Factors Affecting Design

  • Alessandro Lavacchi
  • Hamish Miller
  • Francesco Vizza
Part of the Nanostructure Science and Technology book series (NST, volume 170)


The purpose of this chapter is to introduce the principles driving the design of new electrocatalytic materials. The chapter starts with a review of the main targets defined by the U.S. Department of Energy (DOE) for both fuel cells and electrolyzers. The DOE is the most widely recognized authority in defining the goals for these technologies and periodically releases reports reviewing targets and definitions for fuel cells and hydrogen generation techniques.


Fuel Cell Catalyst Layer Membrane Electrode Assembly Fuel Cell System Area Specific Resistance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    M.K. Debe, Electrocatalyst approaches and challenges for automotive fuel cells. Nature 486, 43 (2012)CrossRefGoogle Scholar
  2. 2.
    M.K. Debe, 20092011 Annual Merit Reviews DOE Hydrogen and Fuel Cells and Vehicle Technologies Programs: Advanced Cathode Catalysts and Supports for PEM Fuel Cells, (2011)Google Scholar
  3. 3.
    R. Borup et al., Scientific aspects of polymer electrolyte fuel cell durability and degradation. Chem. Rev. 107, 3904 (2007)Google Scholar
  4. 4.
    K.J.J. Mayrhofer et al., Non-destructive transmission electron microscopy study of catalyst degradation under electrochemical treatment. J. Power Sources 185, 734 (2008)Google Scholar
  5. 5.
    K.J.J. Mayrhofer, M. Hanzlik, M. Arenz, The influence of electrochemical annealing in CO saturated solution on the catalytic activity of Pt nanoparticles. Electrochim. Acta 54, 5018 (2009)CrossRefGoogle Scholar
  6. 6.
    M.K. Debe, Effect of electrode surface area distribution on high current density performance of PEM fuel cells. J. Electrochem. Soc. 159, B54 (2012)CrossRefGoogle Scholar
  7. 7.
    H.A. Gasteiger, S.S. Kocha, B. Sompalli, F.T. Wagner, Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl. Catal. B-Environ. 56, 9 (2005)Google Scholar
  8. 8.
    K.J.J. Mayrhofer et al., Measurement of oxygen reduction activities via the rotating disc electrode method: from Pt model surfaces to carbon-supported high surface area catalysts. Electrochim. Acta 53, 3181 (2008)CrossRefGoogle Scholar
  9. 9.
    Y. Garsany, O.A. Baturina, K.E. Swider-Lyons, S.S. Kocha, Experimental methods for quantifying the activity of platinum electrocatalysts for the oxygen reduction reaction. Anal. Chem. 82, 6321 (2010)CrossRefGoogle Scholar
  10. 10.
    A.J. Bard, L.R. Faulkner, Electrochemical methods : fundamentals and applications, 2nd edn. (Wiley, New York, 2001), pp. xxi, 833 pGoogle Scholar
  11. 11.
    F.T. Wagner, Automotive challenges and opportunities for oxygen reduction catalysts. First CARISMA International Conference, La Grande Motte, France, 23 September 2008 Google Scholar
  12. 12.
    F. T. Bacon, Fuel cells: Will they soon become a major source of electrical energy? Nature 186, 589 La Grande Motte, France, 23 September 1960Google Scholar
  13. 13.
    R. Rizo, E. Herrero, J.M. Feliu, Oxygen reduction reaction on stepped platinum surfaces in alkaline media. Phys. Chem. Chem. Phys. 15, 15416 (2013) Google Scholar
  14. 14.
    R. Narayanan, M.A. El-Sayed, Shape-dependent catalytic activity of platinum nanoparticles in colloidal solution. Nano Lett. 4, 1343 (2004)Google Scholar
  15. 15.
    G.A. Somorjai, Surface science. Science 201, 489 (1978)Google Scholar
  16. 16.
    F.J. Vidal-Iglesias et al., Shape-dependent electrocatalysis: ammonia oxidation on platinum nanoparticles with preferential (1 0 0) surfaces. Electrochem. Commun. 6, 1080 (2004)CrossRefGoogle Scholar
  17. 17.
    F. Tao, M. Salmeron, In situ studies of chemistry and structure of materials in reactive environments. Science 331, 171 (2011)CrossRefGoogle Scholar
  18. 18.
    D.L. Feldheim, The new face of catalysis. Science 316, 699 (2007)Google Scholar
  19. 19.
    Y.-N. Wen, J.-M. Zhang, Surface energy calculation of the fcc metals by using the MAEAM. Solid State Commun. 144, 163 (2007)CrossRefGoogle Scholar
  20. 20.
    C.S. Kong, D.Y. Kim, H.K. Lee, Y.G. Shul, T.H. Lee, Influence of pore-size distribution of diffusion layer on mass-transport problems of proton exchange membrane fuel cells. J. Power Sources 108, 185 (2002)CrossRefGoogle Scholar
  21. 21.
    H.H. Voss, D.P. Wilkinson, P.G. Pickup, M.C. Johnson, V. Basura, Anode water removal: a water management and diagnostic technique for solid polymer fuel cells. Electrochim. Acta 40, 321 (1995)CrossRefGoogle Scholar
  22. 22.
    D.L. Wood Iii, J.S. Yi, T.V. Nguyen, Effect of direct liquid water injection and interdigitated flow field on the performance of proton exchange membrane fuel cells. Electrochim. Acta 43, 3795 (1998)Google Scholar
  23. 23.
    T.V. Nguyen, A gas distributor design for proton-exchange-membrane fuel cells. J. Electrochem. Soc. 143, L103 (1996)CrossRefGoogle Scholar
  24. 24.
    D.M. Bernardi, M.W. Verbrugge, Mathematical model of the solid-polymer-electrolyte fuel cell. J. Electrochem. Soc. 139, 2477 (1992)CrossRefGoogle Scholar
  25. 25.
    Y.W. Rho, O.A. Velev, S. Srinivasan, Mass transport phenomena in proton exchange membrane fuel cells using O2/He, O2/Ar, and O2/N2 mixtures. I. Experimental analysis. J. Electrochem. Soc. 141, 2084 (1994)CrossRefGoogle Scholar
  26. 26.
    M.S. Wilson, J.A. Valerio, S. Gottesfeld, Low platinum loading electrodes for polymer electrolyte fuel cells fabricated using thermoplastic ionomers. Electrochim. Acta 40, 355 (1995)CrossRefGoogle Scholar
  27. 27.
    R. Mosdale, S. Srinivasan, Analysis of performance and of water and thermal management in proton exchange membrane fuel cells. Electrochim. Acta 40, 413 (1995)CrossRefGoogle Scholar
  28. 28.
    V.A. Paganin, E.A. Ticianelli, E.R. Gonzalez, Development and electrochemical studies of gas diffusion electrodes for polymer electrolyte fuel cells. J. Appl. Electrochem. 26, 297 (1996)CrossRefGoogle Scholar
  29. 29.
    D. Bevers, M. Wöhr, K. Yasuda, K. Oguro, Simulation of a polymer electrolyte fuel cell electrode. J. Appl. Electrochem. 27, 1254 (1997)CrossRefGoogle Scholar
  30. 30.
    L. Giorgi, E. Antolini, A. Pozio, E. Passalacqua, Influence of the PTFE content in the diffusion layer of low-Pt loading electrodes for polymer electrolyte fuel cells. Electrochim. Acta 43, 3675 (1998)CrossRefGoogle Scholar
  31. 31.
    L.R. Jordan et al., Diffusion layer parameters influencing optimal fuel cell performance. J. Power Sources 86, 250 (2000)CrossRefGoogle Scholar
  32. 32.
    E. Passalacqua, G. Squadrito, F. Lufrano, A. Patti, L. Giorgi, Effects of the diffusion layer characteristics on the performance of polymer electrolyte fuel cell electrodes. J. Appl. Electrochem. 31, 449 (2001)CrossRefGoogle Scholar
  33. 33.
    F.T. Wagner, B. Lakshmanan, M.F. Mathias, Electrochemistry and the future of the automobile. J. Phys. Chem. Lett. 1, 2204 (2010)CrossRefGoogle Scholar
  34. 34.
    H.A. Gasteiger, S.S. Kocha, B. Sompalli, F.T. Wagner, Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl. Catal. B 56, 9 (2005)CrossRefGoogle Scholar
  35. 35.
    N.M. Markovic, T.J. Schmidt, V. Stamenkovic, P.N. Ross, Fuel Cells 1, 105 (2001)CrossRefGoogle Scholar
  36. 36.
    J.K. Nørskov, T. Bligaard, J. Rossmeisl, C.H. Christensen, Towards the computational design of solid catalysts. Nature Chem. 1, 37 (2009)CrossRefGoogle Scholar
  37. 37.
    V. Mehta, J.S. Cooper, Review and analysis of PEM fuel cell design and manufacturing. J. Power Sources 114, 32 (2003)Google Scholar
  38. 38.
    N.P. Brandon, S. Skinner, B.C.H. Steele, Recent advances in materials for fuel cells. Annu. Rev. Mater. Res. 33, 183 (2003)CrossRefGoogle Scholar
  39. 39.
    G.J.K. Acres et al., Electrocatalysts for fuel cells. Catal. Today 38, 393 (1997)Google Scholar
  40. 40.
    G.Q. Lu, A. Wieckowski, Heterogeneous electrocatalysis: a core field of interfacial science. Curr Opin Colloid In 5, 95 (2000)Google Scholar
  41. 41.
    J. W. Long, R. M. Stroud, K. E. Swider-Lyons, D. R. Rolison, How to make electrocatalysts more active for direct methanol oxidation—Avoid PtRu bimetallic alloys! J. Phys. Chem. B 104, 9772 (2000)Google Scholar
  42. 42.
    S. A. Lee, K. W. Park, J. H. Choi, B. K. Kwon, Y. E. Sung, Nanoparticle synthesis and electrocatalytic activity of Pt alloys for direct methanol fuel cells. J. Electrochem. Soc.149, A1299 (2002)Google Scholar
  43. 43.
    R.P. O’Hayre, Fuel cell fundamentals, (John Wiley & Sons, Hoboken, NJ, 2006), pp. xxii, 409 pGoogle Scholar
  44. 44.
    A.K. Shukla, R.K. Raman, Methanol-rusistant oxygen-reduction catalysts for direct methanol fuel celms. Annu. Rev. Mater. Res. 33, 155 (2003)CrossRefGoogle Scholar
  45. 45.
    T. He, E. Kreidler, L. F. Xiong, E. R. Ding, Combinatorial screening and nano-synthesis of platinum binary alloys for oxygen electroreduction. J. Power Sources 165, 87 (2007)Google Scholar
  46. 46.
    T. He, E. Kreidler, L. Xiong, J. Luo, C.J. Zhong, Alloy electrocatalysts—Combinatorial discovery and nanosynthesis. J. Electrochem. Soc. 153, A1637 (2006)CrossRefGoogle Scholar
  47. 47.
    J. Greeley et al., Alloys of platinum and early transition metals as oxygen reduction electrocatalysts. Nature Chemistry 1, 552 (2009)CrossRefGoogle Scholar
  48. 48.
    N. Dimakis, M. Cowan, G. Hanson, E. S. Smotkin, Attraction-repulsion mechanism for carbon monoxide adsorption on platinum and platinum-ruthenium Alloys. J. Phys. Chem. C 113, 18730 (2009)Google Scholar
  49. 49.
    N. Ramaswamy, N. Hakim, S. Mukerjee, Degradation mechanism study of perfluorinated proton exchange membrane under fuel cell operating conditions. Electrochim. Acta 53, 3279 (2008)Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Alessandro Lavacchi
    • 1
  • Hamish Miller
    • 1
  • Francesco Vizza
    • 1
  1. 1.ICCOM-CNRSesto FiorentinoItaly

Personalised recommendations