Skip to main content

MicroRNA, DNA Repair, and Cancer

  • Chapter
  • First Online:
MicroRNA in Development and in the Progression of Cancer
  • 1151 Accesses

Abstract

Genomic instability is a hallmark of cancer cells and one of the underlying mechanisms is probably caused by the failure to repair DNA damages that have been passed on to the progeny cells. Cells have evolved many types of DNA repair mechanisms to counteract the DNA damages induced by exogenous insults, such as ionizing radiation, ultraviolet radiation, and chemical reagents, or endogenous stimuli-like reactive oxygen species (ROS). These repair mechanisms constitute an elaborate genome maintenance system to protect genomic integrity and therefore defend tumorigenesis. Most recently, microRNAs (miRNAs) have been reported to be a new class of regulators that modulate the DNA damage response pathways by targeting the protein components of response machinery. Here, we summarize and highlight the miRNAs that have been shown to regulate the different DNA repair pathways and discuss their roles in carcinogenesis and implications in cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100(1):57–70.

    CAS  PubMed  Google Scholar 

  2. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74.

    CAS  PubMed  Google Scholar 

  3. Harper JW, Elledge SJ. The DNA damage response: ten years after. Mol Cell. 2007;28(5):739–45.

    CAS  PubMed  Google Scholar 

  4. Misteli T, Soutoglou E. The emerging role of nuclear architecture in DNA repair and genome maintenance. Nat Rev Mol Cell Biol. 2009;10(4):243–54.

    CAS  PubMed Central  PubMed  Google Scholar 

  5. Jiricny J. The multifaceted mismatch-repair system. Nat Rev Mol Cell Biol. 2006;7(5):335–46.

    CAS  PubMed  Google Scholar 

  6. Barnes DE, Lindahl T. Repair and genetic consequences of endogenous DNA base damage in mammalian cells. Annu Rev Genet. 2004;38:445–76.

    CAS  PubMed  Google Scholar 

  7. Caldecott KW. Single-strand break repair and genetic disease. Nat Rev Genet. 2008;9(8):619–31.

    CAS  PubMed  Google Scholar 

  8. West SC. Molecular views of recombination proteins and their control. Nat Rev Mol Cell Biol. 2003;4(6):435–45.

    CAS  PubMed  Google Scholar 

  9. Bartek J, Bartkova J, Lukas J. DNA damage signalling guards against activated oncogenes and tumour progression. Oncogene. 2007;26(56):7773–9.

    CAS  PubMed  Google Scholar 

  10. Jackson SP, Bartek J. The DNA-damage response in human biology and disease. Nature. 2009;461(7267):1071–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Li ML, Greenberg RA. Links between genome integrity and BRCA1 tumor suppression. Trends Biochem Sci. 2012;37(10):418–24.

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Calin GA, Croce CM. MicroRNA-cancer connection: the beginning of a new tale. Cancer Res. 2006;66(15):7390–4.

    CAS  PubMed  Google Scholar 

  13. Garzon R, et al. MicroRNA expression and function in cancer. Trends Mol Med. 2006;12(12):580–7.

    CAS  PubMed  Google Scholar 

  14. MicroRNAs BDP. genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281–97.

    Google Scholar 

  15. Calin GA, et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci U S A. 2004;101(9):2999–3004.

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Sevignani C, et al. MicroRNA genes are frequently located near mouse cancer susceptibility loci. Proc Natl Acad Sci U S A. 2007;104(19):8017–22.

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Hu H, Gatti RA. MicroRNAs: new players in the DNA damage response. J Mol Cell Biol. 2011;3(3):151–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Wan G, et al. miRNA response to DNA damage. Trends Biochem Sci. 2011;36(9):478–84.

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Hummel R, Hussey DJ, Haier J. MicroRNAs: predictors and modifiers of chemo- and radiotherapy in different tumour types. Eur J Cancer. 2010;46(2):298–311.

    CAS  PubMed  Google Scholar 

  20. Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009;136(2):215–33.

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Lau NC, et al. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science. 2001;294(5543):858–62.

    CAS  PubMed  Google Scholar 

  22. Lagos-Quintana M, et al. Identification of novel genes coding for small expressed RNAs. Science. 2001;294(5543):853–8.

    CAS  PubMed  Google Scholar 

  23. Baskerville S, Bartel DP. Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes. RNA. 2005;11(3):241–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Rodriguez A, et al. Identification of mammalian microRNA host genes and transcription units. Genome Res. 2004;14(10A):1902–10.

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Han J, et al. The Drosha-DGCR8 complex in primary microRNA processing. Genes Dev. 2004;18(24):3016–27.

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Kim YK, Kim VN. Processing of intronic microRNAs. Embo J. 2007;26(3):775–83.

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Morlando M, et al. Primary microRNA transcripts are processed co-transcriptionally. Nat Struct Mol Biol. 2008;15(9):902–9.

    CAS  PubMed  Google Scholar 

  28. Yi R, et al. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev. 2003;17(24):3011–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Lund E, et al. Nuclear export of microRNA precursors. Science. 2004;303(5654):95–8.

    CAS  PubMed  Google Scholar 

  30. Chendrimada TP, et al. TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature. 2005;436(7051):740–4.

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Okamura K, et al. Distinct roles for Argonaute proteins in small RNA-directed RNA cleavage pathways. Genes Dev. 2004;18(14):1655–66.

    CAS  PubMed Central  PubMed  Google Scholar 

  32. Rand TA, et al. Argonaute2 cleaves the anti-guide strand of siRNA during RISC activation. Cell. 2005;123(4):621–9.

    CAS  PubMed  Google Scholar 

  33. Meister G, et al. Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol Cell. 2004;15(2):185–97.

    CAS  PubMed  Google Scholar 

  34. Chatterjee S, Grosshans H. Active turnover modulates mature microRNA activity in Caenorhabditis elegans. Nature. 2009;461(7263):546–9.

    CAS  PubMed  Google Scholar 

  35. Das SK, et al. Human polynucleotide phosphorylase selectively and preferentially degrades microRNA-221 in human melanoma cells. Proc Natl Acad Sci U S A. 2010;107(26):11948–53.

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Pawlicki JM, Steitz JA. Nuclear networking fashions pre-messenger RNA and primary microRNA transcripts for function. Trends Cell Biol. 2010;20(1):52–61.

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Murphy D, Dancis B, Brown JR. The evolution of core proteins involved in microRNA biogenesis. BMC Evol Biol. 2008;8:92.

    PubMed Central  PubMed  Google Scholar 

  38. Yan M, et al. Dysregulated expression of dicer and drosha in breast cancer. Pathol Oncol Res. 2012;18(2):343–8.

    CAS  PubMed  Google Scholar 

  39. Khoshnaw SM, et al. Loss of Dicer expression is associated with breast cancer progression and recurrence. Breast Cancer Res Treat. 2012;135(2):403–13.

    CAS  PubMed  Google Scholar 

  40. Merritt WM, et al. Dicer, Drosha, and outcomes in patients with ovarian cancer. N Engl J Med. 2008;359(25):2641–50.

    CAS  PubMed Central  PubMed  Google Scholar 

  41. Melo SA, et al. A TARBP2 mutation in human cancer impairs microRNA processing and DICER1 function. Nat Genet. 2009;41(3):365–70.

    CAS  PubMed  Google Scholar 

  42. Melo SA, et al. A genetic defect in exportin-5 traps precursor microRNAs in the nucleus of cancer cells. Cancer Cell. 2010;18(4):303–15.

    CAS  PubMed  Google Scholar 

  43. Yang W, et al. Modulation of microRNA processing and expression through RNA editing by ADAR deaminases. Nat Struct Mol Biol. 2006;13(1):13–21.

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Wulff BE, Nishikura K. Modulation of microRNA expression and function by ADARs. Curr Top Microbiol Immunol. 2012;353:91–109.

    CAS  PubMed  Google Scholar 

  45. Vesely C, et al. Adenosine deaminases that act on RNA induce reproducible changes in abundance and sequence of embryonic miRNAs. Genome Res. 2012;22(8):1468–76.

    CAS  PubMed Central  PubMed  Google Scholar 

  46. Nishikura K. Functions and regulation of RNA editing by ADAR deaminases. Annu Rev Biochem. 2010;79:321–49.

    CAS  PubMed Central  PubMed  Google Scholar 

  47. Heo I, et al. TUT4 in concert with Lin28 suppresses microRNA biogenesis through pre-microRNA uridylation. Cell. 2009;138(4):696–708.

    CAS  PubMed  Google Scholar 

  48. Heo I, et al. Mono-uridylation of pre-microRNA as a key step in the biogenesis of group II let-7 microRNAs. Cell. 2012;151(3):521–32.

    CAS  PubMed  Google Scholar 

  49. D’Ambrogio A, et al. Specific miRNA Stabilization by Gld2-Catalyzed Monoadenylation. Cell Rep. 2012;2(6):1537–45.

    PubMed Central  PubMed  Google Scholar 

  50. Katoh T, et al. Selective stabilization of mammalian microRNAs by 3’ adenylation mediated by the cytoplasmic poly(A) polymerase GLD-2. Genes Dev. 2009;23(4):433–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  51. Burns DM, et al. CPEB and two poly(A) polymerases control miR-122 stability and p53 mRNA translation. Nature. 2011;473(7345):105–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  52. Ji L, Chen X. Regulation of small RNA stability: methylation and beyond. Cell Res. 2012;22(4):624–36.

    CAS  PubMed Central  PubMed  Google Scholar 

  53. Huang Y, et al. Structural insights into mechanisms of the small RNA methyltransferase HEN1. Nature. 2009;461(7265):823–7.

    CAS  PubMed  Google Scholar 

  54. Saito K, et al. Pimet, the Drosophila homolog of HEN1, mediates 2’-O-methylation of Piwi- interacting RNAs at their 3’ ends. Genes Dev. 2007;21(13):1603–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Yang Z, et al. HEN1 recognizes 21-24 nt small RNA duplexes and deposits a methyl group onto the 2’ OH of the 3’ terminal nucleotide. Nucleic Acids Res. 2006;34(2):667–75.

    CAS  PubMed Central  PubMed  Google Scholar 

  56. Xhemalce B, Robson SC, Kouzarides T. Human RNA methyltransferase BCDIN3D regulates microRNA processing. Cell. 2012;151(2):278–88.

    CAS  PubMed Central  PubMed  Google Scholar 

  57. Paroo Z, et al. Phosphorylation of the human microRNA-generating complex mediates MAPK/Erk signaling. Cell. 2009;139(1):112–22.

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Zhang X, et al. The ATM kinase induces microRNA biogenesis in the DNA damage response. Mol Cell. 2011;41(4):371–83.

    CAS  PubMed Central  PubMed  Google Scholar 

  59. Qi HH, et al. Prolyl 4-hydroxylation regulates Argonaute 2 stability. Nature. 2008;455(7211):421–4.

    CAS  PubMed Central  PubMed  Google Scholar 

  60. Rybak A, et al. The let-7 target gene mouse lin-41 is a stem cell specific E3 ubiquitin ligase for the miRNA pathway protein Ago2. Nat Cell Biol. 2009;11(12):1411–20.

    CAS  PubMed  Google Scholar 

  61. Thornton JE, et al. Lin28-mediated control of let-7 microRNA expression by alternative TUTases Zcchc11 (TUT4) and Zcchc6 (TUT7). Rna. 2012;18(10):1875–85.

    CAS  PubMed Central  PubMed  Google Scholar 

  62. Nam Y, et al. Molecular basis for interaction of let-7 microRNAs with Lin28. Cell. 2011;147(5):1080–91.

    CAS  PubMed Central  PubMed  Google Scholar 

  63. Trabucchi M, et al. The RNA-binding protein KSRP promotes the biogenesis of a subset of microRNAs. Nature. 2009;459(7249):1010–4.

    CAS  PubMed Central  PubMed  Google Scholar 

  64. Michlewski G, Guil S, Caceres JF. Stimulation of pri-miR-18a Processing by hnRNP A1. Adv Exp Med Biol. 2010;700:28–35.

    CAS  PubMed  Google Scholar 

  65. Michlewski G, Caceres JF. Antagonistic role of hnRNP A1 and KSRP in the regulation of let-7a biogenesis. Nat Struct Mol Biol. 2010;17(8):1011–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  66. Guil S, Caceres JF. The multifunctional RNA-binding protein hnRNP A1 is required for processing of miR-18a. Nat Struct Mol Biol. 2007;14(7):591–6.

    CAS  PubMed  Google Scholar 

  67. Buratti E, Baralle FE. Multiple roles of TDP-43 in gene expression, splicing regulation, and human disease. Front Biosci. 2008;13:867–78.

    CAS  PubMed  Google Scholar 

  68. Kawahara Y, Mieda-Sato A. TDP-43 promotes microRNA biogenesis as a component of the Drosha and Dicer complexes. Proc Natl Acad Sci U S A. 2012;109(9):3347–52.

    CAS  PubMed Central  PubMed  Google Scholar 

  69. Li Z, et al. The FTD/ALS-associated RNA-binding protein TDP-43 regulates the robustness of neuronal specification through microRNA-9a in Drosophila. Hum Mol Genet. 2013;22(2):218–25.

    PubMed Central  PubMed  Google Scholar 

  70. Suzuki HI, et al. MCPIP1 ribonuclease antagonizes dicer and terminates microRNA biogenesis through precursor microRNA degradation. Mol Cell. 2011;44(3):424–36.

    CAS  PubMed  Google Scholar 

  71. Fukuda T, et al. DEAD-box RNA helicase subunits of the Drosha complex are required for processing of rRNA and a subset of microRNAs. Nat Cell Biol. 2007;9(5):604–11.

    CAS  PubMed  Google Scholar 

  72. Suzuki HI, et al. Modulation of microRNA processing by p53. Nature. 2009;460(7254):529–33.

    CAS  PubMed  Google Scholar 

  73. Takaoka Y, et al. Forced expression of miR-143 represses ERK5/c-Myc and p68/p72 signaling in concert with miR-145 in gut tumors of Apc(Min) mice. PLoS One. 2012;7(8):e42137.

    CAS  PubMed Central  PubMed  Google Scholar 

  74. Janknecht R. Multi-talented DEAD-box proteins and potential tumor promoters: p68 RNA helicase (DDX5) and its paralog, p72 RNA helicase (DDX17). Am J Transl Res. 2010;2(3):223–34.

    CAS  PubMed Central  PubMed  Google Scholar 

  75. Davis BN, et al. Smad proteins bind a conserved RNA sequence to promote microRNA maturation by Drosha. Mol Cell. 2010;39(3):373–84.

    CAS  PubMed Central  PubMed  Google Scholar 

  76. Davis BN, et al. SMAD proteins control DROSHA-mediated microRNA maturation. Nature. 2008;454(7200):56–61.

    CAS  PubMed Central  PubMed  Google Scholar 

  77. Kawai S, Amano A. BRCA1 regulates microRNA biogenesis via the DROSHA microprocessor complex. J Cell Biol. 2012;197(2):201–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  78. Chang S, et al. Tumor suppressor BRCA1 epigenetically controls oncogenic microRNA-155. Nat Med. 2011;17(10):1275–82.

    CAS  PubMed Central  PubMed  Google Scholar 

  79. Wu H, et al. A splicing-independent function of SF2/ASF in microRNA processing. Mol Cell. 2010;38(1):67–77.

    CAS  PubMed Central  PubMed  Google Scholar 

  80. Pothof J, et al. MicroRNA-mediated gene silencing modulates the UV-induced DNA-damage response. Embo J. 2009;28(14):2090–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  81. Li G, et al. Alterations in microRNA expression in stress-induced cellular senescence. Mech Ageing Dev. 2009;130(11-12):731–41.

    CAS  PubMed Central  PubMed  Google Scholar 

  82. Hummel R, et al. Chemotherapy-induced modification of microRNA expression in esophageal cancer. Oncol Rep. 2011;26(4):1011–7.

    CAS  PubMed  Google Scholar 

  83. Hegde ML, et al. Oxidative genome damage and its repair: implications in aging and neurodegenerative diseases. Mech Ageing Dev. 2012;133(4):157–68.

    CAS  PubMed Central  PubMed  Google Scholar 

  84. Nouspikel T. DNA repair in mammalian cells: Nucleotide excision repair: variations on versatility. Cell Mol Life Sci. 2009;66(6):994–1009.

    CAS  PubMed  Google Scholar 

  85. Kim YJ, Wilson DM 3rd. Overview of base excision repair biochemistry. Curr Mol Pharmacol. 2012;5(1):3–13.

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Robertson AB, et al. DNA repair in mammalian cells: Base excision repair: the long and short of it. Cell Mol Life Sci. 2009;66(6):981–93.

    CAS  PubMed  Google Scholar 

  87. Pena-Diaz J, Jiricny J. Mammalian mismatch repair: error-free or error-prone? Trends Biochem Sci. 2012;37(5):206–14.

    CAS  PubMed  Google Scholar 

  88. Lavin MF. Ataxia-telangiectasia: from a rare disorder to a paradigm for cell signalling and cancer. Nat Rev Mol Cell Biol. 2008;9(10):759–69.

    CAS  PubMed  Google Scholar 

  89. Shiloh Y. ATM and related protein kinases: safeguarding genome integrity. Nat Rev Cancer. 2003;3(3):155–68.

    CAS  PubMed  Google Scholar 

  90. Ciccia A, Elledge SJ. The DNA damage response: making it safe to play with knives. Mol Cell. 2010;40(2):179–204.

    CAS  PubMed Central  PubMed  Google Scholar 

  91. Chapman JR, Taylor MR, Boulton SJ. Playing the end game: DNA double-strand break repair pathway choice. Mol Cell. 2012;47(4):497–510.

    CAS  PubMed  Google Scholar 

  92. Rass U, Ahel I, West SC. Defective DNA repair and neurodegenerative disease. Cell. 2007;130(6):991–1004.

    CAS  PubMed  Google Scholar 

  93. van Attikum H, Gasser SM. Crosstalk between histone modifications during the DNA damage response. Trends Cell Biol. 2009;19(5):207–17.

    PubMed  Google Scholar 

  94. Lieber MR. The mechanism of human nonhomologous DNA end joining. J Biol Chem. 2008;283(1):1–5.

    CAS  PubMed  Google Scholar 

  95. Sartori AA, et al. Human CtIP promotes DNA end resection. Nature. 2007;450(7169):509–14.

    CAS  PubMed Central  PubMed  Google Scholar 

  96. San Filippo J, Sung P, Klein H. Mechanism of eukaryotic homologous recombination. Annu Rev Biochem. 2008;77:229–57.

    CAS  PubMed  Google Scholar 

  97. Eshleman JR, Markowitz SD. Mismatch repair defects in human carcinogenesis. Hum Mol Genet. 1996;5 Spec No:1489–94.

    CAS  PubMed  Google Scholar 

  98. Valeri N, et al. Modulation of mismatch repair and genomic stability by miR-155. Proc Natl Acad Sci U S A. 2010;107(15):6982–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  99. Mao G, et al. Modulation of microRNA processing by mismatch repair protein MutLalpha. Cell Res. 2012;22(6):973–85.

    CAS  PubMed Central  PubMed  Google Scholar 

  100. Valeri N, et al. MicroRNA-21 induces resistance to 5-fluorouracil by down-regulating human DNA MutS homolog 2 (hMSH2). Proc Natl Acad Sci U S A. 2010;107(49):21098–103.

    CAS  PubMed Central  PubMed  Google Scholar 

  101. Jia L, Wang XW, Harris CC. Hepatitis B virus X protein inhibits nucleotide excision repair. Int J Cancer. 1999;80(6):875–9.

    CAS  PubMed  Google Scholar 

  102. Xie QH, et al. MiR-192 inhibits nucleotide excision repair by targeting ERCC3 and ERCC4 in HepG2.2.15 cells. Biochem Biophys Res Commun. 2011;410(3):440–5.

    CAS  PubMed  Google Scholar 

  103. Lal A, et al. miR-24-mediated downregulation of H2AX suppresses DNA repair in terminally differentiated blood cells. Nat Struct Mol Biol. 2009;16(5):492–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  104. Wang Y, et al. MicroRNA-138 Modulates DNA Damage Response by Repressing Histone H2AX Expression. Mol Cancer Res. 2011;9(8):1100–11.

    CAS  PubMed Central  PubMed  Google Scholar 

  105. Caestecker KW, Van de Walle GR. The role of BRCA1 in DNA double-strand repair: Past and present. Exp Cell Res. 2013;319(5):575–87.

    CAS  PubMed  Google Scholar 

  106. Helleday T. Homologous recombination in cancer development, treatment and development of drug resistance. Carcinogenesis. 2010;31(6):955–60.

    CAS  PubMed  Google Scholar 

  107. Moskwa P, et al. miR-182-mediated downregulation of BRCA1 impacts DNA repair and sensitivity to PARP inhibitors. Mol Cell. 2011;41(2):210–20.

    CAS  PubMed Central  PubMed  Google Scholar 

  108. Garcia AI, et al. Down-regulation of BRCA1 expression by miR-146a and miR-146b-5p in triple negative sporadic breast cancers. EMBO Mol Med. 2011;3(5):279–90.

    CAS  PubMed Central  PubMed  Google Scholar 

  109. Gatti RA, et al. The pathogenesis of ataxia-telangiectasia. Learning from a Rosetta Stone. Clin Rev Allergy Immunol. 2001;20(1):87–108.

    CAS  PubMed  Google Scholar 

  110. Gatti RA. The inherited basis of human radiosensitivity. Acta Oncol. 2001;40(6):702–11.

    CAS  PubMed  Google Scholar 

  111. Nahas SA, Gatti RA. DNA double strand break repair defects, primary immunodeficiency disorders, and ’radiosensitivity’. Curr Opin Allergy Clin Immunol. 2009;9(6):510–6.

    CAS  PubMed  Google Scholar 

  112. Hu H, et al. ATM is down-regulated by N-Myc-regulated microRNA-421. Proc Natl Acad Sci U S A. 2010;107(4):1506–11.

    CAS  PubMed Central  PubMed  Google Scholar 

  113. Mansour WY, et al. Aberrant overexpression of miR-421 downregulates ATM and leads to a pronounced DSB repair defect and clinical hypersensitivity in SKX squamous cell carcinoma. Radiother Oncol. 2013;106(1):147–54.

    CAS  PubMed  Google Scholar 

  114. Song L, et al. miR-18a impairs DNA damage response through downregulation of ataxia telangiectasia mutated (ATM) kinase. PLoS One. 2011;6(9):e25454.

    CAS  PubMed Central  PubMed  Google Scholar 

  115. Ng WL, et al. Over-expression of miR-100 is responsible for the low-expression of ATM in the human glioma cell line: M059J. DNA Repair (Amst). 2010;9(11):1170–5.

    CAS  Google Scholar 

  116. Yan D, et al. Targeting DNA-PKcs and ATM with miR-101 sensitizes tumors to radiation. PLoS One. 2010;5(7):e11397.

    PubMed Central  PubMed  Google Scholar 

  117. Wang Y, et al. Transforming growth factor-beta regulates the sphere-initiating stem cell-like feature in breast cancer through miRNA-181 and ATM. Oncogene. 2011;30(12):1470–80.

    CAS  PubMed Central  PubMed  Google Scholar 

  118. Wang Y, et al. MiR-96 downregulates REV1 and RAD51 to promote cellular sensitivity to cisplatin and PARP inhibition. Cancer Res. 2012;72(16):4037–46.

    CAS  PubMed Central  PubMed  Google Scholar 

  119. Crosby ME, et al. MicroRNA regulation of DNA repair gene expression in hypoxic stress. Cancer Res. 2009;69(3):1221–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  120. Liang Z, et al. MicroRNA-302 replacement therapy sensitizes breast cancer cells to ionizing radiation. Pharm Res. 2013;30(4):1008–16.

    CAS  PubMed Central  PubMed  Google Scholar 

  121. Ivanovska I, et al. MicroRNAs in the miR-106b family regulate p21/CDKN1A and promote cell cycle progression. Mol Cell Biol. 2008;28(7):2167–74.

    CAS  PubMed Central  PubMed  Google Scholar 

  122. Wang P, et al. microRNA-21 negatively regulates Cdc25A and cell cycle progression in colon cancer cells. Cancer Res. 2009;69(20):8157–65.

    CAS  PubMed Central  PubMed  Google Scholar 

  123. Hu W, et al. Negative regulation of tumor suppressor p53 by microRNA miR-504. Mol Cell. 2010;38(5):689–99.

    CAS  PubMed Central  PubMed  Google Scholar 

  124. Le MT, et al. MicroRNA-125b is a novel negative regulator of p53. Genes Dev. 2009;23(7):862–76.

    CAS  PubMed Central  PubMed  Google Scholar 

  125. Ye D, et al. MiR-138 promotes induced pluripotent stem cell generation through the regulation of the p53 signaling. Stem Cells. 2012;30(8):1645–54.

    CAS  PubMed  Google Scholar 

  126. Yang X, et al. miR-449a and miR-449b are direct transcriptional targets of E2F1 and negatively regulate pRb-E2F1 activity through a feedback loop by targeting CDK6 and CDC25A. Genes Dev. 2009;23(20):2388–93.

    CAS  PubMed Central  PubMed  Google Scholar 

  127. Qi J, et al. microRNAs regulate human embryonic stem cell division. Cell Cycle. 2009;8(22):3729–41.

    CAS  PubMed Central  PubMed  Google Scholar 

  128. Nakamachi Y, et al. MicroRNA-124a is a key regulator of proliferation and monocyte chemoattractant protein 1 secretion in fibroblast-like synoviocytes from patients with rheumatoid arthritis. Arthritis Rheum. 2009;60(5):1294–304.

    PubMed  Google Scholar 

  129. Shi W, et al. Significance of Plk1 regulation by miR-100 in human nasopharyngeal cancer. Int J Cancer. 2010;126(9):2036–48.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hailiang Hu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hu, H. (2014). MicroRNA, DNA Repair, and Cancer. In: Singh, S., Rameshwar, P. (eds) MicroRNA in Development and in the Progression of Cancer. Springer, New York, NY. https://doi.org/10.1007/978-1-4899-8065-6_3

Download citation

Publish with us

Policies and ethics