Skip to main content

Part of the book series: Nanostructure Science and Technology ((NST,volume 170))

  • 1449 Accesses

Abstract

The present chapter is intended as a somewhat “non-technical” introduction to the field covered in the book. We have structured it in such a way that the reader may find a short overview of the fundamental issues for which nanotechnology is relied upon to provide solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. P. Tertzakian, A Thousand Barrels a Second : The Coming Oil Break Point and The Challenges Facing An Energy Dependent World (McGraw-Hill, New York, 2007), pp. xvi, 272 pp

    Google Scholar 

  2. R. A. Kerr, Do we have the energy for the next transition? Science 329, 780 (2010)

    Google Scholar 

  3. M. K. Hubbert, Energy Resources. (National Academy of Sciences-National Research Council, Washington, 1962), p. 141

    Google Scholar 

  4. B. Gallagher, Peak oil analyzed with a logistic function and idealized Hubbert curve. Energy Policy 39, 790 (2011)

    Article  Google Scholar 

  5. C. J. Campbell, J. H. Laherrere, The end of cheap oil. Sci. Am. 78, 3 (1998)

    Google Scholar 

  6. J. Van Hoesen, S. Letendre, Evaluating potential renewable energy resources in Poultney, Vermont: A GIS-based approach to supporting rural community energy planning. Renewable Energy 35, 2114 (2010)

    Article  Google Scholar 

  7. U. Bardi, Energy prices and resource depletion: lessons from the case of whaling in the nineteenth century. Energy Sources Part B: Econ. Plan. Policy 2, 297 (2007)

    Google Scholar 

  8. C.-J. Yang, An impending platinum crisis and its implications for the future of the automobile. Energy Policy 37, 1805 (2009)

    Article  Google Scholar 

  9. B. Everett, Open University. Energy Systems and Sustainability : Power for a Sustainable Future, 2nd edn. (Oxford University Press, Oxford, 2012), pp. xiii, 654 p

    Google Scholar 

  10. R.U. Ayres, H. Turton, T. Casten, Energy efficiency, sustainability and economic growth. Energy 32, 634 (2007)

    Article  Google Scholar 

  11. D. Buchan, The rough guide to the energy crisis (Rough Guides, London, 2010)

    Google Scholar 

  12. S. J. Wagner, E. S. Rubin, Economic implications of thermal energy storage for concentrated solar thermal power. Renewable Energy

    Google Scholar 

  13. B.N. Divakara, H.D. Upadhyaya, S.P. Wani, C.L.L. Gowda, Biology and genetic improvement of Jatropha curcas L.: a review. Appl. Energy 87, 732 (2010)

    Article  Google Scholar 

  14. K.L. Kadam, J.D. McMillan, Availability of corn stover as a sustainable feedstock for bioethanol production. Bioresour. Technol. 88, 17 (2003)

    Article  Google Scholar 

  15. M.R.L.V. Leal et al., Sugarcane straw availability, quality, recovery and energy use: a literature review. Biomass Bioenergy 53, 11 (2013)

    Article  Google Scholar 

  16. C.M. Hoffmann, Root quality of sugarbeet. Sugar Tech 12, 276 (2010)

    Article  Google Scholar 

  17. Y. Sun, J. Cheng, Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour. Technol. 83, 1 (2002)

    Article  Google Scholar 

  18. M. Balat, Biomass energy and biochemical conversion processing for fuels and chemicals. Energy Sources Part A: Recovery Util. Environ. Effects 28, 517 (2006)

    Article  Google Scholar 

  19. C. Lamy et al., Recent advances in the development of direct alcohol fuel cells (DAFC). J. Power Sources 105, 283 (2002)

    Google Scholar 

  20. C. Lamy, E.M. Belgsir, J.M. Leger, Electrocatalytic oxidation of aliphatic alcohols: application to the direct alcohol fuel cell (DAFC). J. Appl. Electrochem. 31, 799 (2001)

    Article  Google Scholar 

  21. A. Marchionni et al., Electrooxidation of ethylene glycol and glycerol on Pd-(Ni-Zn)/C Anodes in direct alcohol fuel cells. Chemsuschem 6, 518 (2013)

    Google Scholar 

  22. V. Bambagioni et al., Direct alcohol fuel cells as chemical reactors for the sustainable production of energy and chemicals Energy and chemicals from renewables by electrocatalysis. Chim Oggi 28, Vii (2010)

    Google Scholar 

  23. P. Venturi, G. Venturi, Analysis of energy comparison for crops in European agricultural systems. Biomass Bioenergy 25, 235 (2003)

    Article  Google Scholar 

  24. C.A.S. Hall, An assessment of several of the historically most influential theoretical models used in ecology and of the data provided in their support. Ecol. Model. 43, 5 (1988)

    Article  Google Scholar 

  25. C.A.S. Hall, S. Balogh, D.J.R. Murphy, What is the minimum EROI that a sustainable society must have? Energies 2, 25 (2009)

    Article  Google Scholar 

  26. C. A. S. Hall, R. Powers, W. Schoenberg, Peak Oil, EROI, Investments and the Economy in an Uncertain Future. In Renewable Energy Systems: Environmental and Energetic Issues, 113 (2008)

    Google Scholar 

  27. M.K. Heun, M. de Wit, Energy return on (energy) invested (EROI), oil prices, and energy transitions. Energy Policy 40, 147 (2012)

    Article  Google Scholar 

  28. D. Pimentel, T.W. Patzek, Ethanol production using corn, switchgrass, and wood; Biodiesel production using soybean and sunflower. Nat. Resour. Res. 14, 65 (2005)

    Article  Google Scholar 

  29. I.C. Macedo, J.E.A. Seabra, J.E.A.R. Silva, Green house gases emissions in the production and use of ethanol from sugarcane in Brazil: The 2005/2006 averages and a prediction for 2020. Biomass Bioenergy 32, 582 (2008)

    Article  Google Scholar 

  30. ASTM E Standard guide for environmental life cycle assessment (LCA) of Building Materials/Products (1991-2005)

    Google Scholar 

  31. M.C. McManus, Life cycle impacts of waste wood biomass heating systems: a case study of three UK based systems. Energy 35, 4064 (2010)

    Article  Google Scholar 

  32. M. Momirlan, T. Vezirolu, Recent directions of world hydrogen production. Renew. Sustain. Energy Rev. 3, 219 (1999)

    Article  Google Scholar 

  33. M. Momirlan, T.N. Veziroglu, The properties of hydrogen as fuel tomorrow in sustainable energy system for a cleaner planet. Int. J. Hydrogen Energy 30, 795 (2005)

    Article  Google Scholar 

  34. R. Kothari, D. Buddhi, R.L. Sawhney, Comparison of environmental and economic aspects of various hydrogen production methods. Renew. Sustain. Energy Rev. 12, 553 (2008)

    Article  Google Scholar 

  35. Y. Lu, L. Zhao, L. Guo, Technical and economic evaluation of solar hydrogen production by supercritical water gasification of biomass in China. Int. J. Hydrogen Energy 36, 14349 (2011)

    Article  Google Scholar 

  36. L. Zhou, Progress and problems in hydrogen storage methods. Renew. Sustain. Energy Rev. 9, 395 (2005)

    Article  Google Scholar 

  37. R. P. O’Hayre, Fuel Cell Fundamentals, 2nd edn. (Wiley, Hoboken, N.J, 2009), pp. xxv, 546 p., 4 p. of plates

    Google Scholar 

  38. E. Antolini, E. R. Gonzalez, Alkaline direct alcohol fuel cells. J. Power Sources 195, 3431 (2010)

    Google Scholar 

  39. http://www.fuelcells.org/fuel-cells-and-hydrogen/types/

  40. C. Lamy, T. Jaubert, S. Baranton, C. Coutanceau, Clean hydrogen generation through the electrocatalytic oxidation of ethanol in a Proton Exchange Membrane Electrolysis Cell (PEMEC): Effect of the nature and structure of the catalytic anode. J. Power Sources 245, 927 (2014)

    Article  Google Scholar 

  41. V. Bambagioni et al., Self-sustainable production of hydrogen, chemicals, and energy from renewable alcohols by electrocatalysis. Chemsuschem 3, 851 (2010)

    Article  Google Scholar 

  42. F. Vitse, M. Cooper, G.G. Botte, On the use of ammonia electrolysis for hydrogen production. J. Power Sources 142, 18 (2005)

    Article  Google Scholar 

  43. K.P. Kuhl, E.R. Cave, D.N. Abram, T.F. Jaramillo, New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces. Energy & Environmental Science 5, 7050 (2012)

    Google Scholar 

  44. M. Jitaru, Electrochemical carbon dioxide reduction—fundamental and applied topics. J. Univ. Chem. Technol. Metall. 42, 333 (2007)

    Google Scholar 

  45. M.M. Jaksic, W. Schmickleer, G. Botton, Advances in electrocatalysis. Adv. Phys. Chem. 2012, 4 (2012)

    Article  Google Scholar 

  46. J. Speder et al., On the influence of the Pt to carbon ratio on the degradation of high surface area carbon supported PEM fuel cell electrocatalysts. Electrochem. Commun. 34, 153 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Lavacchi .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lavacchi, A., Miller, H., Vizza, F. (2013). Introduction. In: Nanotechnology in Electrocatalysis for Energy. Nanostructure Science and Technology, vol 170. Springer, New York, NY. https://doi.org/10.1007/978-1-4899-8059-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-8059-5_1

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4899-8058-8

  • Online ISBN: 978-1-4899-8059-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics