Advertisement

MicroRNA and Drug Delivery

  • Joseph S. Fernandez-Moure
  • Jeffrey Van Eps
  • Bradley K. Weiner
  • Mauro Ferrari
  • Ennio Tasciotti
Chapter

Abstract

The human genome was once thought to be a redundant sequence containing few functional regions coding for proteins. This teaching is being rewritten as we continue to understand the vast complexity of the noncoding regions of the genetic code. These regions we now understand are transcribed into small single-stranded segments or microRNAs (miRNAs) that participate in the regulation of gene expression. miRNAs interact across many pathways and thus have the potential as targets for oncologic therapies. Their efficacy is limited because methods to traverse the many biologic barriers are yet to be developed. In order to achieve effective therapeutic levels at the site of interest, the tumor, the miRNA must be shuttled to the site and simultaneously be protected from the body’s defensive mechanisms. To this end, scientists have developed many vehicles for delivery at both the micro- and nanoscale using both synthetic and biologically derived vectors. Viral vectors continue to be the most commonly used vehicles, but are plagued by complications related to the vector itself. These inadequacies led researchers to explore synthetic materials such aspolylactic co-glycolic-acid (PLGA), silicon, gold, and liposomes to overcome the biobarriers of our body. While these vehicles have shown promise, problems such as high clearance rates, poor tumor accumulation and targeting, and adverse reactions have limited their translation into the clinic. In order to overcome these problems, a multistage theory was developed. By decoupling the tasks required of the carrier system, the multistage delivery system is able to simultaneously protect the payload, target the site of interest, and deliver the payload in therapeutic concentrations. This presents a paradigm shift in the concept of drug delivery and may provide the solution to the limited translational gene therapy in oncology.

Keywords

miRNA Drug delivery Nanotechnology Multistage delivery Viral vector Nanoparticles Silicon Liposomes 

References

  1. 1.
    Lee RC, RL Feinbaum, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75(5):843–54.PubMedGoogle Scholar
  2. 2.
    Wightman B, Ha I, Ruvkun G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell. 1993;75(5):855–62.PubMedGoogle Scholar
  3. 3.
    Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281–97.Google Scholar
  4. 4.
    Baek D, et al. The impact of microRNAs on protein output. Nature. 2008;455(7209):64–71.PubMedCentralPubMedGoogle Scholar
  5. 5.
    Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2005;120(1):15–20.PubMedGoogle Scholar
  6. 6.
    Lewis BP, et al. Prediction of mammalian microRNA targets. Cell. 2003;115(7):787–98.PubMedGoogle Scholar
  7. 7.
    Bader AG et al. Developing therapeutic microRNAs for cancer. Gene Ther. 2011;18(12):1121–6.PubMedCentralPubMedGoogle Scholar
  8. 8.
    Calin GA, Croce CM. MicroRNA signatures in human cancers. Nat Rev Cancer. 2006;6(11):857–66.PubMedGoogle Scholar
  9. 9.
    Esquela-Kerscher A, Slack FJ. Oncomirs – microRNAs with a role in cancer. Nature reviews. Cancer. 2006;6(4):259–69.PubMedGoogle Scholar
  10. 10.
    Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100(1):57–70.PubMedGoogle Scholar
  11. 11.
    Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74.PubMedGoogle Scholar
  12. 12.
    Check Hayden E. Cancer complexity slows quest for cure. Nature. 2008;455(7210):148.PubMedGoogle Scholar
  13. 13.
    Hogberg T. Chemotherapy: current drugs still have potential in advanced ovarian cancer. Nat Rev Clin Oncol. 2010;7(4):191–3.Google Scholar
  14. 14.
    Nahleh Z. Neoadjuvant chemotherapy for “triple negative” breast cancer: a review of current practice and future outlook. Med Oncol. 2010;27(2):531–9.PubMedGoogle Scholar
  15. 15.
    Ohtsu A. Current status and future prospects of chemotherapy for metastatic gastric cancer: a review. Gastric cancer: official journal of the International Gastric Cancer Association and the Japanese Gastric Cancer Association. 2005;8(2):95–102.Google Scholar
  16. 16.
    Imai K, Takaoka A. Comparing antibody and small-molecule therapies for cancer. Nat Rev Cancer. 2006;6(9):714–27.PubMedGoogle Scholar
  17. 17.
    Aggarwal S, et al. A dimeric peptide that binds selectively to prostate-specific membrane antigen and inhibits its enzymatic activity. Cancer Res. 2006;66(18):9171–7.PubMedGoogle Scholar
  18. 18.
    Le Pechoux C. Role of postoperative radiotherapy in resected non-small cell lung cancer: a reassessment based on new data. Oncologist. 2011;16(5):672–81.PubMedCentralPubMedGoogle Scholar
  19. 19.
    Buchholz TA. Radiation therapy for early-stage breast cancer after breast-conserving surgery. N Engl J Med. 2009;360(1):63–70.PubMedGoogle Scholar
  20. 20.
    Recht A, et al. The sequencing of chemotherapy and radiation therapy after conservative surgery for early-stage breast cancer. N Engl J Med. 1996;334(21):1356–61.PubMedGoogle Scholar
  21. 21.
    McCahill L, Ferrell B. Palliative surgery for cancer pain. West J Med. 2002;176(2):107–10.PubMedCentralPubMedGoogle Scholar
  22. 22.
    Carthew RW, Sontheimer EJ. Origins and mechanisms of miRNAs and siRNAs. Cell. 2009;136(4):642–55.PubMedCentralPubMedGoogle Scholar
  23. 23.
    Couvillion MT, et al. Sequence, biogenesis, and function of diverse small RNA classes bound to the Piwi family proteins of Tetrahymena thermophila. Genes Dev. 2009;23(17):2016–32.PubMedCentralPubMedGoogle Scholar
  24. 24.
    Sontheimer EJ, Carthew RW. Silence from within: endogenous siRNAs and miRNAs. Cell. 2005;122(1):9–12.PubMedGoogle Scholar
  25. 25.
    Hammond SM, et al. An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature. 2000;404(6775):293–6.PubMedGoogle Scholar
  26. 26.
    Meister G, et al. Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol Cell. 2004;15(2):185–97.PubMedGoogle Scholar
  27. 27.
    Meister G, et al. Identification of novel argonaute-associated proteins. Curr Biol. 2005;15(23):2149–55.PubMedGoogle Scholar
  28. 28.
    Meister G, Tuschl T. Mechanisms of gene silencing by double-stranded RNA. Nature. 2004;431(7006):343–9.PubMedGoogle Scholar
  29. 29.
    Brown BD, Naldini L. Exploiting and antagonizing microRNA regulation for therapeutic and experimental applications. Nature reviews. Genetics. 2009;10(8):578–85.PubMedGoogle Scholar
  30. 30.
    Cai Y, et al. A brief review on the mechanisms of miRNA regulation. Genomics, Proteomics Bioinformatics. 2009;7(4):147–54.Google Scholar
  31. 31.
    Eulalio A, Huntzinger E, Izaurralde E. Getting to the root of miRNA-mediated gene silencing. Cell. 2008;132(1):9–14.PubMedGoogle Scholar
  32. 32.
    Guang S, et al. An Argonaute transports siRNAs from the cytoplasm to the nucleus. Science. 2008;321(5888):537–41.PubMedCentralPubMedGoogle Scholar
  33. 33.
    Lu J, et al. The birth and death of microRNA genes in Drosophila. Nat Genet. 2008;40(3):351–5.PubMedGoogle Scholar
  34. 34.
    Moazed D. Small RNAs in transcriptional gene silencing and genome defence. Nature. 2009;457(7228):413–20.PubMedCentralPubMedGoogle Scholar
  35. 35.
    Ohrt T, et al. Fluorescence correlation spectroscopy and fluorescence cross-correlation spectroscopy reveal the cytoplasmic origination of loaded nuclear RISC in vivo in human cells. Nucleic Acids Res. 2008;36(20):6439–49.PubMedCentralPubMedGoogle Scholar
  36. 36.
    Wu L, Fan J, Belasco JG. MicroRNAs direct rapid deadenylation of mRNA. Proc Natl Acad Sci USA. 2006;103(11):4034–9.PubMedCentralPubMedGoogle Scholar
  37. 37.
    Golden DE, Gerbasi VR, Sontheimer EJ. An inside job for siRNAs. Mol Cell. 2008;31(3):309–12.PubMedCentralPubMedGoogle Scholar
  38. 38.
    Mello CC, Conte D Jr. Revealing the world of RNA interference. Nature. 2004;431(7006):338–42.PubMedGoogle Scholar
  39. 39.
    Dunoyer P, et al. An endogenous, systemic RNAi pathway in plants. EMBO J. 2010;29(10):1699–712.PubMedCentralPubMedGoogle Scholar
  40. 40.
    Fagegaltier D, et al. The endogenous siRNA pathway is involved in heterochromatin formation in Drosophila. Proc Natl Acad Sci USA. 2009;106(50):21258–63.PubMedCentralPubMedGoogle Scholar
  41. 41.
    Krek A, et al. Combinatorial microRNA target predictions. Nat Genet. 2005;37(5):495–500.PubMedGoogle Scholar
  42. 42.
    Rajewsky N. microRNA target predictions in animals. Nat Genet. 2006;38(Suppl):S8–13.PubMedGoogle Scholar
  43. 43.
    Ding XC, Grosshans H. Repression of C. elegans microRNA targets at the initiation level of translation requires GW182 proteins. EMBO J. 2009;28(3):213–22.PubMedCentralPubMedGoogle Scholar
  44. 44.
    Wakiyama M, et al. Let-7 microRNA-mediated mRNA deadenylation and translational repression in a mammalian cell-free system. Genes Dev. 2007;21(15):1857–62.PubMedCentralPubMedGoogle Scholar
  45. 45.
    Han J, et al. Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex. Cell. 2006;125(5):887–901.PubMedGoogle Scholar
  46. 46.
    Kim VN. MicroRNA biogenesis: coordinated cropping and dicing. Nat Rev Mol Cell Biol. 2005;6(5):376–85.PubMedGoogle Scholar
  47. 47.
    Bushati N, Cohen SM. microRNA functions. Annu Rev Cell Dev Biol. 2007;23:175–205.PubMedGoogle Scholar
  48. 48.
    Fabian MR, Sonenberg N. The mechanics of miRNA-mediated gene silencing: a look under the hood of miRISC. Nat Struct Mol Biol. 2012;19(6):586–93.PubMedGoogle Scholar
  49. 49.
    Behm-Ansmant I, et al. mRNA degradation by miRNAs and GW182 requires both CCR4:NOT deadenylase and DCP1:DCP2 decapping complexes. Genes Dev. 2006;20(14):1885–98.PubMedCentralPubMedGoogle Scholar
  50. 50.
    Mishima Y, et al. Translational inhibition by deadenylation-independent mechanisms is central to microRNA-mediated silencing in zebrafish. Proc Natl Acad Sci USA. 2012;109(4):1104–9.PubMedCentralPubMedGoogle Scholar
  51. 51.
    Guo H, et al. Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature. 2010;466(7308):835–40.PubMedCentralPubMedGoogle Scholar
  52. 52.
    Huntzinger E, Izaurralde E. Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nat Rev Genet. 2011;12(2):99–110.PubMedGoogle Scholar
  53. 53.
    Kiriakidou M, et al. An mRNA m7G cap binding-like motif within human Ago2 represses translation. Cell. 2007;129(6):1141–51.PubMedGoogle Scholar
  54. 54.
    Bazzini AA, Lee MT, Giraldez AJ. Ribosome profiling shows that miR-430 reduces translation before causing mRNA decay in zebrafish. Science. 2012;336(6078):233–7.PubMedCentralPubMedGoogle Scholar
  55. 55.
    Bethune J, Artus-Revel CG, Filipowicz W. Kinetic analysis reveals successive steps leading to miRNA-mediated silencing in mammalian cells. EMBO Rep. 2012;13(8):716–23.PubMedCentralPubMedGoogle Scholar
  56. 56.
    Djuranovic S, Nahvi A, Green R. miRNA-mediated gene silencing by translational repression followed by mRNA deadenylation and decay. Science. 2012. 336(6078):237–40.PubMedCentralPubMedGoogle Scholar
  57. 57.
    Baltimore D, et al. MicroRNAs: new regulators of immune cell development and function. Nat Immunol. 2008;9(8):839–45.PubMedGoogle Scholar
  58. 58.
    Huang Y, et al. Biological functions of microRNAs: a review. J Physiology Biochem. 2011;67(1):129–39.Google Scholar
  59. 59.
    Kloosterman WP, et al. Targeted inhibition of miRNA maturation with morpholinos reveals a role for miR-375 in pancreatic islet development. PLoS Biol. 2007;5(8):e203.PubMedCentralPubMedGoogle Scholar
  60. 60.
    Neilson JR, et al. Dynamic regulation of miRNA expression in ordered stages of cellular development. Genes Dev. 2007;21(5):578–589.PubMedCentralPubMedGoogle Scholar
  61. 61.
    Cheng Y, Zhang C. MicroRNA-21 in cardiovascular disease. J Cardiovasc Transl Res. 2010;3(3):251–5.PubMedCentralPubMedGoogle Scholar
  62. 62.
    Cheng Z, et al. MiR-320a is downregulated in patients with myasthenia gravis and modulates inflammatory cytokines production by targeting mitogen-activated protein kinase 1. J Clin Immunol. 2013;33(3):567–76.PubMedGoogle Scholar
  63. 63.
    Esau CC, Monia BP. Therapeutic potential for microRNAs. Adv Drug Deliv Rev. 2007;59(2–3):101–14.PubMedGoogle Scholar
  64. 64.
    Jazbutyte V, Thum T. MicroRNA-21: from cancer to cardiovascular disease. Curr Drug Targets. 2010;11(8):926–35.PubMedGoogle Scholar
  65. 65.
    Lu M, et al. An analysis of human microRNA and disease associations. PLoS One. 2008;3(10):e3420.PubMedCentralPubMedGoogle Scholar
  66. 66.
    Small EM, Frost RJ, Olson EN. MicroRNAs add a new dimension to cardiovascular disease. Circulation. 2010;121(8):1022–32.PubMedCentralPubMedGoogle Scholar
  67. 67.
    Calin GA, et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci USA. 2004;101(9):2999–3004.PubMedCentralPubMedGoogle Scholar
  68. 68.
    Iorio MV, Croce CM. MicroRNA dysregulation in cancer: diagnostics, monitoring and therapeutics. A comprehensive review. EMBO Mol Med. 2012;4(3):143–59.PubMedCentralPubMedGoogle Scholar
  69. 69.
    Zhang L, et al. microRNAs exhibit high frequency genomic alterations in human cancer. Proc Natl Acad Sci USA. 2006;103(24):9136–41.PubMedCentralPubMedGoogle Scholar
  70. 70.
    Brueckner B, et al. The human let-7a-3 locus contains an epigenetically regulated microRNA gene with oncogenic function. Cancer Res. 2007;67(4):1419–23.PubMedGoogle Scholar
  71. 71.
    Ota A, et al. Identification and characterization of a novel gene, C13orf25, as a target for 13q31-q32 amplification in malignant lymphoma. Cancer Res. 2004;64(9):3087–95.PubMedGoogle Scholar
  72. 72.
    He L, et al. A microRNA polycistron as a potential human oncogene. Nature. 2005;435(7043):828–33.PubMedGoogle Scholar
  73. 73.
    Tong AW, Nemunaitis J. Modulation of miRNA activity in human cancer: a new paradigm for cancer gene therapy? Cancer Gene Ther. 2008;15(6):341–55.PubMedGoogle Scholar
  74. 74.
    Hammond SM. MicroRNAs as oncogenes. Curr Opin Genet Dev. 2006;16(1):4–9.PubMedGoogle Scholar
  75. 75.
    Zhang B, et al. microRNAs as oncogenes and tumor suppressors. Dev Biol. 2007;302(1):1–12.PubMedGoogle Scholar
  76. 76.
    Croce CM. Oncogenes and cancer. N Engl J Med. 2008. 358(5):502–11.PubMedGoogle Scholar
  77. 77.
    Bader AG, Brown D, Winkler M. The promise of microRNA replacement therapy. Cancer Res. 2010;70(18):7027–30.PubMedCentralPubMedGoogle Scholar
  78. 78.
    Costinean S, et al. Pre-B cell proliferation and lymphoblastic leukemia/high-grade lymphoma in E(mu)-miR155 transgenic mice. Proc Natl Acad Sci USA. 2006;103(18):7024–9.PubMedCentralPubMedGoogle Scholar
  79. 79.
    Esteller M. Epigenetics in cancer. N Engl J Med. 2008;358(11):1148–59.PubMedGoogle Scholar
  80. 80.
    Feinberg AP, Vogelstein B. Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature. 1983;301(5895):89–92.PubMedGoogle Scholar
  81. 81.
    Gonzalez-Zulueta M, et al. Methylation of the 5’ CpG island of the p16/CDKN2 tumor suppressor gene in normal and transformed human tissues correlates with gene silencing. Cancer Res. 1995;55(20):4531–5.PubMedGoogle Scholar
  82. 82.
    Herman JG, et al. Inactivation of the CDKN2/p16/MTS1 gene is frequently associated with aberrant DNA methylation in all common human cancers. Cancer Res. 1995;55(20):4525–30.PubMedGoogle Scholar
  83. 83.
    Sakai T, et al. Allele-specific hypermethylation of the retinoblastoma tumor-suppressor gene. Am J Hum Gen. 1991;48(5):880–8.Google Scholar
  84. 84.
    Johnson SM, et al. RAS is regulated by the let-7 microRNA family. Cell. 2005;120(5):635–47.PubMedGoogle Scholar
  85. 85.
    Garzon R, et al. MicroRNA signatures associated with cytogenetics and prognosis in acute myeloid leukemia. Blood. 2008;111(6):3183–9.PubMedCentralPubMedGoogle Scholar
  86. 86.
    Toyota M, et al. Epigenetic silencing of microRNA-34b/c and B-cell translocation gene 4 is associated with CpG island methylation in colorectal cancer. Cancer Res. 2008;68(11):4123–32.PubMedGoogle Scholar
  87. 87.
    Wang T, et al. A micro-RNA signature associated with race, tumor size, and target gene activity in human uterine leiomyomas. Genes Chromosomes Cancer. 2007;46(4):336–47.PubMedGoogle Scholar
  88. 88.
    Iorio MV, et al. MicroRNA gene expression deregulation in human breast cancer. Cancer Res. 2005;65(16):7065–70.PubMedGoogle Scholar
  89. 89.
    Iorio MV, et al. MicroRNA signatures in human ovarian cancer. Cancer Res. 2007;67(18):8699–707.PubMedGoogle Scholar
  90. 90.
    Lehmann U, et al. Epigenetic inactivation of microRNA gene hsa-mir-9–1 in human breast cancer. J Pathol. 2008;214(1):17–24.PubMedGoogle Scholar
  91. 91.
    Blenkiron C, Miska EA. miRNAs in cancer: approaches, aetiology, diagnostics and therapy. Human Mol Genet. 2007;16(Spec No 1):R106–13.Google Scholar
  92. 92.
    Tavazoie SF, et al. Endogenous human microRNAs that suppress breast cancer metastasis. Nature. 2008;451(7175):147–52.PubMedCentralPubMedGoogle Scholar
  93. 93.
    Tang J, Ahmad A, Sarkar FH. The Role of MicroRNAs in Breast Cancer Migration, Invasion and Metastasis. Int J Mol Sci. 2012;13(10):13414–37.PubMedCentralPubMedGoogle Scholar
  94. 94.
    Wu H, Zhu S, Mo YY. Suppression of cell growth and invasion by miR-205 in breast cancer. Cell Res. 2009;19(4):439–48.PubMedCentralPubMedGoogle Scholar
  95. 95.
    Mishra PJ, Merlino G. MicroRNA reexpression as differentiation therapy in cancer. J Clin Invest. 2009;119(8):2119–23.PubMedCentralPubMedGoogle Scholar
  96. 96.
    Rosenfeld N, et al. MicroRNAs accurately identify cancer tissue origin. Nat Biotechnol. 2008;26(4):462–9.PubMedGoogle Scholar
  97. 97.
    Calin GA, et al. A MicroRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N Engl J Med. 2005;353(17):1793–801.PubMedGoogle Scholar
  98. 98.
    Caramuta S, et al. MicroRNA expression profiles associated with mutational status and survival in malignant melanoma. J Invest Dermatol. 2010;130(8):2062–70.PubMedGoogle Scholar
  99. 99.
    Chen Q, et al. Prognostic significance of serum miR-17–5p in lung cancer. Med Oncol. 2013;30(1):353.PubMedGoogle Scholar
  100. 100.
    Rothschild SI, et al. MicroRNA-381 represses ID1 and is deregulated in lung adenocarcinoma. J Thorac Oncol: official publication of the International Association for the Study of Lung Cancer. 2012;7(7):1069–77.Google Scholar
  101. 101.
    Yanaihara N, et al. Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell. 2006;9(3):189–98.PubMedGoogle Scholar
  102. 102.
    Gregory PA, et al. MicroRNAs as regulators of epithelial-mesenchymal transition. Cell Cycle. 2008;7(20):3112–8.PubMedGoogle Scholar
  103. 103.
    Ma L, et al. Therapeutic silencing of miR-10b inhibits metastasis in a mouse mammary tumor model. Nat Biotechnol. 2010;28(4):341–7.PubMedCentralPubMedGoogle Scholar
  104. 104.
    Zhu S, et al. MicroRNA-21 targets tumor suppressor genes in invasion and metastasis. Cell Res. 2008;18(3):350–9.PubMedGoogle Scholar
  105. 105.
    Ma L, Teruya-Feldstein J, Weinberg RA. Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature. 2007;449(7163):682–8.PubMedGoogle Scholar
  106. 106.
    Sahab ZJ, et al. Putative biomarkers and targets of estrogen receptor negative human breast cancer. Int J Mol Sci. 2011;12(7):4504–4521.PubMedCentralPubMedGoogle Scholar
  107. 107.
    Simonini PdSR, et al. Epigenetically deregulated microRNA-375 is involved in a positive feedback loop with estrogen receptor α in breast cancer cells. Cancer Res. 2010;70(22):9175–9184.Google Scholar
  108. 108.
    Miller TE, et al. MicroRNA-221/222 confers tamoxifen resistance in breast cancer by targeting p27Kip1. J Biol Chem. 2008;283(44):29897–903.PubMedCentralPubMedGoogle Scholar
  109. 109.
    Zhao JJ, et al. MicroRNA-221/222 negatively regulates estrogen receptor alpha and is associated with tamoxifen resistance in breast cancer. J Biol Chem. 2008;283(45):31079–86.PubMedCentralPubMedGoogle Scholar
  110. 110.
    Krutzfeldt J, et al. Specificity, duplex degradation and subcellular localization of antagomirs. Nucleic Acids Res. 2007;35(9):2885–92.PubMedCentralPubMedGoogle Scholar
  111. 111.
    Schwarz DS, et al. Asymmetry in the assembly of the RNAi enzyme complex. Cell. 2003;115(2):199–208.PubMedGoogle Scholar
  112. 112.
    Kumar MS, et al. Impaired microRNA processing enhances cellular transformation and tumorigenesis. Nat Genet. 2007;39(5):673–7.PubMedGoogle Scholar
  113. 113.
    Johnson CD, et al. The let-7 microRNA represses cell proliferation pathways in human cells. Cancer Res. 2007;67(16):7713–22.PubMedGoogle Scholar
  114. 114.
    Kumar MS, et al. Suppression of non-small cell lung tumor development by the let-7 microRNA family. Proc Natl Acad Sci USA. 2008;105(10):3903–8.PubMedCentralPubMedGoogle Scholar
  115. 115.
    Trang P, et al. Regression of murine lung tumors by the let-7 microRNA. Oncogene. 2010;29(11):1580–7.PubMedCentralPubMedGoogle Scholar
  116. 116.
    Yu F, et al. let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell. 2007;131(6):1109–23.PubMedGoogle Scholar
  117. 117.
    He L, et al. microRNAs join the p53 network–another piece in the tumour-suppression puzzle. Nature reviews. Cancer. 2007;7(11):819–22.PubMedGoogle Scholar
  118. 118.
    Wiggins JF, et al. Development of a lung cancer therapeutic based on the tumor suppressor microRNA-34. Cancer Res. 2010;70(14):5923–30.PubMedCentralPubMedGoogle Scholar
  119. 119.
    Kota J, et al. Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell. 2009;137(6):1005–17.PubMedCentralPubMedGoogle Scholar
  120. 120.
    Takeshita F, et al. Systemic delivery of synthetic microRNA-16 inhibits the growth of metastatic prostate tumors via downregulation of multiple cell-cycle genes. Mol Ther. 2010;18(1):181–7.PubMedCentralPubMedGoogle Scholar
  121. 121.
    Hutvagner G, et al. Sequence-specific inhibition of small RNA function. PLoS Biol. 2004;2(4):E98.Google Scholar
  122. 122.
    Meister G, et al. Sequence-specific inhibition of microRNA- and siRNA-induced RNA silencing. RNA. 2004;10(3):544–50.PubMedCentralPubMedGoogle Scholar
  123. 123.
    Orom UA, Kauppinen S, Lund AH. LNA-modified oligonucleotides mediate specific inhibition of microRNA function. Gene. 2006;372:137–41.PubMedGoogle Scholar
  124. 124.
    Krutzfeldt J, et al. Silencing of microRNAs in vivo with ‘antagomirs’. Nature. 2005;438(7068):685–9.PubMedGoogle Scholar
  125. 125.
    Shen H, Sun T, Ferrari M. Nanovector delivery of siRNA for cancer therapy. Cancer Gene Ther. 2012;19(6):367–373.PubMedGoogle Scholar
  126. 126.
    Ganta S, et al. A review of multifunctional nanoemulsion systems to overcome oral and CNS drug delivery barriers. Molecular Membrane Biology. 2010;27(7):260–273.PubMedGoogle Scholar
  127. 127.
    Tanaka T, et al. Nanotechnology for breast cancer therapy. Biomed Microdevices. 2009;11(1):49–63.PubMedGoogle Scholar
  128. 128.
    Wakai Y, et al. Effective cancer targeting using an anti-tumor tissue vascular endothelium-specific monoclonal antibody (TES-23). Jpn J Cancer Res. 2000;91(12):1319–1325.PubMedGoogle Scholar
  129. 129.
    Sanhai WR, et al. Seven challenges for nanomedicine. Nat Nanotechnol. 2008;3(5):242–4.PubMedGoogle Scholar
  130. 130.
    Esquela-Kerscher A, et al. The let-7 microRNA reduces tumor growth in mouse models of lung cancer. Cell Cycle. 2008;7(6):759–64.PubMedGoogle Scholar
  131. 131.
    Liu C, et al. The microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44. Nat Med. 2011;17(2):211–5.PubMedCentralPubMedGoogle Scholar
  132. 132.
    Trang P, et al. Systemic delivery of tumor suppressor microRNA mimics using a neutral lipid emulsion inhibits lung tumors in mice. Mol Ther: the journal of the American Society of Gene Therapy. 2011;19(6):1116–22.Google Scholar
  133. 133.
    Juliano R, et al. Biological barriers to therapy with antisense and siRNA oligonucleotides. Mol Pharm. 2009;6(3):686–95.PubMedCentralPubMedGoogle Scholar
  134. 134.
    Yang XC, et al. Studies of the 5’ exonuclease and endonuclease activities of CPSF-73 in histone pre-mRNA processing. Mol Cell Biol. 2009;29(1):31–42.PubMedCentralPubMedGoogle Scholar
  135. 135.
    Krol J, Loedige I, Filipowicz W. The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet. 2010;11(9):597–610.PubMedGoogle Scholar
  136. 136.
    Katoh T, et al. Selective stabilization of mammalian microRNAs by 3’ adenylation mediated by the cytoplasmic poly(A) polymerase GLD-2. Genes Dev. 2009;23(4):433–8.PubMedCentralPubMedGoogle Scholar
  137. 137.
    Ramachandran V, Chen X. Degradation of microRNAs by a family of exoribonucleases in Arabidopsis. Science. 2008;321(5895):1490–2.PubMedCentralPubMedGoogle Scholar
  138. 138.
    Turchinovich A, et al. Characterization of extracellular circulating microRNA. Nucleic Acids Res. 2011;39(16):7223–33.PubMedCentralPubMedGoogle Scholar
  139. 139.
    Matsumura Y, Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 1986;46(12 Pt 1):6387–92.PubMedGoogle Scholar
  140. 140.
    Shinohara N., Danno N., Ichinose T., Sasaki T., Fukui H., Honda K., and Gamo M. Tissue distribution and clearance of intravenously administered titanium dioxide (TiO2) nanoparticles. Nanotoxicology. 2013;8(2):132–141.Google Scholar
  141. 141.
    Sa LT, et al. Biodistribution of nanoparticles: initial considerations. J Pharm Biomed Anal. 2012. 70:602–4.PubMedGoogle Scholar
  142. 142.
    Kang YS, Boado RJ, Pardridge WM. Pharmacokinetics and organ clearance of a 3’-biotinylated, internally [32P]-labeled phosphodiester oligodeoxynucleotide coupled to a neutral avidin/monoclonal antibody conjugate. Drug Metab Dispos. 1995;23(1):55–9.PubMedGoogle Scholar
  143. 143.
    Rifai A, et al. Clearance kinetics, biodistribution, and organ saturability of phosphorothioate oligodeoxynucleotides in mice. Am J Pathol. 1996;149(2):717–25.Google Scholar
  144. 144.
    Gutierrez-Puente Y, et al. Safety, pharmacokinetics, and tissue distribution of liposomal P-ethoxy antisense oligonucleotides targeted to Bcl-2. J Pharm Exp Ther. 1999;291(2):865–9.Google Scholar
  145. 145.
    Juliano RL, et al. Antisense pharmacodynamics: critical issues in the transport and delivery of antisense oligonucleotides. Pharm Res. 1999;16(4):494–502.PubMedGoogle Scholar
  146. 146.
    Merkel OM, et al. In vivo SPECT and real-time gamma camera imaging of biodistribution and pharmacokinetics of siRNA delivery using an optimized radiolabeling and purification procedure. Bioconjug Chem. 2009;20(1):174–82.PubMedGoogle Scholar
  147. 147.
    van de Water FM, et al. Intravenously administered short interfering RNA accumulates in the kidney and selectively suppresses gene function in renal proximal tubules. Drug Metab. Dispos. 2006;34(8):1393–7.PubMedGoogle Scholar
  148. 148.
    Martino, F., et al., Circulating microRNAs are not eliminated by hemodialysis. PloS one. 2012;7(6):e38269.PubMedCentralPubMedGoogle Scholar
  149. 149.
    Mosser DM, Edwards JP. Exploring the full spectrum of macrophage activation. Nature Rev Immunol. 2008;8(12):958–69.Google Scholar
  150. 150.
    Alexis F, et al. Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol Pharm. 2008;5(4):505–15.PubMedCentralPubMedGoogle Scholar
  151. 151.
    Yadav KS, et al. Effect of size on the biodistribution and blood clearance of etoposide-loaded PLGA nanoparticles. PDA J Pharm Sci Technol. 2011;65(2):131–9.PubMedGoogle Scholar
  152. 152.
    Xiao K, et al. The effect of surface charge on in vivo biodistribution of PEG-oligocholic acid based micellar nanoparticles. Biomaterials. 2011;32(13):3435–46.PubMedCentralPubMedGoogle Scholar
  153. 153.
    Talegaonkar S, Vyas SP. Inverse targeting of diclofenac sodium to reticuloendothelial system-rich organs by sphere-in-oil-in-water (s/o/w) multiple emulsion containing poloxamer 403. J Drug Target. 2005;13(3):173–8.PubMedGoogle Scholar
  154. 154.
    Li P, et al. Targeting study of gelatin adsorbed clodronate in reticuloendothelial system and its potential application in immune thrombocytopenic purpura of rat model. J Control Release: official journal of the Controlled Release Society. 2006;114(2):202–8.Google Scholar
  155. 155.
    Underhill DM, Ozinsky A. Phagocytosis of microbes: complexity in action. Annu Rev Immunol. 2002;20:825–52.PubMedGoogle Scholar
  156. 156.
    Nolting A, et al. Hepatic distribution and clearance of antisense oligonucleotides in the isolated perfused rat liver. Pharm Res. 1997;14(4):516–21.PubMedGoogle Scholar
  157. 157.
    Thomas LL, Price CM. Cellular uptake, distribution, and degradation of phosphorothioate oligonucleotides in Euplotes crassus. Ann N Y Acad Sci. 1992;660:328–30.PubMedGoogle Scholar
  158. 158.
    Dejana E, Simionescu M, Wolburg H. Endothelial cell biology and pathology. Cell Tissue Res. 2009;335(1):1–3.PubMedGoogle Scholar
  159. 159.
    Szekanecz Z, Koch AE. Vascular endothelium and immune responses: implications for inflammation and angiogenesis. Rheum Dis Clin North Am. 2004;30(1):97–114.PubMedGoogle Scholar
  160. 160.
    Chorianopoulos E, et al. The role of endothelial cell biology in endocarditis. Cell Tissue Res. 2009;335(1):153–63.PubMedGoogle Scholar
  161. 161.
    Pate M, et al. Endothelial cell biology: role in the inflammatory response. Adv Clin Chem. 2010;52:109–30.PubMedGoogle Scholar
  162. 162.
    Cid MC. Endothelial cell biology, perivascular inflammation, and vasculitis. Cleve Clin J Med. 2002;69(Suppl 2):SII45–9.Google Scholar
  163. 163.
    Furuya M, Yonemitsu Y. Cancer neovascularization and proinflammatory microenvironments. Current Cancer Drug Targets. 2008;8(4):253–65.PubMedGoogle Scholar
  164. 164.
    van der Wijk T, et al. Osmotic swelling-induced activation of the extracellular-signal-regulated protein kinases Erk-1 and Erk-2 in intestine 407 cells involves the Ras/Raf-signalling pathway. Biochem J. 1998;331(Pt 3):863–9.PubMedCentralPubMedGoogle Scholar
  165. 165.
    Baeriswyl V, Christofori G. The angiogenic switch in carcinogenesis. Semin Cancer Biol. 2009;19(5):329–37.PubMedGoogle Scholar
  166. 166.
    Hendrix MJ, et al. Vasculogenic mimicry and tumour-cell plasticity: lessons from melanoma. Nature Rev Cancer. 2003;3(6):411–21.Google Scholar
  167. 167.
    Hashizume H, et al. Openings between defective endothelial cells explain tumor vessel leakiness. Am J Clin Pathol. 2000;156(4):1363–80.Google Scholar
  168. 168.
    Dvorak AM, Feng D. The vesiculo-vacuolar organelle (VVO). A new endothelial cell permeability organelle. J Histochemistry Cytochem: official journal of the Histochemistry Society. 2001;49(4):419–32.Google Scholar
  169. 169.
    Dreher MR, et al. Tumor vascular permeability, accumulation, and penetration of macromolecular drug carriers. J Natl Cancer Inst. 2006;98(5):335–44.PubMedGoogle Scholar
  170. 170.
    Folkman J. Fundamental concepts of the angiogenic process. Curr Mol Med. 2003;3(7):643–51.PubMedGoogle Scholar
  171. 171.
    Caron WP, et al. Interpatient pharmacokinetic and pharmacodynamic variability of carrier-mediated anticancer agents. Clin Pharmacol Ther. 2012;91(5):802–12.PubMedGoogle Scholar
  172. 172.
    Dvorak HF, et al. Identification and characterization of the blood vessels of solid tumors that are leaky to circulating macromolecules. Am J Pathol. 1988;133(1):95–109.PubMedCentralPubMedGoogle Scholar
  173. 173.
    Jain RK. Transport of molecules in the tumor interstitium: a review. Cancer Res. 1987;47(12):3039–51.PubMedGoogle Scholar
  174. 174.
    Prabhakar U, et al. Challenges and key considerations of the enhanced permeability and retention effect for nanomedicine drug delivery in oncology. Cancer Res. 2013;73(8):2412–7.PubMedCentralPubMedGoogle Scholar
  175. 175.
    Azzopardi EA, Ferguson EL, Thomas DW. The enhanced permeability retention effect: a new paradigm for drug targeting in infection. J Antimicrob Chemother. 2013;68(2):257–74.PubMedGoogle Scholar
  176. 176.
    Netti PA, et al. Role of extracellular matrix assembly in interstitial transport in solid tumors. Cancer Res. 2000;60(9):2497–503.PubMedGoogle Scholar
  177. 177.
    Liu W, et al. Tumor accumulation, degradation and pharmacokinetics of elastin-like polypeptides in nude mice. J Control Release: official journal of the Controlled Release Society. 2006;116(2):170–8.Google Scholar
  178. 178.
    Tasciotti E, et al. Mesoporous silicon particles as a multistage delivery system for imaging and therapeutic applications. Nat Nanotechnol. 2008;3(3):151–7.PubMedGoogle Scholar
  179. 179.
    Khatri N, et al. In vivo delivery aspects of miRNA, shRNA and siRNA. Crit Rev Ther Drug Carrier Syst. 2012;29(6):487–527.PubMedGoogle Scholar
  180. 180.
    Dominska M, Dykxhoorn DM. Breaking down the barriers: siRNA delivery and endosome escape. J Cell Sci. 2010;123(Pt 8):1183–9.PubMedGoogle Scholar
  181. 181.
    Park B, et al. Proteolytic cleavage in an endolysosomal compartment is required for activation of Toll-like receptor 9. Nat Immunol. 2008;9(12):1407–14.PubMedCentralPubMedGoogle Scholar
  182. 182.
    Thompson DB, et al. Cellular uptake mechanisms and endosomal trafficking of supercharged proteins. Chem Biol. 2012;19(7):831–43.PubMedCentralPubMedGoogle Scholar
  183. 183.
    Hierro A, et al. Structure of the ESCRT-II endosomal trafficking complex. Nature. 2004;431(7005):221–5.PubMedGoogle Scholar
  184. 184.
    Kelly EE, et al. The role of endosomal-recycling in long-term potentiation. Cell Mol Life Sci. 2011;68(2):185–94.PubMedGoogle Scholar
  185. 185.
    Puthenveedu MA, et al. Sequence-dependent sorting of recycling proteins by actin-stabilized endosomal microdomains. Cell. 2010;143(5):761–73.PubMedCentralPubMedGoogle Scholar
  186. 186.
    Endoh T, Ohtsuki T. Cellular siRNA delivery using cell-penetrating peptides modified for endosomal escape. Adv Drug Deliv Rev. 2009;61(9):704–9.PubMedGoogle Scholar
  187. 187.
    Endoh T, Ohtsuki T. Cellular siRNA delivery using TatU1A and photo-induced RNA interference. Methods Mol Biol. 2010;623:271–81.PubMedGoogle Scholar
  188. 188.
    Tseng YC, Huang L. Self-assembled lipid nanomedicines for siRNA tumor targeting. J Biomed Nanotechnol. 2009;5(4):351–63.PubMedGoogle Scholar
  189. 189.
    Akhtar S, Benter IF. Nonviral delivery of synthetic siRNAs in vivo. J Clin Invest. 2007;117(12):3623–32.PubMedCentralPubMedGoogle Scholar
  190. 190.
    Castanotto D, Rossi JJ. The promises and pitfalls of RNA-interference-based therapeutics. Nature. 2009;457(7228):426–33.PubMedCentralPubMedGoogle Scholar
  191. 191.
    Broderick JA, Zamore PD. MicroRNA therapeutics. Gene Ther. 2011;18(12):1104–10.PubMedCentralPubMedGoogle Scholar
  192. 192.
    Krutzfeldt J, Poy MN, Stoffel M. Strategies to determine the biological function of microRNAs. Nat Genet. 2006;38 Suppl:S14–9.Google Scholar
  193. 193.
    Varble A, ten Oever BR. Implications of RNA virus-produced miRNAs. RNA Biol. 2011;8(2):190–4.PubMedGoogle Scholar
  194. 194.
    Miyazaki Y, et al. Viral delivery of miR-196a ameliorates the SBMA phenotype via the silencing of CELF2. Nat Med. 2012;18(7):1136–41.PubMedGoogle Scholar
  195. 195.
    Chistiakov DA, Sobenin IA, Orekhov AN. Strategies to deliver microRNAs as potential therapeutics in the treatment of cardiovascular pathology. Drug Deliv. 2012;19(8):392–405.PubMedGoogle Scholar
  196. 196.
    Sakuma T, Barry MA, Ikeda Y. Lentiviral vectors: basic to translational. Biochem J. 2012;443(3):603–18.PubMedGoogle Scholar
  197. 197.
    Bukrinsky MI, et al. A nuclear localization signal within HIV-1 matrix protein that governs infection of non-dividing cells. Nature. 1993;365(6447):666–9.PubMedGoogle Scholar
  198. 198.
    Freed EO, Martin MA. HIV-1 infection of non-dividing cells. Nature. 1994;369(6476):107–8.PubMedGoogle Scholar
  199. 199.
    Klimatcheva E, Rosenblatt JD, Planelles V. Lentiviral vectors and gene therapy. Front Biosci: a journal and virtual library. 1999;4:D481–96.Google Scholar
  200. 200.
    Modlich U, Baum C. Preventing and exploiting the oncogenic potential of integrating gene vectors. J Clin Invest. 2009;119(4):755–8.PubMedCentralPubMedGoogle Scholar
  201. 201.
    Zufferey R, et al. Multiply attenuated lentiviral vector achieves efficient gene delivery in vivo. Nat Biotechnol. 1997;15(9):871–5.PubMedGoogle Scholar
  202. 202.
    Lehmann-Che J, Saib A. Early stages of HIV replication: how to hijack cellular functions for a successful infection. AIDS Rev. 2004;6(4):199–207.PubMedGoogle Scholar
  203. 203.
    Naldini L, et al. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science. 1996;272(5259):263–7.PubMedGoogle Scholar
  204. 204.
    Kong YW, et al. microRNAs in cancer management. Lancet Oncol. 2012;13(6):e249–58.PubMedGoogle Scholar
  205. 205.
    Maegdefessel L, et al. MicroRNA-21 blocks abdominal aortic aneurysm development and nicotine-augmented expansion. Sci Transl Med. 2012;4(122):122ra22.PubMedGoogle Scholar
  206. 206.
    Craig VJ, et al. Epigenetic silencing of microRNA-203 dysregulates ABL1 expression and drives Helicobacter-associated gastric lymphomagenesis. Cancer Res. 2011;71(10):3616–24.PubMedGoogle Scholar
  207. 207.
    Liu QS, et al. Lentiviral-mediated miRNA against liver-intestine cadherin suppresses tumor growth and invasiveness of human gastric cancer. Cancer Sci. 2010;101(8):1807–12.PubMedGoogle Scholar
  208. 208.
    Gentner B, et al. Stable knockdown of microRNA in vivo by lentiviral vectors. Nat Methods. 2009;6(1):63–6.PubMedGoogle Scholar
  209. 209.
    Brown BD, et al. Endogenous microRNA can be broadly exploited to regulate transgene expression according to tissue, lineage and differentiation state. Nat Biotechnol. 2007;25(12):1457–67.PubMedGoogle Scholar
  210. 210.
    Ebert MS, Neilson JR, Sharp PA. MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nat methods. 2007;4(9):721–6.PubMedGoogle Scholar
  211. 211.
    Grimm D, et al. Argonaute proteins are key determinants of RNAi efficacy, toxicity, and persistence in the adult mouse liver. J Clin Invest. 2010;120(9):3106–19.PubMedCentralPubMedGoogle Scholar
  212. 212.
    Cavazzana-Calvo M, et al. Transfusion independence and HMGA2 activation after gene therapy of human beta-thalassaemia. Nature. 2010;467(7313):318–22.PubMedCentralPubMedGoogle Scholar
  213. 213.
    Rayner KJ, et al. MiR-33 contributes to the regulation of cholesterol homeostasis. Science. 2010;328(5985):1570–3.PubMedCentralPubMedGoogle Scholar
  214. 214.
    Stevenson SC, et al. Human adenovirus serotypes 3 and 5 bind to two different cellular receptors via the ol head domain. J Virol. 1995;69(5):2850–7.PubMedCentralPubMedGoogle Scholar
  215. 215.
    Shashkova EV, May SM, Barry MA. Characterization of human adenovirus serotypes 5, 6, 11, and 35 as anticancer agents. Virology. 2009;394(2):311–20.PubMedCentralPubMedGoogle Scholar
  216. 216.
    Fu J, Li L, Bouvier M. Adenovirus E3–19K proteins of different serotypes and subgroups have similar, yet distinct, immunomodulatory functions toward major histocompatibility class I molecules. J Biol Chem. 2011;286(20):17631–9.PubMedCentralPubMedGoogle Scholar
  217. 217.
    Grimm D, et al. Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Nature. 2006;441(7092):537–41.PubMedGoogle Scholar
  218. 218.
    Daya S, Berns KI. Gene therapy using adeno-associated virus vectors. Clin Microbiol Rev. 2008;21(4):583–93.PubMedCentralPubMedGoogle Scholar
  219. 219.
    Han Y, et al. MicroRNA expression signatures of bladder cancer revealed by deep sequencing. PloS one. 2011;6(3):e18286.PubMedCentralPubMedGoogle Scholar
  220. 220.
    Grady WM, Tewari M. The next thing in prognostic molecular markers: microRNA signatures of cancer. Gut. 2010;59(6):706–8.PubMedCentralPubMedGoogle Scholar
  221. 221.
    Calin GA, Croce CM. MicroRNAs and chromosomal abnormalities in cancer cells. Oncogene. 2006;25(46):6202–10.PubMedGoogle Scholar
  222. 222.
    Care A, et al. MicroRNA-133 controls cardiac hypertrophy. Nat Med. 2007;13(5):613–8.PubMedGoogle Scholar
  223. 223.
    Colin A, et al. Engineered lentiviral vector targeting astrocytes in vivo. Glia. 2009;57(6):667–79.PubMedGoogle Scholar
  224. 224.
    Leja J, et al. Double-detargeted oncolytic adenovirus shows replication arrest in liver cells and retains neuroendocrine cell killing ability. PLoS One. 2010;5(1):e8916.PubMedCentralPubMedGoogle Scholar
  225. 225.
    Thomas CE, Ehrhardt A, Kay MA. Progress and problems with the use of viral vectors for gene therapy. Nat Rev Genet. 2003;4(5):346–58.PubMedGoogle Scholar
  226. 226.
    Mingozzi F, High KA. Therapeutic in vivo gene transfer for genetic disease using AAV: progress and challenges. Nat Rev Genet. 2011;12(5):341–55.PubMedGoogle Scholar
  227. 227.
    Kang EM, et al. Retrovirus gene therapy for X-linked chronic granulomatous disease can achieve stable long-term correction of oxidase activity in peripheral blood neutrophils. Blood. 2010;115(4):783–91.PubMedCentralPubMedGoogle Scholar
  228. 228.
    Hacein-Bey-Abina S, et al. Insertional oncogenesis in 4 patients after retrovirus-mediated gene therapy of SCID-X1. J Clin Invest. 2008;118(9):3132–42.PubMedCentralPubMedGoogle Scholar
  229. 229.
    Wang J, et al. Delivery of siRNA therapeutics: barriers and carriers. The AAPS J. 2010;12(4):492–503.Google Scholar
  230. 230.
    Kline KK, Tucker SA. Spectroscopic characterization of core-based hyperbranched poly(ethyleneimine) and dendritic poly(propyleneimine) as selective uptake devices. J Phys Chem A. 2010;114(27):7338–44.PubMedGoogle Scholar
  231. 231.
    Ibrahim AF, et al. MicroRNA replacement therapy for miR-145 and miR-33a is efficacious in a model of colon carcinoma. Cancer Res. 2011;71(15):5214–24.PubMedGoogle Scholar
  232. 232.
    Tazawa H, et al. Tumor-suppressive miR-34a induces senescence-like growth arrest through modulation of the E2F pathway in human colon cancer cells. Proc Natl Acad Sci USA. 2007;104(39):15472–7.PubMedCentralPubMedGoogle Scholar
  233. 233.
    Chiou GY, et al. Cationic polyurethanes-short branch PEI-mediated delivery of Mir145 inhibited epithelial-mesenchymal transdifferentiation and cancer stem-like properties and in lung adenocarcinoma. J Control Release: official journal of the Controlled Release Society. 2012;159(2):240–50.Google Scholar
  234. 234.
    Chiou SH, et al. Coexpression of Oct4 and Nanog enhances malignancy in lung adenocarcinoma by inducing cancer stem cell-like properties and epithelial-mesenchymal transdifferentiation. Cancer Res. 2010;70(24):10433–44.PubMedGoogle Scholar
  235. 235.
    Danhier F, et al. PLGA-based nanoparticles: an overview of biomedical applications. J Control Release: official journal of the Controlled Release Society. 2012;161(2):505–22.Google Scholar
  236. 236.
    Prokop A, Davidson JM. Nanovehicular intracellular delivery systems. J Pharm Sci. 2008;97(9):3518–90.PubMedCentralPubMedGoogle Scholar
  237. 237.
    Kumari A, Yadav SK, Yadav SC. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B Biointerfaces. 2010;75(1):1–18.PubMedGoogle Scholar
  238. 238.
    Owens DE 3rd, Peppas NA. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int J Pharm. 2006;307(1):93–102.Google Scholar
  239. 239.
    Klugherz BD, et al. Gene delivery from a DNA controlled-release stent in porcine coronary arteries. Nat Biotechnol. 2000;18(11):1181–4.PubMedGoogle Scholar
  240. 240.
    Gupta H, et al. Sparfloxacin-loaded PLGA nanoparticles for sustained ocular drug delivery. Nanomedicine. 2010;6(2):324–33.PubMedGoogle Scholar
  241. 241.
    Pillai RR, et al. Nafcillin-loaded PLGA nanoparticles for treatment of osteomyelitis. Biomed Mater. 2008;3(3):034114.PubMedGoogle Scholar
  242. 242.
    Golub JS, et al. Sustained VEGF delivery via PLGA nanoparticles promotes vascular growth. Am J Physiol Heart Circ Physiol. 2010;298(6):H1959–65.Google Scholar
  243. 243.
    Yilgor P, Hasirci N, Hasirci V. Sequential BMP-2/BMP-7 delivery from polyester nanocapsules. J Biomed Mater Res A. 2010;93(2):528–36.PubMedGoogle Scholar
  244. 244.
    Liang G. F., Zhu Y. L., Sun B., Hu F. H., Tian T., Li S. C., and Xiao Z. D. PLGA-based gene delivering nanoparticle enhance suppression effect of miRNA in HePG2 cells. Nanoscale research letters. 2011;6(1):1–9.PubMedCentralPubMedGoogle Scholar
  245. 245.
    Babar IA, et al. Nanoparticle-based therapy in an in vivo microRNA-155 (miR-155)-dependent mouse model of lymphoma. Proc Natl Acad Sci USA. 2012;109(26):E1695–704.Google Scholar
  246. 246.
    Gomes RS, et al. Efficient pro-survival/angiogenic miRNA delivery by an MRI-detectable nanomaterial. ACS Nano. 2013;7(4):3362–72.PubMedGoogle Scholar
  247. 247.
    Kosaka N, et al. Secretory mechanisms and intercellular transfer of microRNAs in living cells. J Biol Chem. 2010;285(23):17442–52.PubMedCentralPubMedGoogle Scholar
  248. 248.
    Ohshima K, et al. Let-7 microRNA family is selectively secreted into the extracellular environment via exosomes in a metastatic gastric cancer cell line. PloS one. 2010;5(10):e13247.PubMedCentralPubMedGoogle Scholar
  249. 249.
    Théry C. Exosomes: secreted vesicles and intercellular communications. F1000 Biol Rep. 2011;3(15):130.Google Scholar
  250. 250.
    Torchilin VP. Lipid-core micelles for targeted drug delivery. Curr Drug Deliv. 2005;2(4):319–27.PubMedGoogle Scholar
  251. 251.
    Markman M. Pegylated liposomal doxorubicin in the treatment of cancers of the breast and ovary. Expert Opin Pharmacother. 2006;7(11):1469–74.PubMedGoogle Scholar
  252. 252.
    Strother R, Matei D. Pegylated liposomal doxorubicin in ovarian cancer. Ther Clin Risk Manag. 2009;5(3):639–50.PubMedCentralPubMedGoogle Scholar
  253. 253.
    Akinc A, et al. A combinatorial library of lipid-like materials for delivery of RNAi therapeutics. Nat Biotechnol. 2008;26(5):561–9.PubMedCentralPubMedGoogle Scholar
  254. 254.
    Muggia FM. Clinical efficacy and prospects for use of pegylated liposomal doxorubicin in the treatment of ovarian and breast cancers. Drugs. 1997;54(Suppl 4):22–9.PubMedGoogle Scholar
  255. 255.
    Muggia FM, et al. Phase II study of liposomal doxorubicin in refractory ovarian cancer: antitumor activity and toxicity modification by liposomal encapsulation. J Clin Oncol: official journal of the American Society of Clinical Oncology. 1997;15(3):987–93.Google Scholar
  256. 256.
    Safinya CR, Ewert KK. Materials chemistry: Liposomes derived from molecular vases. Nature. 2012;489(7416):372–4.PubMedGoogle Scholar
  257. 257.
    Wu Y, et al. MicroRNA delivery by cationic lipoplexes for lung cancer therapy. Mol Pharm. 2011;8(4):1381–9.PubMedGoogle Scholar
  258. 258.
    DeSano JT, Xu L. MicroRNA regulation of cancer stem cells and therapeutic implications. AAPS J. 2009;11(4):682–92.PubMedCentralPubMedGoogle Scholar
  259. 259.
    Hanai K, et al. Atelocollagen-mediated systemic DDS for nucleic acid medicines. Ann N Y Acad Sci. 2006;1082:9–17.PubMedGoogle Scholar
  260. 260.
    Miyata T, Taira T, Noishiki Y. Collagen engineering for biomaterial use. Clin Mater. 1992;9(3–4):139–48.PubMedGoogle Scholar
  261. 261.
    Minakuchi Y, et al. Atelocollagen-mediated synthetic small interfering RNA delivery for effective gene silencing in vitro and in vivo. Nucleic Acids Res. 2004;32(13):e109.PubMedCentralPubMedGoogle Scholar
  262. 262.
    Svintradze DV, Mrevlishvili GM. Fiber molecular model of atelocollagen-small interfering RNA (siRNA) complex. Int J Biol Macromol. 2005;37(5):283–6.PubMedGoogle Scholar
  263. 263.
    Nakasa T, et al. Acceleration of muscle regeneration by local injection of muscle-specific microRNAs in rat skeletal muscle injury model. J Cell Mol Med. 2010;14(10):2495–505.PubMedGoogle Scholar
  264. 264.
    Takeshita F, et al. Systemic delivery of synthetic microRNA-16 inhibits the growth of metastatic prostate tumors via downregulation of multiple cell-cycle genes. Mol Ther: the journal of the American Society of Gene Therapy. 2010;18(1):181–7.Google Scholar
  265. 265.
    Tazawa H, et al. Tumor-suppressive miR-34a induces senescence-like growth arrest through modulation of the E2F pathway in human colon cancer cells. Proc Natl Acad Sci USA. 2007;104(39):15472–7.PubMedCentralPubMedGoogle Scholar
  266. 266.
    Nagata Y, et al. Induction of apoptosis in the synovium of mice with autoantibody-mediated arthritis by the intraarticular injection of double-stranded MicroRNA-15a. Arthritis Rheum. 2009;60(9):2677–83.PubMedGoogle Scholar
  267. 267.
    Takei Y, et al. The metastasis-associated microRNA miR-516a-3p is a novel therapeutic target for inhibiting peritoneal dissemination of human scirrhous gastric cancer. Cancer Res. 2011;71(4):1442–53.PubMedGoogle Scholar
  268. 268.
    Osaki M, et al. MicroRNA-143 regulates human osteosarcoma metastasis by regulating matrix metalloprotease-13 expression. Mol Ther: the journal of the American Society of Gene Therapy. 2011;19(6):1123–30.Google Scholar
  269. 269.
    Shoji T, et al. The effect of intra-articular injection of microRNA-210 on ligament healing in a rat model. Am J Sports Med. 2012;40(11):2470–8.PubMedGoogle Scholar
  270. 270.
    Kaasgaard T, Andresen TL. Liposomal cancer therapy: exploiting tumor characteristics. Expert Opin Drug Deliv. 2010;7(2):225–43.PubMedGoogle Scholar
  271. 271.
    Kato Y, Sawata SY, Inoue A. A lentiviral vector encoding two fluorescent proteins enables imaging of adenoviral infection via adenovirus-encoded miRNAs in single living cells. J Biochem. 2010;147(1):63–71.PubMedGoogle Scholar
  272. 272.
    Wang Y, et al. Nanoparticle-based delivery system for application of siRNA in vivo. Curr Drug Metab. 2010;11(2):182–96.PubMedGoogle Scholar
  273. 273.
    Bergen JM, et al. Gold nanoparticles as a versatile platform for optimizing physicochemical parameters for targeted drug delivery. Macromol Biosci. 2006;6(7):506–16.PubMedGoogle Scholar
  274. 274.
    Han G, Ghosh P, Rotello VM. Multi-functional gold nanoparticles for drug delivery. Adv Exp Med Biol. 2007;620:48–56.PubMedGoogle Scholar
  275. 275.
    Papasani MR, Wang G, Hill RA. Gold nanoparticles: the importance of physiological principles to devise strategies for targeted drug delivery. Nanomedicine. 2012;8(6):804–14.PubMedGoogle Scholar
  276. 276.
    Ghosh R, et al. A gold nanoparticle platform for the delivery of functional microRNAs into cancer cells. Biomaterials. 2013;34(3):807–16.PubMedGoogle Scholar
  277. 277.
    Shan Y, et al. Gene delivery using dendrimer-entrapped gold nanoparticles as nonviral vectors. Biomaterials. 2012;33(10):3025–35.PubMedGoogle Scholar
  278. 278.
    Shukla R, et al. Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: a microscopic overview. Langmuir: the ACS journal of surfaces and colloids. 2005;21(23):10644–54.Google Scholar
  279. 279.
    Rosi NL, et al. Oligonucleotide-modified gold nanoparticles for intracellular gene regulation. Science. 2006;312(5776):1027–30.PubMedGoogle Scholar
  280. 280.
    Demers LM, et al. A fluorescence-based method for determining the surface coverage and hybridization efficiency of thiol-capped oligonucleotides bound to gold thin films and nanoparticles. Anal Chem. 2000;72(22):5535–41.PubMedGoogle Scholar
  281. 281.
    Giljohann DA, et al. Oligonucleotide loading determines cellular uptake of DNA-modified gold nanoparticles. Nano Lett. 2007;7(12):3818–21.PubMedGoogle Scholar
  282. 282.
    Crew E, et al. MicroRNA conjugated gold nanoparticles and cell transfection. Anal Chem. 2012;84(1):26–9.PubMedGoogle Scholar
  283. 283.
    Bravo V, et al. Instability of miRNA and cDNAs derivatives in RNA preparations. Biochem Biophys Res Commun. 2007;353(4):1052–5.PubMedGoogle Scholar
  284. 284.
    van Etten EW, et al. Administration of liposomal agents and blood clearance capacity of the mononuclear phagocyte system. Antimicrob Agents Chemother. 1998;42(7):1677–81.PubMedCentralPubMedGoogle Scholar
  285. 285.
    Baum C, et al. Mutagenesis and oncogenesis by chromosomal insertion of gene transfer vectors. Hum Gene Ther. 2006;17(3):253–63.PubMedGoogle Scholar
  286. 286.
    Bouard D, Alazard-Dany D, Cosset FL. Viral vectors: from virology to transgene expression. Br J Pharmacol. 2009;157(2):153–65.PubMedCentralPubMedGoogle Scholar
  287. 287.
    Brown BD, et al. In vivo administration of lentiviral vectors triggers a type I interferon response that restricts hepatocyte gene transfer and promotes vector clearance. Blood. 2007;109(7):2797–805.PubMedGoogle Scholar
  288. 288.
    Lesina E, Dames P, Rudolph C. The effect of CpG motifs on gene expression and clearance kinetics of aerosol administered polyethylenimine (PEI)-plasmid DNA complexes in the lung. J Control Release: official journal of the Controlled Release Society. 2010;143(2):243–50.Google Scholar
  289. 289.
    Mizrak A, et al. Genetically engineered microvesicles carrying suicide mRNA/protein inhibit schwannoma tumor growth. Mol Ther: the journal of the American Society of Gene Therapy. 2013;21(1):101–8.Google Scholar
  290. 290.
    Zintchenko A, et al. Drug nanocarriers labeled with near-infrared-emitting quantum dots (quantoplexes): imaging fast dynamics of distribution in living animals. Mol Ther: the journal of the American Society of Gene Therapy. 2009;17(11):1849–56.Google Scholar
  291. 291.
    Merdan T, et al. PEGylation of poly(ethylene imine) affects stability of complexes with plasmid DNA under in vivo conditions in a dose-dependent manner after intravenous injection into mice. Bioconjug Chem. 2005;16(4):785–92.PubMedGoogle Scholar
  292. 292.
    Kang E, Yun CO. Current advances in adenovirus nanocomplexes: more specificity and less immunogenicity. BMB Rep. 2010;43(12):781–8.PubMedGoogle Scholar
  293. 293.
    Arnberg N. Adenovirus receptors: implications for tropism, treatment and targeting. Rev Med Virol. 2009;19(3):165–78.PubMedGoogle Scholar
  294. 294.
    Godin B, et al. Multistage nanovectors: from concept to novel imaging contrast agents and therapeutics. Acc Chem Res. 2011;44(10):979–89.PubMedCentralPubMedGoogle Scholar
  295. 295.
    Serda RE, et al. Multi-stage delivery nano-particle systems for therapeutic applications. Biochim Biophys Acta. 2011;1810(3):317–29.PubMedCentralPubMedGoogle Scholar
  296. 296.
    Godin B, et al. multistage nanovectors: from concept to novel imaging contrast agents and therapeutics. Acc Chem Res. 2011;44(10):979–989.PubMedCentralPubMedGoogle Scholar
  297. 297.
    Ferrari M. Cancer nanotechnology: opportunities and challenges. Nature reviews. Cancer. 2005;5(3):161–71.PubMedGoogle Scholar
  298. 298.
    Sakamoto J, et al. Antibiological barrier nanovector technology for cancer applications. Expert Opin Drug Deliv. 2007;4(4):359–69.PubMedGoogle Scholar
  299. 299.
    Geers B., De Wever O., Demeester J., Bracke M., De Smedt S. C., and Lentacker I. Targeted Liposome‐Loaded Microbubbles for Cell‐Specific Ultrasound‐Triggered Drug Delivery. Small. 2013;9(23):4027–4035.Google Scholar
  300. 300.
    Vader P, et al. Targeted delivery of small interfering RNA to angiogenic endothelial cells with liposome-polycation-DNA particles. J Control Release: official journal of the Controlled Release Society. 2012;160(2):211–6.Google Scholar
  301. 301.
    Geng J, et al. Conjugated polymer and gold nanoparticle co-loaded PLGA nanocomposites with eccentric internal nanostructure for dual-modal targeted cellular imaging. Small. 2012;8(15):2421–9.PubMedGoogle Scholar
  302. 302.
    Ferrari M. Vectoring siRNA therapeutics into the clinic. Nat Rev Clin Oncol. 2010;7(9):485–6.PubMedGoogle Scholar
  303. 303.
    Sengupta S, et al. Temporal targeting of tumour cells and neovasculature with a nanoscale delivery system. Nature. 2005;436(7050):568–72.PubMedGoogle Scholar
  304. 304.
    Chen JD, Wang Y, Chen X. In situ fabrication of nano-hydroxyapatite in a macroporous chitosan scaffold for tissue engineering. J Biomater Sci Polym Ed. 2009;20(11):1555–65.PubMedGoogle Scholar
  305. 305.
    Martin FJ, et al. Acute toxicity of intravenously administered microfabricated silicon dioxide drug delivery particles in mice: preliminary findings. Drugs R D. 2005;6(2):71–81.PubMedGoogle Scholar
  306. 306.
    Low SP, et al. Evaluation of mammalian cell adhesion on surface-modified porous silicon. Biomaterials. 2006. 27(26):4538–46.PubMedGoogle Scholar
  307. 307.
    Goh AS, et al. A novel approach to brachytherapy in hepatocellular carcinoma using a phosphorous32 (32P) brachytherapy delivery device–a first-in-man study. Int J Radiat Oncol Biol Phys. 2007;67(3):786–92.PubMedGoogle Scholar
  308. 308.
    Decuzzi P, Ferrari M. Design maps for nanoparticles targeting the diseased microvasculature. Biomaterials. 2008;29(3):377–84.PubMedGoogle Scholar
  309. 309.
    Decuzzi P, et al. A theoretical model for the margination of particles within blood vessels. Ann Biomed Eng. 2005;33(2):179–90.PubMedGoogle Scholar
  310. 310.
    Decuzzi P, et al. Intravascular delivery of particulate systems: does geometry really matter? Pharm Res. 2009;26(1):235–43.PubMedGoogle Scholar
  311. 311.
    Godin B, et al. An integrated approach for the rational design of nanovectors for biomedical imaging and therapy. Adv Genet. 2010;69:31–64.PubMedGoogle Scholar
  312. 312.
    Anderson SHC, et al. Dissolution of different forms of partially porous silicon wafers under simulated physiological conditions. physica status solidi (a). 2003;197(2):331–335.Google Scholar
  313. 313.
    Canham LT, et al. Derivatized mesoporous silicon with dramatically improved stability in simulated human blood plasma. Adv Mater. 1999;11(18):1505–1507.Google Scholar
  314. 314.
    Chiappini C, et al. Tailored porous silicon microparticles: fabrication and properties. Chemphyschem. 2010;11(5):1029–35.PubMedCentralPubMedGoogle Scholar
  315. 315.
    Kasinski AL, Slack FJ. Epigenetics and genetics. MicroRNAs en route to the clinic: progress in validating and targeting microRNAs for cancer therapy. Nat Rev Cancer. 2011;11(12):849–64.PubMedGoogle Scholar
  316. 316.
    Cheng CJ, Saltzman WM. Polymer nanoparticle-mediated delivery of microRNA inhibition and alternative splicing. Mol Pharm. 2012 May 7;9(5):1481–8.PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Joseph S. Fernandez-Moure
    • 1
  • Jeffrey Van Eps
    • 1
    • 2
  • Bradley K. Weiner
    • 1
    • 2
  • Mauro Ferrari
    • 2
  • Ennio Tasciotti
    • 2
  1. 1.Surgical Advanced Technologies LabHouston Methodist Hospital and Houston Methodist Research InstituteHoustonUSA
  2. 2.Department of NanomedicineHouston Methodist Hospital and Houston Methodist Research InstituteHoustonUSA

Personalised recommendations