Skip to main content

Epigenetic Regulation of microRNA Genes in Colorectal Cancer

  • Chapter
  • First Online:
MicroRNA in Development and in the Progression of Cancer

Abstract

DNA methylation and histone modification are epigenetic changes that play key roles in the dysregulation of tumor-related genes, thereby affecting numerous cellular processes, including cell proliferation, cell adhesion, apoptosis, and metastasis. In recent years, studies have shown that microRNAs (miRNAs) play important roles in the development of colorectal cancer (CRC), and that epigenetic mechanisms are deeply involved in their dysregulation. Specifically, technological advances that enable comprehensive analysis of miRNA expression profiles and the epigenome in CRC cells have led to the identification of a large number of epigenetically regulated miRNAs. As with protein-coding genes, it appears that miRNA genes involved in regulating cancer-related pathways are silenced in association with CpG island hypermethylation and altered histone modification. Aberrant DNA methylation of miRNA genes is a potentially useful biomarker for detecting CRC or predicting its outcome. Moreover, re-expression of the miRNAs could be an effective approach to cancer therapy, and unraveling the relationship between epigenetic alteration and miRNA dysregulation may lead to the discovery of new therapeutic targets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Baylin SB, Jones PA. A decade of exploring the cancer epigenome—biological and translational implications. Nat Rev Cancer. 2011;11(10):726–34.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  2. Dawson MA, Kouzarides T. Cancer epigenetics: from mechanism to therapy. Cell. 2012;150(1):12–27.

    Article  PubMed  CAS  Google Scholar 

  3. Lao VV, Grady WM. Epigenetics and colorectal cancer. Nat Rev Gastroenterol Hepatol. 2011;8(12):686–700.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  4. van Engeland M, Derks S, Smits KM, Meijer GA, Herman JG. Colorectal cancer epigenetics: complex simplicity. J Clin Oncol. 2011;29(10):1382–91.

    Article  PubMed  Google Scholar 

  5. Feinberg AP, Tycko B. The history of cancer epigenetics. Nat Rev Cancer. 2004;4(2):143–53.

    Article  PubMed  CAS  Google Scholar 

  6. Esquela-Kerscher A, Slack FJ. Oncomirs—microRNAs with a role in cancer. Nat Rev Cancer. 2006;6(4):259–69.

    Article  PubMed  CAS  Google Scholar 

  7. Croce CM. Causes and consequences of microRNA dysregulation in cancer. Nat Rev Genet. 2009;10(10):704–14.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  8. Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, et al. MicroRNA expression profiles classify human cancers. Nature. 2005;435(7043):834–8.

    Article  PubMed  CAS  Google Scholar 

  9. Suzuki H, Maruyama R, Yamamoto E, Kai M. DNA methylation and microRNA dysregulation in cancer. Mol Oncol. 2012;6(6):567–78.

    Article  PubMed  CAS  Google Scholar 

  10. Lopez-Serra P, Esteller M. DNA methylation-associated silencing of tumor-suppressor microRNAs in cancer. Oncogene. 2012;31(13):1609–22.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  11. Suzuki H, Gabrielson E, Chen W, Anbazhagan R, van Engeland M, et al. A genomic screen for genes upregulated by demethylation and histone deacetylase inhibition in human colorectal cancer. Nat Genet. 2002;31(2):141–9.

    Article  PubMed  CAS  Google Scholar 

  12. Saito Y, Liang G, Egger G, Friedman JM, Chuang JC, et al. Specific activation of microRNA-127 with downregulation of the proto-oncogene BCL6 by chromatin-modifying drugs in human cancer cells. Cancer Cell. 2006;9(6):435–43.

    Article  PubMed  CAS  Google Scholar 

  13. Lujambio A, Ropero S, Ballestar E, Fraga MF, Cerrato C, et al. Genetic unmasking of an epigenetically silenced microRNA in human cancer cells. Cancer Res. 2007;67(4):1424–9.

    Article  PubMed  CAS  Google Scholar 

  14. Agirre X, Vilas-Zornoza A, Jimenez-Velasco A, Martin-Subero JI, Cordeu L, et al. Epigenetic silencing of the tumor suppressor microRNA Hsa-miR-124a regulates CDK6 expression and confers a poor prognosis in acute lymphoblastic leukemia. Cancer Res. 2009;69(10):4443–53.

    Article  PubMed  CAS  Google Scholar 

  15. Toyota M, Suzuki H, Sasaki Y, Maruyama R, Imai K, et al. Epigenetic silencing of microRNA-34b/c and B-cell translocation gene 4 is associated with CpG island methylation in colorectal cancer. Cancer Res. 2008;68(11):4123–32.

    Article  PubMed  CAS  Google Scholar 

  16. Yan H, Choi AJ, Lee BH, Ting AH. Identification and functional analysis of epigenetically silenced microRNAs in colorectal cancer cells. PLoS One. 2011;6(6):e20628.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  17. He L, He X, Lim LP, de Stanchina E, Xuan Z, et al. A microRNA component of the p53 tumour suppressor network. Nature. 2007;447(7148):1130–4.

    Article  PubMed  CAS  Google Scholar 

  18. Bommer GT, Gerin I, Feng Y, Kaczorowski AJ, Kuick R, et al. p53-mediated activation of miRNA34 candidate tumor-suppressor genes. Curr Biol. 2007;17(15):1298–307.

    Article  PubMed  CAS  Google Scholar 

  19. Lodygin D, Tarasov V, Epanchintsev A, Berking C, Knyazeva T, et al. Inactivation of miR-34a by aberrant CpG methylation in multiple types of cancer. Cell Cycle. 2008;7(16):2591–600.

    Article  PubMed  CAS  Google Scholar 

  20. Kozaki K, Imoto I, Mogi S, Omura K, Inazawa J. Exploration of tumor-suppressive microRNAs silenced by DNA hypermethylation in oral cancer. Cancer Res. 2008;68(7):2094–105.

    Article  PubMed  CAS  Google Scholar 

  21. Suzuki H, Yamamoto E, Nojima M, Kai M, Yamano HO, et al. Methylation-associated silencing of microRNA-34b/c in gastric cancer and its involvement in an epigenetic field defect. Carcinogenesis. 2010;31(12):2066–73.

    Article  PubMed  CAS  Google Scholar 

  22. Corney DC, Hwang CI, Matoso A, Vogt M, Flesken-Nikitin A, et al. Frequent downregulation of miR-34 family in human ovarian cancers. Clin Cancer Res. 2010;16(4):1119–28.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  23. Lujambio A, Calin GA, Villanueva A, Ropero S, Sanchez-Cespedes M, et al. A microRNA DNA methylation signature for human cancer metastasis. Proc Natl Acad Sci U S A. 2008;105(36):13556–61.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Kalimutho M, Di Cecilia S, Del Vecchio Blanco G, Roviello F, Sileri P, et al. Epigenetically silenced miR-34b/c as a novel faecal-based screening marker for colorectal cancer. Br J Cancer. 2011;104(11):1770–8.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  25. Kamimae S, Yamamoto E, Yamano HO, Nojima M, Suzuki H, et al. Epigenetic alteration of DNA in mucosal wash fluid predicts invasiveness of colorectal tumors. Cancer Prev Res (Phila). 2011;4(5):674–83.

    Article  CAS  Google Scholar 

  26. Bandres E, Agirre X, Bitarte N, Ramirez N, Zarate R, et al. Epigenetic regulation of microRNA expression in colorectal cancer. Int J Cancer. 2009;125(11):2737–43.

    Article  PubMed  CAS  Google Scholar 

  27. Hildebrandt MA, Gu J, Lin J, Ye Y, Tan W, et al. Hsa-miR-9 methylation status is associated with cancer development and metastatic recurrence in patients with clear cell renal cell carcinoma. Oncogene. 2010;29(42):5724–8.

    Article  PubMed  CAS  Google Scholar 

  28. Tsai KW, Liao YL, Wu CW, Hu LY, Li SC, et al. Aberrant hypermethylation of miR-9 genes in gastric cancer. Epigenetics. 2011;6(10):1189–97.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  29. Gregory PA, Bert AG, Paterson EL, Barry SC, Tsykin A, et al. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol. 2008;10(5):593–601.

    Article  PubMed  CAS  Google Scholar 

  30. Korpal M, Lee ES, Hu G, Kang Y. The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. J Biol Chem. 2008;283(22):14910–14.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  31. Park SM, Gaur AB, Lengyel E, Peter ME. The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev. 2008;22(7):894–907.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  32. Davalos V, Moutinho C, Villanueva A, Boque R, Silva P, et al. Dynamic epigenetic regulation of the microRNA-200 family mediates epithelial and mesenchymal transitions in human tumorigenesis. Oncogene. 2012;31(16):2062–74.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  33. Vrba L, Jensen TJ, Garbe JC, Heimark RL, Cress AE, et al. Role for DNA methylation in the regulation of miR-200c and miR-141 expression in normal and cancer cells. PLoS One. 2010;5(1):e8697.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  34. Vrba L, Garbe JC, Stampfer MR, Futscher BW. Epigenetic regulation of normal human mammary cell type-specific miRNAs. Genome Res. 2011;21(12):2026–37.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  35. Neves R, Scheel C, Weinhold S, Honisch E, Iwaniuk KM, et al. Role of DNA methylation in miR-200c/141 cluster silencing in invasive breast cancer cells. BMC Res Notes. 2010;3:219.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  36. Wiklund ED, Bramsen JB, Hulf T, Dyrskjot L, Ramanathan R, et al. Coordinated epigenetic repression of the miR-200 family and miR-205 in invasive bladder cancer. Int J Cancer. 2011;128(6):1327–34.

    Article  PubMed  CAS  Google Scholar 

  37. Ceppi P, Mudduluru G, Kumarswamy R, Rapa I, Scagliotti GV, et al. Loss of miR-200c expression induces an aggressive, invasive, and chemoresistant phenotype in non-small cell lung cancer. Mol Cancer Res. 2010;8(9):1207–16.

    Article  PubMed  Google Scholar 

  38. Langevin SM, Stone RA, Bunker CH, Grandis JR, Sobol RW, et al. MicroRNA-137 promoter methylation in oral rinses from patients with squamous cell carcinoma of the head and neck is associated with gender and body mass index. Carcinogenesis. 2010;31(5):864–70.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  39. Chen Q, Chen X, Zhang M, Fan Q, Luo S, et al. miR-137 is frequently down-regulated in gastric cancer and is a negative regulator of Cdc42. Dig Dis Sci. 2011;56(7):2009–16.

    Article  PubMed  CAS  Google Scholar 

  40. Balaguer F, Link A, Lozano JJ, Cuatrecasas M, Nagasaka T, et al. Epigenetic silencing of miR-137 is an early event in colorectal carcinogenesis. Cancer Res. 2010;70(16):6609–18.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  41. Suzuki H, Takatsuka S, Akashi H, Yamamoto E, Nojima M, et al. Genome-wide profiling of chromatin signatures reveals epigenetic regulation of MicroRNA genes in colorectal cancer. Cancer Res. 2011;71(17):5646–58.

    Article  PubMed  CAS  Google Scholar 

  42. Zhou X, Ruan J, Wang G, Zhang W. Characterization and identification of microRNA core promoters in four model species. PLoS Comput Biol. 2007;3(3):e37.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  43. Long YS, Deng GF, Sun XS, Yi YH, Su T, et al. Identification of the transcriptional promoters in the proximal regions of human microRNA genes. Mol Biol Rep. 2011;38(6):4153–7.

    Article  PubMed  CAS  Google Scholar 

  44. Marson A, Levine SS, Cole MF, Frampton GM, Brambrink T, et al. Connecting microRNA genes to the core transcriptional regulatory circuitry of embryonic stem cells. Cell. 2008;134(3):521–33.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  45. Ozsolak F, Poling LL, Wang Z, Liu H, Liu XS, et al. Chromatin structure analyses identify miRNA promoters. Genes Dev. 2008;22(22):3172–83.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  46. Rodriguez A, Griffiths-Jones S, Ashurst JL, Bradley A. Identification of mammalian microRNA host genes and transcription units. Genome Res. 2004;14(10A):1902–10.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  47. McGarvey KM, Fahrner JA, Greene E, Martens J, Jenuwein T, et al. Silenced tumor suppressor genes reactivated by DNA demethylation do not return to a fully euchromatic chromatin state. Cancer Res. 2006;66(7):3541–9.

    Article  PubMed  CAS  Google Scholar 

  48. McGarvey KM, Van Neste L, Cope L, Ohm JE, Herman JG, et al. Defining a chromatin pattern that characterizes DNA-hypermethylated genes in colon cancer cells. Cancer Res. 2008;68(14):5753–9.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  49. Jacinto FV, Ballestar E, Esteller M. Impaired recruitment of the histone methyltransferase DOT1 L contributes to the incomplete reactivation of tumor suppressor genes upon DNA demethylation. Oncogene. 2009;28(47):4212–24.

    Article  PubMed  CAS  Google Scholar 

  50. Sarver AL, French AJ, Borralho PM, Thayanithy V, Oberg AL, et al. Human colon cancer profiles show differential microRNA expression depending on mismatch repair status and are characteristic of undifferentiated proliferative states. BMC Cancer. 2009;9:401.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  51. Reid JF, Sokolova V, Zoni E, Lampis A, Pizzamiglio S, et al. miRNA profiling in colorectal cancer highlights miR-1 involvement in MET-dependent proliferation. Mol Cancer Res. 2012;10(4):504–15.

    Article  PubMed  CAS  Google Scholar 

  52. Lin SL, Chiang A, Chang D, Ying SY. Loss of mir-146a function in hormone-refractory prostate cancer. RNA. 2008;14(3):417–24.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  53. Bhaumik D, Scott GK, Schokrpur S, Patil CK, Campisi J, et al. Expression of microRNA-146 suppresses NF-kappaB activity with reduction of metastatic potential in breast cancer cells. Oncogene. 2008;27(42):5643–7.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  54. Li Y, Vandenboom TG 2nd, Wang Z, Kong D, Ali S, et al. miR-146a suppresses invasion of pancreatic cancer cells. Cancer Res. 2010;70(4):1486–95.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  55. Datta J, Kutay H, Nasser MW, Nuovo GJ, Wang B, et al. Methylation mediated silencing of MicroRNA-1 gene and its role in hepatocellular carcinogenesis. Cancer Res. 2008;68(13):5049–58.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  56. Rodriguez-Otero P, Roman-Gomez J, Vilas-Zornoza A, Jose-Eneriz ES, Martin-Palanco V, et al. Deregulation of FGFR1 and CDK6 oncogenic pathways in acute lymphoblastic leukaemia harbouring epigenetic modifications of the MIR9 family. Br J Haematol. 2011;155(1):73–83.

    Article  PubMed  CAS  Google Scholar 

  57. Rotkrua P, Akiyama Y, Hashimoto Y, Otsubo T, Yuasa Y. MiR-9 downregulates CDX2 expression in gastric cancer cells. Int J Cancer. 2011;129(11):2611–20.

    Article  PubMed  CAS  Google Scholar 

  58. Zhang H, Qi M, Li S, Qi T, Mei H, et al. microRNA-9 targets matrix metalloproteinase 14 to inhibit invasion, metastasis, and angiogenesis of neuroblastoma cells. Mol Cancer Ther. 2012;11(7):1454–66.

    Article  PubMed  CAS  Google Scholar 

  59. Huang YW, Liu JC, Deatherage DE, Luo J, Mutch DG, et al. Epigenetic repression of microRNA-129–2 leads to overexpression of SOX4 oncogene in endometrial cancer. Cancer Res. 2009;69(23):9038–46.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  60. Tang JT, Wang JL, Du W, Hong J, Zhao SL, et al. MicroRNA 345, a methylation-sensitive microRNA is involved in cell proliferation and invasion in human colorectal cancer. Carcinogenesis. 2011;32(8):1207–15.

    Article  PubMed  CAS  Google Scholar 

  61. Tanaka T, Arai M, Wu S, Kanda T, Miyauchi H, et al. Epigenetic silencing of microRNA-373 plays an important role in regulating cell proliferation in colon cancer. Oncol Rep. 2011;26(5):1329–35.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. William Goldman for editing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiromu Suzuki MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Suzuki, H., Yamamoto, E., Maruyama, R. (2014). Epigenetic Regulation of microRNA Genes in Colorectal Cancer. In: Singh, S., Rameshwar, P. (eds) MicroRNA in Development and in the Progression of Cancer. Springer, New York, NY. https://doi.org/10.1007/978-1-4899-8065-6_11

Download citation

Publish with us

Policies and ethics