kellogg L, et al. FLIP: A flop for execution signals. Cancer Lett (In press).

    Google Scholar 

  63. Talmadge JE. Clonal selection of metastasis within the life history of a tumor. Cancer Res. 2007;67:11471–5.

    Article  PubMed  CAS  Google Scholar 

  64. Tarin D, Price JE, Kettlewell MG, et al. Clinicopathological observations on metastasis in man studied in patients treated with peritoneovenous shunts. Br Med J. 1984a;288:749–51.

    Article  CAS  Google Scholar 

  65. Tarin D, Price JE, Kettlewell M, G W, et al. Mechanisms of human tumor metastasis studied in patients with peritoneovenous shunts. Cancer Res. 1984b;44:3584–92.

    CAS  Google Scholar 

  66. Ten HA, Bektas N, von SS, et al. Expression of the glioma-associated oncogene homolog (GLI) 1 in human breast cancer is associated with unfavourable overall survival. BMC Cancer. 2009;9:298.

    Article  CAS  Google Scholar 

  67. Thiery JP, Sleeman JP. Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell Biol. 2006;7:131–42.

    Article  PubMed  CAS  Google Scholar 

  68. Thiery JP, Acloque H, Huang RYJ, et al. Epithelial-Mesenchymal transitions in development and disease. Cell. 2009;139:871–90.

    Article  PubMed  CAS  Google Scholar 

  69. Uhr JW, Pantel K. Controversies in clinical cancer dormancy. Proc Natl Acad Sci. 2011;108:12396–400.

    Article  PubMed Central  PubMed  Google Scholar 

  70. van DA, Naaijkens BA, Jurgens WJ, et al. The multidrug resistance protein breast cancer resistance protein (BCRP) protects adipose-derived stem cells against ischemic damage. Cell Biol Toxicol (In press).

    Google Scholar 

  71. Vogelstein B, Lane D, Levine AJ. Surfing the p53 network. Nature. 2000;408:307–10.

    Article  PubMed  CAS  Google Scholar 

  72. Wang Z, Li Y, Ahmad A, Azmi AS, Kong D, Banerjee S, Sarkar FH. Targeting miRNAs involved in cancer stem cell and EMT regulation: an emerging concept in overcoming drug resistance. Drug Resist Updates. 2010;13:109–18.

    Article  CAS  Google Scholar 

  73. Wang H, Tan G, Dong L, Cheng L, Li K, Wang Z, Luo H. Circulating MiR-125b as a marker predicting chemoresistance in breast cancer. PLoS ONE. 2012;7:e34210.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  74. Zardawi SJ, O’Toole SA, Sutherland RL, Musgrove EA. Dysregulation of Hedgehog, Wnt and Notch signalling pathways in breast cancer. Histol Histopathol. 2009;24:385–98.

    PubMed  CAS  Google Scholar 

  75. Zen K, Zhang CY. Circulating MicroRNAs: a novel class of biomarkers to diagnose and monitor human cancers. Med Res Rev. 2012;32:326–48.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pranela Rameshwar Ph.D .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Nahas, G., Bibber, B., Rameshwar, P. (2014). MicroRNAs in Epithelial Mesenchymal Transition and Breast Cancer Progression. In: Singh, S., Rameshwar, P. (eds) MicroRNA in Development and in the Progression of Cancer. Springer, New York, NY. https://doi.org/10.1007/978-1-4899-8065-6_6

Download citation

Publish with us

Policies and ethics