Advertisement

Molecular Complexes in Electrocatalysis for Energy Production and Storage

  • Alessandro Lavacchi
  • Hamish Miller
  • Francesco Vizza
Chapter
Part of the Nanostructure Science and Technology book series (NST, volume 170)

Abstract

The employment of metal complexes as electrocatalysts represents a potentially very important development in the field of energy production and storage. From a practical perspective, a molecular metal complex, soluble in different solvents or easily dispersible on very small surfaces as well as bound to electrodes, but capable of promoting an electrochemical reaction, has the potential advantage to overcome the drawbacks that present the technologies based on metal nanoparticles.

Keywords

Fuel Cell Oxygen Reduction Reaction Oxygen Reduction Reaction Activity Faradaic Efficiency Desulfovibrio Desulfuricans 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    E. Antolini, Catalysts for direct ethanol fuel cells. J. Power Sources 170, 1 (2007)Google Scholar
  2. 2.
    V. Bambagioni et al., Pd and Pt-Ru anode electrocatalysts supported on multi-walled carbon nanotubes and their use in passive and active direct alcohol fuel cells with an anion-exchange membrane (alcohol = methanol, ethanol, glycerol). J. Power Sources 190, 241 (2009)Google Scholar
  3. 3.
    C. Bianchini et al., Selective oxidation of ethanol to acetic acid in highly efficient polymer electrolyte membrane-direct ethanol fuel cells. Electrochem. Commun. 11, 1077 (2009)Google Scholar
  4. 4.
    C. Bianchini, P.K. Shen, Palladium-based electrocatalysts for alcohol oxidation in half cells and in direct alcohol fuel cells. Chem. Rev. 109, 4183 (2009)Google Scholar
  5. 5.
    K. Matsuoka, Y. Iriyama, T. Abe, M. Matsuoka, Z. Ogumi, Alkaline direct alcohol fuel cells using an anion exchange membrane. J. Power Sources 150, 27 (2005)Google Scholar
  6. 6.
    F. Vigier, S. Rousseau, C. Coutanceau, J.M. Leger, C. Lamy, Electrocatalysis for the direct alcohol fuel cell. Top. Catal. 40, 111 (2006)Google Scholar
  7. 7.
    J.A. Cracknell, K.A. Vincent, F.A. Armstrong, Enzymes as working or inspirational electrocatalysts for fuel cells and electrolysis. Chem. Rev. 108, 2439 (2008)Google Scholar
  8. 8.
    K.A. Vincent, S.C. Barton, G.W. Canters, et al., in Fuel Cell Catalysis, ed. by M.T.M. Koper. Electrocatalysis for Fuel Cells at Enzyme-Modified Electrodes, (Wiley, Hoboken, 2009) Google Scholar
  9. 9.
    S.P. Annen et al., A biologically inspired organometallic fuel cell (omfc) that converts renewable alcohols into energy and chemicals. Angew. Chem. Int. Ed. 49, 7229 (2010)CrossRefGoogle Scholar
  10. 10.
    M. Trincado, H. Grutzmacher, F. Vizza, C. Bianchini, Domino rhodium/palladium-catalyzed dehydrogenation reactions of alcohols to acids by hydrogen transfer to inactivated alkenes. Chem. Eur. J. 16, 2751 (2010)CrossRefGoogle Scholar
  11. 11.
    T. Zweifel, J.V. Naubron, T. Buttner, T. Ott, H. Grutzmacher, Ethanol as hydrogen donor: Highly efficient transfer hydrogenations with rhodium(I) amides. Angew. Chem. Int. Ed. 47, 3245 (2008)CrossRefGoogle Scholar
  12. 12.
    T. Zweifel, J.V. Naubron, H. Grutzmacher, Catalyzed dehydrogenative coupling of primary alcohols with water, methanol, or amines. Angew. Chem. Int. Ed. 48, 559 (2009)CrossRefGoogle Scholar
  13. 13.
    V. Bambagioni et al., Energy efficiency enhancement of ethanol electrooxidation on Pd-CeO2/C in passive and active polymer electrolyte-membrane fuel cells. Chemsuschem 5, 1266 (2012)CrossRefGoogle Scholar
  14. 14.
    M. Bevilacqua et al., Improvement in the efficiency of an OrganoMetallic Fuel Cell by tuning the molecular architecture of the anode electrocatalyst and the nature of the carbon support. Energy Environ. Sci. 5, 8608 (2012)Google Scholar
  15. 15.
    E. Katz, A.F. Buckmann, I. Willner, Self-powered enzyme-based biosensors. J. Am. Chem. Soc. 123, 10752 (2001)Google Scholar
  16. 16.
    K. Asazawa et al., A platinum-free zero-carbon-emission easy fuelling direct hydrazine fuel cell for vehicles. Angew. Chem. Int. Ed. 46, 8024 (2007)CrossRefGoogle Scholar
  17. 17.
    R. Bashyam, P. Zelenay, A class of non-precious metal composite catalysts for fuel cells. Nature 443, 63 (2006)Google Scholar
  18. 18.
    F.R. Brushett et al., A carbon-supported copper complex of 3,5-Diamino-1,2,4-triazole as a cathode catalyst for alkaline fuel cell applications. J. Am. Chem. Soc. 132, 12185 (2010)Google Scholar
  19. 19.
    M. Lefevre, E. Proietti, F. Jaouen, J.P. Dodelet, Iron-based catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells. Science 324, 71 (2009)Google Scholar
  20. 20.
    S.F. Lu, J. Pan, A.B. Huang, L. Zhuang, J.T. Lu, Alkaline polymer electrolyte fuel cells completely free from noble metal catalysts. Proc. Nat. Acad. Sci. U.S.A. 105, 20611 (2008)Google Scholar
  21. 21.
    E. Proietti et al., Iron-based cathode catalyst with enhanced power density in polymer electrolyte membrane fuel cells. Nat. Commun. 2(416), 1–9 (2011) Google Scholar
  22. 22.
    G. Wu, K.L. More, C.M. Johnston, P. Zelenay, High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt. Science 332, 443 (2011)Google Scholar
  23. 23.
    S. Yamazaki, T. Ioroi, Y. Yamada, K. Yasuda, T. Kobayashi, A direct CO polymer electrolyte membrane fuel cell. Angew. Chem. Int. Ed. 45, 3120 (2006)CrossRefGoogle Scholar
  24. 24.
    Y. Hasegawa, M. Watanabe, I.D. Gridnev, T. Ikariya, Enantioselective direct amination of alpha-cyanoacetates catalyzed by bifunctional chiral Ru and Ir amido complexes. J. Am. Chem. Soc. 130, 2158 (2008)Google Scholar
  25. 25.
    T. Ikariya, A.J. Blacker, Asymmetric transfer hydrogenation of ketones with bifunctional transition metal-based molecular. Acc. Chem. Res. 40, 1300 (2007)Google Scholar
  26. 26.
    M. Ito, T. Ikariya, Catalytic hydrogenation of polar organic functionalities based on Ru-mediated heterolytic dihydrogen cleavage. Chem. Commun. 5134–5142 (2007) Google Scholar
  27. 27.
    M. Ito et al., Hydrogenation of N-Acylcarbamates and N-Acylsulfonamides catalyzed by a bifunctional Cp*Ru(PN) complex. Angew. Chem. Int. Ed. 48, 1324 (2009)CrossRefGoogle Scholar
  28. 28.
    M. Ito, A. Osaku, C. Kobayashi, A. Shiibashi, T. Ikariya, A convenient method for the synthesis of Protic 2-(Tertiary phosphino)-1-amines and their CP*RuCl complexes. Organometallics 28, 390 (2009)Google Scholar
  29. 29.
    S. Shirai, H. Nara, Y. Kayaki, T. Ikariya, Remarkable positive effect of silver salts on asymmetric hydrogenation of acyclic imines with Cp*Ir complexes bearing chiral N-sulfonylated diamine ligands. Organometallics 28, 802 (2009)Google Scholar
  30. 30.
    V. Artero, M. Fontecave, Some general principles for designing electrocatalysts with hydrogenase activity. Coord. Chem. Rev. 249, 1518 (2005)Google Scholar
  31. 31.
    S. Canaguier, M. Fontecave, V. Artero, Cp*(-)-Ruthenium-Nickel-Based H-2-evolving electrocatalysts as bio-inspired models of NiFe hydrogenases. Eur. J. Inorg. Chem. 2011, 1094–1099 (2011)Google Scholar
  32. 32.
    Z.M. Heiden, T.B. Rauchfuss, Homogeneous catalytic reduction of dioxygen using transfer hydrogenation catalysts. J. Am. Chem. Soc.129, 14303 (2007)Google Scholar
  33. 33.
    T. Matsumoto, K. Kim, S. Ogo, Molecular catalysis in a fuel cell. Angew. Chem. Int. Ed. 50, 11202 (2011)CrossRefGoogle Scholar
  34. 34.
    T. Matsumoto et al., Organometallic Catalysts for Use in a Fuel Cell. ChemCatChem. 5, 1368–1373 (2013) Google Scholar
  35. 35.
    S. Ogo, Electrons from hydrogen. Chem. Commun. 3317–3325 (2009)Google Scholar
  36. 36.
    S. Ogo et al., A dinuclear Ni(mu-H)Ru complex derived from H-2. Science 316, 585 (2007)Google Scholar
  37. 37.
    J.C. Fontecilla-Camps, A. Volbeda, C. Cavazza, Y. Nicolet, Structure/function relationships of NiFe - and FeFe -hydrogenases. Chem. Rev. 107, 4273 (2007)Google Scholar
  38. 38.
    J.C. Gordon, G.J. Kubas, Perspectives on how nature employs the principles of organometallic chemistry in dihydrogen activation in hydrogenases. Organometallics 29, 4682 (2010)Google Scholar
  39. 39.
    Y. Nicolet, C. Piras, P. Legrand, C.E. Hatchikian, J.C. Fontecilla-Camps, Desulfovibrio desulfuricans iron hydrogenase: The structure shows unusual coordination to an active site Fe binuclear center. Struct. Fold. Des. 7, 13 (1999)Google Scholar
  40. 40.
    P.M. Vignais, B. Billoud, Occurrence, classification, and biological function of hydrogenases: An overview. Chem. Rev. 107, 4206 (2007)Google Scholar
  41. 41.
    B. Askevold, H.W. Roesky, S. Schneider, Learning from the neighbors: Improving homogeneous catalysts with functional ligands motivated by heterogeneous and biocatalysis. Chemcatchem 4, 307 (2012)Google Scholar
  42. 42.
    X.L. Hu, B.S. Brunschwig, J.C. Peters, Electrocatalytic hydrogen evolution at low overpotentials by cobalt macrocyclic glyoxime and tetraimine complexes. J. Am. Chem. Soc. 129, 8988 (2007)Google Scholar
  43. 43.
    U.J. Kilgore et al., Ni((P2N2C6H4X)-N-Ph)(2) (2+) complexes as electrocatalysts for H-2 production: Effect of substituents, acids, and water on catalytic rates. J. Am. Chem. Soc. 133, 5861 (2011)Google Scholar
  44. 44.
    A.D. Wilson et al., Hydrogen oxidation and production using nickel-based molecular catalysts with positioned proton relays. J. Am. Chem. Soc. 128, 358 (2006)Google Scholar
  45. 45.
    A. Le Goff et al., From hydrogenases to noble metal-free catalytic nanomaterials for H-2 production and uptake. Science 326, 1384 (2009)Google Scholar
  46. 46.
    M.R. Dubois, D.L. Dubois, Development of molecular electrocatalysts for CO2 reduction and H-2 production/oxidation. Acc. Chem. Res. 42, 1974 (2009)Google Scholar
  47. 47.
    M.R. DuBois, D.L. DuBois, The roles of the first and second coordination spheres in the design of molecular catalysts for H-2 production and oxidation. Chem. Soc. Rev. 38, 62 (2009)CrossRefGoogle Scholar
  48. 48.
    A.D. Wilson et al., Nature of hydrogen interactions with Ni(II) complexes containing cyclic phosphine ligands with pendant nitrogen bases. Proc. Nat. Acad. Sci. U.S.A. 104, 6951 (2007)Google Scholar
  49. 49.
    M.L. Helm, M.P. Stewart, R.M. Bullock, M.R. DuBois, D.L. DuBois, A synthetic nickel electrocatalyst with a turnover frequency above 100,000 s(-1) for H-2 production. Science 333, 863 (2011)Google Scholar
  50. 50.
    C. Bianchini, P. Fornasiero, A synthetic nickel electrocatalyst with a turnover frequency above 100,000 s-1 for H2 production. Chemcatchem 4, 45 (2012)Google Scholar
  51. 51.
    M. Frey, Hydrogenases: Hydrogen-activating enzymes. Chembiochem 3, 153 (2002)Google Scholar
  52. 52.
    E.E. Benson, C.P. Kubiak, A.J. Sathrum, J.M. Smieja, Electrocatalytic and homogeneous approaches to conversion of CO2 to liquid fuels. Chem. Soc. Rev. 38, 89 (2009)CrossRefGoogle Scholar
  53. 53.
    M.A. Scibioh, B. Viswanatan, Electrochemical reduction of Carbon dioxide. Proc. Indian Nat. Sci. Acad. A. 70, 1–56 (2004)Google Scholar
  54. 54.
    T. Abe et al., Electrochemical CO(2) reduction catalysed by cobalt octacyanophthalocyanine and its mechanism. J. Porphyrins Phthalocyanines 1, 315 (1997, 1997)Google Scholar
  55. 55.
    P.A. Christensen, A. Hamnett, A.V.G. Muir, An insitu ftir study of the electroreduction of CO2 by copc-coated edge graphite-electrodes. J. Electroanal. Chem. 241, 361 (1988)Google Scholar
  56. 56.
    M.N. Mahmood, D. Masheder, C.J. Harty, Use of gas-diffusion electrodes for high-rate electrochemical reduction of carbon-dioxide .2. Reduction at metal phthalocyanine-impregnated electrodes. J. Appl. Electrochem. 17, 1223 (1987)Google Scholar
  57. 57.
    H. Tanabe, K. Ohno, Electrocatalysis of metal phthalocyanine thin-film prepared by the plasma-assisted deposition on a glassy-carbon in the reduction of carbon-dioxide. Electrochim. Acta 32, 1121 (1987)Google Scholar
  58. 58.
    S. Meshitsuka, M. Ichikawa, K. Tamaru, Electrocatalysis by metal phthalocyanines in the reduction of carbon dioxide. J. Chem. Soc. Chem, Commun. 0, 158 (1974)Google Scholar
  59. 59.
    C.M. Lieber, N.S. Lewis, Catalytic reduction of carbon dioxide at carbon electrodes modified with cobalt phthalocyanine. J. Am. Chem. Soc. 106, 5033 (1984)CrossRefGoogle Scholar
  60. 60.
    B.R. Eggins, J.T.S. Irvine, J. Grimshaw, The voltammetry of mixed solutions of carbon dioxide and metal phthalocyanines in DMSO. J. Electroanal. Chem. Interfacial Electrochem. 266, 125 (1989)CrossRefGoogle Scholar
  61. 61.
    G. Fachinetti, G. Fochi, T. Funaioli, P.F. Zanazzi, Isolation of a tetranuclear iron cluster promoting CO2 reduction and intermediate to iron carbonyl disproportionation. J. Chem. Soc. Chem. Commun. 89 (1987) Google Scholar
  62. 62.
    P.A. Vigato, S. Tamburini, D.E. Fenton, The activation of small molecules by dinuclear complexes of copper and other metals. Coord. Chem. Rev. 106, 25 (1990)CrossRefGoogle Scholar
  63. 63.
    J.-M. Savéant, Molecular catalysis of electrochemical reactions. Mechanistic Aspects Chem. Rev. 108, 2348 (2008)CrossRefGoogle Scholar
  64. 64.
    T. Abe et al., Electrocatalytic CO2 reduction by cobalt octabutoxyphthalocyanine coated on graphite electrode. J. Mol. Catal. Chem. 112, 55 (1996)Google Scholar
  65. 65.
    B.J. Fisher, R. Eisenberg, Electrocatalytic reduction of carbon dioxide by using macrocycles of nickel and cobalt. J. Am. Chem. Soc. 102, 7361 (1980)CrossRefGoogle Scholar
  66. 66.
    M. Beley, J.P. Collin, R. Ruppert, J.P. Sauvage, Electrocatalytic reduction of carbon dioxide by nickel cyclam2+ in water: Study of the factors affecting the efficiency and the selectivity of the process. J. Am. Chem. Soc. 108, 7461 (1986)CrossRefGoogle Scholar
  67. 67.
    M. Beley, J.-P. Collin, R. Ruppert, J.-P. Sauvage, Nickel(II)-cyclam: An extremely selective electrocatalyst for reduction of CO2 in water. J. Chem. Soc. Chem. Commun. 0, 1315 (1984)Google Scholar
  68. 68.
    J.P. Collin, A. Jouaiti, J.P. Sauvage, Electrocatalytic properties of (tetraazacyclotetradecane)nickel(2+) and Ni2(biscyclam)4+ with respect to carbon dioxide and water reduction. Inorg. Chem. 27, 1986 (1988)CrossRefGoogle Scholar
  69. 69.
    G.B. Balazs, F.C. Anson, Effects of co on the electrocatalytic activity of ni (cyclam)(2+) toward the reduction of CO2. J. Electroanal. Chem. 361, 149 (1993)Google Scholar
  70. 70.
    J.D. Froehlich, C.P. Kubiak, Homogeneous CO2 reduction by Ni(cyclam) at a glassy carbon electrode. Inorg. Chem. 51, 3932 (2012)Google Scholar
  71. 71.
    C.M. Bolinger, N. Story, B.P. Sullivan, T.J. Meyer, Electrocatalytic reduction of carbon dioxide by 2,2-bipyridine complexes of rhodium and iridium. Inorg. Chem. 27, 4582 (1988)CrossRefGoogle Scholar
  72. 72.
    J. Grodkowski et al., Reduction of cobalt and iron corroles and catalyzed reduction of CO2. J. Phys. Chem. A 106, 4772 (2002)Google Scholar
  73. 73.
    A.R. Guadalupe et al., Novel chemical pathways and charge-transport dynamics of electrodes modified with electropolymerized layers of [Co(v-terpy)2]2+. J. Am. Chem. Soc. 110, 3462 (1988)CrossRefGoogle Scholar
  74. 74.
    I. Bhugun, D. Lexa, J.M. Saveant, Catalysis of the electrochemical reduction of carbon dioxide by iron(O) porphyrins: Synergystic effect of weak Bronsted acids. J. Am. Chem. Soc. 118, 1769 (1996)Google Scholar
  75. 75.
    S. Daniele, P. Ugo, G. Bontempelli, M. Fiorani, An electroanalytical investigation on the nickel-promoted electrochemical conversion of CO2 to co. J. Electroanal. Chem. 219, 259 (1987)Google Scholar
  76. 76.
    F.R. Keene, C. Creutz, N. Sutin, Reduction of carbon-dioxide by tris(2,2-bipyridine) cobalt(i). Coord. Chem. Rev. 64, 247 (1985, 1985)Google Scholar
  77. 77.
    J. Hawecker, J.-M. Lehn, R. Ziessel, Efficient photochemical reduction of CO2 to CO by visible light irradiation of systems containing Re(bipy)(CO)3X or Ru(bipy)32+-CO2+ combinations as homogeneous catalysts. J. Chem. Soc. Chem. Commun. 0, 536 (1983)Google Scholar
  78. 78.
    J. Hawecker, J.-M. Lehn, R. Ziessel, Electrocatalytic reduction of carbon dioxide mediated by Re(bipy)(CO)3Cl (bipy = 2,2-bipyridine). J. Chem. Soc. Chem. Commun. 0, 328 (1984)Google Scholar
  79. 79.
    B.P. Sullivan, C.M. Bolinger, D. Conrad, W.J. Vining, T.J. Meyer, One-electron and 2-electron pathways in the electrocatalytic reduction of CO2 by fac-re(2,2-bipyridine)(co)3cl. J. Chem. Soc. Chem. Commun. 1414 (1985, 1985)Google Scholar
  80. 80.
    B.P. Sullivan, T.J. Meyer, Photoinduced irreversible insertion of CO2 into a metal-hydride bond. J. Chem. Soc. Chem. Commun. 0, 1244 (1984)Google Scholar
  81. 81.
    B.P. Sullivan, T.J. Meyer, Kinetics and mechanism of CO2 insertion into a metal-hydride bond - a large solvent effect and an inverse kinetic isotope effect. Organometallics 5, 1500 (1986)Google Scholar
  82. 82.
    H. Ishida, H. Tanaka, K. Tanaka, T. Tanaka, Selective formation of hcoo- in the electrochemical CO2 reduction catalyzed by ru(bpy)2(co)2 2+ (bpy = 2,2-bipyridine). J. Chem. Soc. Chem. Commun. 131 (1987)Google Scholar
  83. 83.
    H. Ishida, K. Tanaka, T. Tanaka, Electrochemical CO2 reduction catalyzed by ru(bpy)2(co)2 2+ and ru(bpy)2(Co)cl+- the effect of ph on the formation of co and hcoo. Organometallics 6, 181 (1987)Google Scholar
  84. 84.
    C.M. Bolinger et al., Electrocatalytic reduction of CO2 based on polypyridyl complexes of rhodium and ruthenium. J. Chem. Soc. Chem. Commun. 796 (1985, 1985)Google Scholar
  85. 85.
    F.P.A. Johnson, M.W. George, F. Hartl, J.J. Turner, Electrocatalytic reduction of CO2 using the complexes Re(bpy)(CO)(3)L (n) (n=+1, L=P(OEt)(3), CH3CN; n=0, L=Cl-, Otf(-); bpy=2,2-bipyridine; Otf(-)=CF3SO3) as catalyst precursors: Infrared spectroelectrochemical investigation. Organometallics 15, 3374 (1996)Google Scholar
  86. 86.
    Y. Hayashi, S. Kita, B.S. Brunschwig, E. Fujita, Involvement of a binuclear species with the Re-C(O)O-Re moiety in CO2 reduction catalyzed by tricarbonyl rhenium(I) complexes with diimine ligands: Strikingly slow formation of the Re-Re and Re-C(O)O-Re species from Re(dmb)(CO)(3)S (dmb=4,4-dimethyl-2,2-bipyridine, S=solvent). J. Am. Chem. Soc. 125, 11976 (2003)Google Scholar
  87. 87.
    H. Takeda, K. Koike, H. Inoue, O. Ishitani, Development of an efficient photocatalytic system for CO2 reduction using rhenium(l) complexes based on mechanistic studies. J. Am. Chem. Soc. 130, 2023 (2008)Google Scholar
  88. 88.
    E.E. Benson, C.P. Kubiak, Structural investigations into the deactivation pathway of the CO2 reduction electrocatalyst Re(bpy)(CO)(3)Cl. Chem. Commun. 48, 7374 (2012, 2012)Google Scholar
  89. 89.
    J.M. Smieja, C.P. Kubiak, Re(bipy-tBu)(CO)(3)Cl-improved catalytic activity for reduction of carbon dioxide: IR-Spectroelectrochemical and mechanistic studies. Inorg. Chem. 49, 9283 (2010)Google Scholar
  90. 90.
    F.A. Armstrong, J. Hirst, Reversibility and efficiency in electrocatalytic energy conversion and lessons from enzymes. Proc. Nat. Acad. Sci. U.S.A. 108, 14049 (2011)Google Scholar
  91. 91.
    V.S. Thoi, C.J. Chang, Nickel N-heterocyclic carbene-pyridine complexes that exhibit selectivity for electrocatalytic reduction of carbon dioxide over water. Chem. Commun. 47, 6578 (2011, 2011)Google Scholar
  92. 92.
    R. Alvarez et al., Synthesis and X-ray crystal structure of [Mo(CO2)2(PMe3)3(CNPri)]: The first structurally characterized bis(carbon dioxide) adduct of a transition metal. J. Chem. Soc. Chem. Commun. 1326 (1984)Google Scholar
  93. 93.
    R. Alvarez et al., Carbon-dioxide chemistry - synthesis, properties, and structural characterization of stable bis(carbon dioxide) adducts of molybdenum. J. Am. Chem. Soc. 108, 2286 (1986)Google Scholar
  94. 94.
    M. Aresta, C.F. Nobile, V.G. Albano, E. Forni, M. Manassero, New nickel-carbon dioxide complex: Synthesis, properties, and crystallographic characterization of (carbon dioxide)-bis(tricyclohexylphosphine)nickel. J. Chem. Soc. Chem. Commun. 0, 636 (1975)Google Scholar
  95. 95.
    G.S. Bristow, P.B. Hitchcock, M.F. Lappert, A novel carbon dioxide complex: synthesis and crystal structure of [Nb([eta]-C5H4Me)2(CH2SiMe3)([eta]2-CO2)]. J. Chem. Soc. Chem. Commun. 1145 (1981)Google Scholar
  96. 96.
    S. Slater, J.H. Wagenknecht, Electrochemical reduction of carbon dioxide catalyzed by Rh(diphos)2Cl. J. Am. Chem. Soc. 106, 5367 (1984)CrossRefGoogle Scholar
  97. 97.
    D.L. Dubois, Development of transition metal phosphine complexes as electrocatalysts for CO2 and CO reduction. Comments Inorg. Chem. 19, 307 (1997, 1997)Google Scholar
  98. 98.
    P.R. Bernatis, A. Miedaner, R.C. Haltiwanger, D.L. Dubois, Exclusion of 6-coordinate intermediates in the electrochemical reduction of CO2 catalyzed by pd(triphosphine)(CH3CN) (BF4)(2) complexes. Organometallics 13, 4835 (1994)Google Scholar
  99. 99.
    D.L. Dubois, A. Miedaner, R.C. Haltiwanger, Electrochemical reduction of CO2 catalyzed by pd(triphosphine)(solvent) (bf4)2 complexes - synthetic and mechanistic studies. J. Am. Chem. Soc. 113, 8753 (1991)Google Scholar
  100. 100.
    A. Miedaner, B.C. Noll, D.L. DuBois, Synthesis and characterization of palladium and nickel complexes with positively charged triphosphine ligands and their use as electrochemical CO2-reduction catalysts. Organometallics 16, 5779 (1997)Google Scholar
  101. 101.
    D.L. DuBois, in Encyclopedia of Electrochemistry ed. by A.J. Bard, M. Stratmann, F. Scholz, et al. Electrochemical reactions of carbon dioxide, (Wiley-VCH, Weinheim, 2006)Google Scholar
  102. 102.
    J.W. Raebiger et al., Electrochemical reduction of CO2 to CO catalyzed by a bimetallic palladium complex. Organometallics 25, 3345 (2006)Google Scholar
  103. 103.
    J.H. Jeoung, H. Dobbek, Carbon dioxide activation at the Ni,Fe-cluster of anaerobic carbon monoxide dehydrogenase. Science 318, 1461 (2007)Google Scholar
  104. 104.
    B.D. Steffey, C.J. Curtis, D.L. Dubois, Electrochemical reduction of CO2 catalyzed by a dinuclear palladium complex containing a bridging hexaphosphine ligand - evidence for cooperativity. Organometallics 14, 4937 (1995)Google Scholar
  105. 105.
    C. Caix, S. ChardonNoblat, A. Deronzier, Electrocatalytic reduction of CO2 into formate with (eta(5)-Me5C5)M(L)Cl (+) complexes (L=2,2-bipyridine ligands; M=Rh(III) and Ir(III)). J. Electroanal. Chem. 434, 163 (1997)Google Scholar
  106. 106.
    T. Reda, C.M. Plugge, N.J. Abram, J. Hirst, Reversible interconversion of carbon dioxide and formate by an electroactive enzyme. Proc. Nat. Acad. Sci. U.S.A. 105, 10654 (2008)Google Scholar
  107. 107.
    T.C. Johnson, D.J. Morris, M. Wills, Hydrogen generation from formic acid and alcohols using homogeneous catalysts. Chem. Soc. Rev. 39, 81 (2010)CrossRefGoogle Scholar
  108. 108.
    J.H. Jiang, A. Wieckowski, Prospective direct formate fuel cell. Electrochem. Commun. 18, 41 (2012)CrossRefGoogle Scholar
  109. 109.
    P. Kang et al., Selective electrocatalytic reduction of CO2 to formate by water-stable iridium dihydride pincer complexes. J. Am. Chem. Soc. 134, 5500 (2012)Google Scholar
  110. 110.
    J.O.M. Bockris, J.C. Wass, On the photoelectrocatalytic reduction of carbon dioxide. Mater. Chem. Phys. 22, 249 (1989)CrossRefGoogle Scholar
  111. 111.
    M. Halmann, B. Aurianblajeni, Electrochemical reduction of carbon-dioxide at elevated pressure on semiconductor electrodes in aqueous-solution. J. Electroanal. Chem. 375, 379 (1994)Google Scholar
  112. 112.
    K. Hirota et al., Photoelectrochemical reduction of CO2 in a high-pressure CO2 plus methanol medium at p-type semiconductor electrodes. J. Phys. Chem. B 102, 9834 (1998)Google Scholar
  113. 113.
    S. Kaneco, H. Katsumata, T. Suzuki, K. Ohta, Photoelectrochemical reduction of carbon dioxide at p-type gallium arsenide and p-type indium phosphide electrodes in methanol. Chem. Eng. J. 116, 227 (2006)Google Scholar
  114. 114.
    M. Le et al., Electrochemical reduction of CO2 to CH3OH at copper oxide surfaces. J. Electrochem. Soc. 158, E45 (2011)CrossRefGoogle Scholar
  115. 115.
    T. Cottineau, M. Morin, D. Bélanger, Modification of p-type silicon for the photoelectrochemical reduction of CO2. ECS Trans. 19, 1 (2009)CrossRefGoogle Scholar
  116. 116.
    R. Hinogami, Y. Nakamura, S. Yae, Y. Nakato, An approach to ideal semiconductor electrodes for efficient photoelectrochemical reduction of carbon dioxide by modification with small metal particles. J. Phys. Chem. B 102, 974 (1998)Google Scholar
  117. 117.
    E.E. Barton, D.M. Rampulla, A.B. Bocarsly, Selective solar-driven reduction of CO2 to methanol using a catalyzed p-GaP based photoelectrochemical cell. J. Am. Chem. Soc. 130, 6342 (2008)Google Scholar
  118. 118.
    M.G. Bradley, T. Tysak, D.J. Graves, N.A. Viachiopoulos, Electrocatalytic reduction of carbon dioxide at illuminated p-type silicon semiconduccting electrodes. J. Chem. Soc. Chem. Commun. 349 (1983)Google Scholar
  119. 119.
    T. Arai et al., Photoelectrochemical reduction of CO2 in water under visible-light irradiation by a p-type InP photocathode modified with an electropolymerized ruthenium complex. Chem. Commun. 46, 6944 (2010)Google Scholar
  120. 120.
    B. Kumar, J.M. Smieja, C.P. Kubiak, Photoreduction of CO2 on p-type silicon using Re(bipy-But)(CO)3Cl: Photovoltages exceeding 600 mV for the selective reduction of CO2 to CO. J. Phys. Chem. C 114, 14220 (2010)CrossRefGoogle Scholar
  121. 121.
    J.M. Smieja et al., Kinetic and structural studies, origins of selectivity, and interfacial charge transfer in the artificial photosynthesis of CO. Proc. Nat. Acad. Sci. U.S.A. 109, 15646 (2012)Google Scholar
  122. 122.
    O. Khaselev, A. Bansal, J.A. Turner, High-efficiency integrated multijunction photovoltaic/electrolysis systems for hydrogen production. Int. J. Hydrogen Energy 26, 127 (2001)Google Scholar
  123. 123.
    S. Licht et al., Efficient solar water splitting, exemplified by RuO2-catalyzed AlGaAs/Si photoelectrolysis. J. Phys. Chem. B 104, 8920 (2000)Google Scholar
  124. 124.
    Y. Yamada et al., One chip photovoltaic water electrolysis device. Int. J. Hydrogen Energy 28, 1167 (2003)Google Scholar
  125. 125.
    S. Yamane et al., Efficient solar water splitting with a composite “n-Si/p-CuI/n-i-p a-Si/n-p GaP/RuO2” semiconductor electrode. J. Phys. Chem. C 113, 14575 (2009)Google Scholar
  126. 126.
    J.J. Concepcion, R.L. House, J.M. Papanikolas, T.J. Meyer, Chemical approaches to artificial photosynthesis. Proc. Nat. Acad. Sci. U.S.A. 109, 15560 (2012)Google Scholar
  127. 127.
    J.A. Treadway, J.A. Moss, T.J. Meyer, Visible region photooxidation on TiO2 with a chromophore-catalyst molecular assembly. Inorg. Chem. 38, 4386 (1999)Google Scholar
  128. 128.
    W.J. Youngblood et al., Photoassisted overall water splitting in a visible light-absorbing dye-sensitized photoelectrochemical cell. J. Am. Chem. Soc. 131, 926 (2009)Google Scholar
  129. 129.
    W.J. Youngblood, S.H. A. Lee, K. Maeda, T.E. Mallouk, Visible light water splitting using dye-sensitized oxide semiconductors. Acc. Chem. Res. 42, 1966 (2009)Google Scholar
  130. 130.
    J. Zhang, PEM Fuel Cell Electrocatalysts and Catalyst Layers. Fundamentals and Applications (Springer London, London, 2008)Google Scholar
  131. 131.
    B.E. Logan, Microbial Fuel Cells (Wiley, Hoboken, New Jersey, 2008)Google Scholar
  132. 132.
    Y. Garsany, O.A. Baturina, K.E. Swider-Lyons, S.S. Kocha, Experimental methods for quantifying the activity of platinum electrocatalysts for the oxygen reduction reaction. Anal. Chem. 82, 6321 (2010)Google Scholar
  133. 133.
    R. Jasinski, A new fuel cell cathode catalyst. Nature 201, 1212 (1964)CrossRefGoogle Scholar
  134. 134.
    J.-P. Randin, Interpretation of the relative electrochemical activity of various metal phthalocyanines for the oxygen reduction reaction. Electrochim. Acta 19, 83 (1974)CrossRefGoogle Scholar
  135. 135.
    J.H. Zagal, Metallophthalocyanines as catalysts in electrochemical reactions. Coord. Chem. Rev. 119, 89 (1992)Google Scholar
  136. 136.
    F. Beck, The redox mechanism of the chelate-catalysed oxygen cathode. J. Appl. Electrochem. 7, 239 (1977)CrossRefGoogle Scholar
  137. 137.
    B. Wang, Recent development of non-platinum catalysts for oxygen reduction reaction. J. Power Sources 152, 1 (2005)Google Scholar
  138. 138.
    Y.H. Lu, R.G. Reddy, The electrochemical behavior of cobalt phthalocyanine/platinum as methanol-resistant oxygen-reduction electrocatalysts for DMFC. Electrochim. Acta 52, 2562 (2007)Google Scholar
  139. 139.
    S. Baranton, C. Coutanceau, C. Roux, F. Hahn, J.M. Leger, Oxygen reduction reaction in acid medium at iron phthalocyanine dispersed on high surface area carbon substrate: tolerance to methanol, stability and kinetics. J. Electroanal. Chem. 577, 223 (2005)Google Scholar
  140. 140.
    J.F. Ma, Y.N. Liu, P. Zhang, J. Wang, A simple direct borohydride fuel cell with a cobalt phthalocyanine catalyzed cathode. Electrochem. Commun. 10, 100 (2008)Google Scholar
  141. 141.
    R. Baker, D.P. Wilkinson, J.J. Zhang, Electrocatalytic activity and stability of substituted iron phthalocyanines towards oxygen reduction evaluated at different temperatures. Electrochim. Acta 53, 6906 (2008)Google Scholar
  142. 142.
    C.J. Chang, L.L. Chng, D.G. Nocera, Proton-coupled O-O activation on a redox platform bearing a hydrogen-bonding scaffold. J. Am. Chem. Soc. 125, 1866 (2003)Google Scholar
  143. 143.
    R.R. Durand Jr, F.C. Anson, Catalysis of dioxygen reduction at graphite electrodes by an adsorbed cobalt(ii) porphyrin. J. Electroanal. Chem. Interfacial Electrochem. 134, 273 (1982)CrossRefGoogle Scholar
  144. 144.
    J.P. Collman et al., Electrode catalysis of the four-electron reduction of oxygen to water by dicobalt face-to-face porphyrins. J. Am. Chem. Soc. 102, 6027 (1980)CrossRefGoogle Scholar
  145. 145.
    R.R. Durand, C.S. Bencosme, J.P. Collman, F.C. Anson, Mechanistic aspects of the catalytic reduction of dioxygen by cofacial metalloporphyrins. J. Am. Chem. Soc. 105, 2710 (1983)CrossRefGoogle Scholar
  146. 146.
    D. Thompsett, in Handbook of Fuel Cells, ed. by W. Vielstich, A. Lamm, H.A. Gasteiger Fundamentals, Technology and Applications (Wiley, New York, 2006)Google Scholar
  147. 147.
    C.J. Chang et al., Electrocatalytic four-electron reduction of oxygen to water by a highly flexible cofacial cobalt bisporphyrin. Chem. Commun. 1355 (2000)Google Scholar
  148. 148.
    K. Oyaizu, H. Murata, M. Yuasa, in Molecular Catalysts for Energy Conversion, ed. by T. Okada, M. Kaneko (Springer Berlin Heidelberg, Berlin, 2009)Google Scholar
  149. 149.
    S. Gupta, D. Tryk, I. Bae, W. Aldred, E. Yeager, Heat-treated polyacrylonitrile-based catalysts for oxygen electroreduction. J. Appl. Electrochem. 19, 19 (1989)CrossRefGoogle Scholar
  150. 150.
    J.-P. Dodelet, in N4-Macrocyclic Metal Complexes, (Springer, New York, 2006), pp. 83–147Google Scholar
  151. 151.
    A. Garsuch et al., in Handbook of Fuel Cells ed. by W. Vielstich, A. Lamm, H.A. Gasteiger, Fundamentals, Technology and Applications (Wiley, New York, 2006)Google Scholar
  152. 152.
    C.M. Johnston, P. Piela, P. Zelenay, in Handbook of Fuel Cells ed. by W. Vielstich, A. Lamm, H. A. Gasteiger, Fundamentals, Technology and Applications, (Wiley, New York, 2006)Google Scholar
  153. 153.
    J.A.R. van Veen, J.F. van Baar, K.J. Kroese, Effect of heat treatment on the performance of carbon-supported transition-metal chelates in the electrochemical reduction of oxygen. J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases 77, 2827 (1981)Google Scholar
  154. 154.
    F. Charreteur, F. Jaouen, S. Ruggeri, J.P. Dodelet, Fe/N/C non-precious catalysts for PEM fuel cells: Influence of the structural parameters of pristine commercial carbon blacks on their activity for oxygen reduction. Electrochim. Acta 53, 2925 (2008)Google Scholar
  155. 155.
    F. Jaouen, J.P. Dodelet, Non-noble electrocatalysts for O-2 reduction: How does heat treatment affect their activity and structure? Part I. Model for carbon black gasification by NH3: Parametric calibration and electrochemical validation. J. Phys. Chem. C 111, 5963 (2007)Google Scholar
  156. 156.
    F. Jaouen, A.M. Serventi, M. Lefevre, J.P. Dodelet, P. Bertrand, Non-noble electrocatalysts for O-2 reduction: How does heat treatment affect their activity and structure? Part II. Structural changes observed by electron microscopy, Raman, and mass spectroscopy. J. Phys. Chem. C 111, 5971 (2007)Google Scholar
  157. 157.
    X.G. Li, C.P. Liu, W. Xing, T.H. Lu, Development of durable carbon black/titanium dioxide supported macrocycle catalysts for oxygen reduction reaction. J. Power Sources 193, 470 (2009)Google Scholar
  158. 158.
    G. Wu et al., Performance durability of polyaniline-derived non-precious cathode catalysts. ECS Trans. 25, 1299 (2009)CrossRefGoogle Scholar
  159. 159.
    G. Liu, X.G. Li, P. Ganesan, B.N. Popov, Development of non-precious metal oxygen-reduction catalysts for PEM fuel cells based on N-doped ordered porous carbon. Appl. Catal. B Environ. 93, 156 (2009)Google Scholar
  160. 160.
    Y.H. Lu, R.G. Reddy, Electrocatalytic properties of carbon supported cobalt phthalocyanine-platinum for methanol electro-oxidation. Int. J. Hydrogen Energy 33, 3930 (2008)Google Scholar
  161. 161.
    H.J. Zhang et al., Electrochemical performance of a novel CoTETA/C catalyst for the oxygen reduction reaction. Electrochem. Commun. 11, 206 (2009)Google Scholar
  162. 162.
    X.G. Li, G. Liu, B.N. Popov, Activity and stability of non-precious metal catalysts for oxygen reduction in acid and alkaline electrolytes. J. Power Sources 195, 6373 (2010)Google Scholar
  163. 163.
    R.R. Chen, H.X. Li, D. Chu, G.F. Wang, Unraveling oxygen reduction reaction mechanisms on carbon-supported Fe-Phthalocyanine and Co-Phthalocyanine catalysts in alkaline solutions. J. Phys. Chem. C 113, 20689 (2009)Google Scholar
  164. 164.
    I. Kruusenberg, L. Matisen, Q. Shah, A.M. Kannan, K. Tammeveski, Non-platinum cathode catalysts for alkaline membrane fuel cells. Int. J. Hydrogen Energy 37, 4406 (2012)Google Scholar
  165. 165.
    G. Merle, M. Wessling, K. Nijmeijer, Anion exchange membranes for alkaline fuel cells: A review. J. Membr. Sci. 377, 1 (2011)Google Scholar
  166. 166.
    V. Bambagioni et al., Single-site and nanosized Fe-Co electrocatalysts for oxygen reduction: Synthesis, characterization and catalytic performance. J. Power Sources 196, 2519 (2011)Google Scholar
  167. 167.
    Z. Chen, D. Higgins, Z.W. Chen, Electrocatalytic activity of nitrogen doped carbon nanotubes with different morphologies for oxygen reduction reaction. Electrochim. Acta 55, 4799 (2010)Google Scholar
  168. 168.
    Z. Chen, D. Higgins, Z.W. Chen, Nitrogen doped carbon nanotubes and their impact on the oxygen reduction reaction in fuel cells. Carbon 48, 3057 (2010)Google Scholar
  169. 169.
    K.P. Gong, F. Du, Z.H. Xia, M. Durstock, L.M. Dai, Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 323, 760 (2009)Google Scholar
  170. 170.
    T.C. Nagaiah, S. Kundu, M. Bron, M. Muhler, W. Schuhmann, Nitrogen-doped carbon nanotubes as a cathode catalyst for the oxygen reduction reaction in alkaline medium. Electrochem. Commun. 12, 338 (2010)Google Scholar
  171. 171.
    A. Marchionni et al., Electrooxidation of ethylene glycol and glycerol on Pd-(Ni-Zn)/C anodes in direct alcohol fuel cells. Chemsuschem 6, 518 (2013)Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Alessandro Lavacchi
    • 1
  • Hamish Miller
    • 1
  • Francesco Vizza
    • 1
  1. 1.ICCOM-CNRSesto FiorentinoItaly

Personalised recommendations