Skip to main content

Molecular Pathways in Antigen-Presenting Cells Involved in the Induction of Antigen-specific T-cell Tolerance

  • Chapter
  • First Online:

Abstract

There is now an undisputed understanding that tolerance to tumor antigens imposes a significant barrier to cancer immunotherapy. Bone marrow (BM)-derived antigen-presenting cells (APCs) play a central role in the induction of tolerance in a wide variety of malignancies. Here, we discuss receptor–ligands, intracellular signaling pathways and epigenetic mechanisms that, given their role in regulating the inflammatory properties of APCs, influence the functional outcome (i.e., priming versus tolerance) of antigen-specific T cells. The identification of these mechanisms and pathways has provided novel molecular targets to potentially revert mechanisms of T-cell unresponsiveness in cancer.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ravetch JV, Lanier LL (2000) Immune inhibitory receptors. Science 290(5489):84–89

    CAS  PubMed  Google Scholar 

  2. Tivol EA, Borriello F, Schweitzer AN, Lynch WP, Bluestone JA, Sharpe AH (1995) Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity 3(5):541–547

    CAS  PubMed  Google Scholar 

  3. Hida S, Ogasawara K, Sato K, Abe M, Takayanagi H, Yokochi T, Sato T, Hirose S, Shirai T, Taki S, Taniguchi T (2000) CD8(+) T cell-mediated skin disease in mice lacking IRF-2, the transcriptional attenuator of interferon-alpha/beta signaling. Immunity 13(5):643–655

    CAS  PubMed  Google Scholar 

  4. Guermonprez P, Valladeau J, Zitvogel L, Thery C, Amigorena S (2002) Antigen presentation and T cell stimulation by dendritic cells. Annu Rev Immunol 20:621–667. doi:10.1146/annurev.immunol.20.100301.064828

    CAS  PubMed  Google Scholar 

  5. Steinman RM, Hawiger D, Nussenzweig MC (2003) Tolerogenic dendritic cells. Annu Rev Immunol 21:685–711. doi:10.1146/annurev.immunol.21.120601.141040

    CAS  PubMed  Google Scholar 

  6. Huang FP, Platt N, Wykes M, Major JR, Powell TJ, Jenkins CD, MacPherson GG (2000) A discrete subpopulation of dendritic cells transports apoptotic intestinal epithelial cells to T cell areas of mesenteric lymph nodes. J Exp Med 191(3):435–444

    CAS  PubMed Central  PubMed  Google Scholar 

  7. Munn DH, Sharma MD, Lee JR, Jhaver KG, Johnson TS, Keskin DB, Marshall B, Chandler P, Antonia SJ, Burgess R, Slingluff CL Jr, Mellor AL (2002) Potential regulatory function of human dendritic cells expressing indoleamine 2,3-dioxygenase. Science 297(5588):1867–1870. doi:10.1126/science.1073514

    CAS  PubMed  Google Scholar 

  8. Scheinecker C, McHugh R, Shevach EM, Germain RN (2002) Constitutive presentation of a natural tissue autoantigen exclusively by dendritic cells in the draining lymph node. J Exp Med 196(8):1079–1090

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Belz GT, Behrens GM, Smith CM, Miller JF, Jones C, Lejon K, Fathman CG, Mueller SN, Shortman K, Carbone FR, Heath WR (2002) The CD8alpha(+) dendritic cell is responsible for inducing peripheral self-tolerance to tissue-associated antigens. J Exp Med 196(8):1099–1104

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Stitt TN, Conn G, Gore M, Lai C, Bruno J, Radziejewski C, Mattsson K, Fisher J, Gies DR, Jones PF et al (1995) The anticoagulation factor protein S and its relative, Gas6, are ligands for the Tyro 3/Axl family of receptor tyrosine kinases. Cell 80(4):661–670

    CAS  PubMed  Google Scholar 

  11. Boon T, van der Bruggen P (1996) Human tumor antigens recognized by T lymphocytes. J Exp Med 183(3):725–729

    CAS  PubMed  Google Scholar 

  12. Rosenberg SA (1995) The development of new cancer therapies based on the molecular identification of cancer regression antigens. Cancer J Sci Am 1(2):90–100

    CAS  PubMed  Google Scholar 

  13. Sotomayor EM, Borrello I, Levitsky HI (1996) Tolerance and cancer: a critical issue in tumor immunology. Crit Rev Oncog 7(5–6):433–456

    CAS  PubMed  Google Scholar 

  14. Bogen B (1996) Peripheral T cell tolerance as a tumor escape mechanism: deletion of CD4+ T cells specific for a monoclonal immunoglobulin idiotype secreted by a plasmacytoma. Eur J Immunol 26(11):2671–2679. doi:10.1002/eji.1830261119

    CAS  PubMed  Google Scholar 

  15. Staveley-O’Carroll K, Sotomayor E, Montgomery J, Borrello I, Hwang L, Fein S, Pardoll D, Levitsky H (1998) Induction of antigen-specific T cell anergy: an early event in the course of tumor progression. Proc Natl Acad Sci U S A 95(3):1178–1183

    PubMed Central  PubMed  Google Scholar 

  16. Cuenca A, Cheng F, Wang H, Brayer J, Horna P, Gu L, Bien H, Borrello IM, Levitsky HI, Sotomayor EM (2003) Extra-lymphatic solid tumor growth is not immunologically ignored and results in early induction of antigen-specific T-cell anergy: dominant role of cross-tolerance to tumor antigens. Cancer Res 63(24):9007–9015

    CAS  PubMed  Google Scholar 

  17. Morgan DJ, Kreuwel HT, Fleck S, Levitsky HI, Pardoll DM, Sherman LA (1998) Activation of low avidity CTL specific for a self epitope results in tumor rejection but not autoimmunity. J Immunol 160(2):643–651

    CAS  PubMed  Google Scholar 

  18. Overwijk WW, Theoret MR, Finkelstein SE, Surman DR, de Jong LA, Vyth-Dreese FA, Dellemijn TA, Antony PA, Spiess PJ, Palmer DC, Heimann DM, Klebanoff CA, Yu Z, Hwang LN, Feigenbaum L, Kruisbeek AM, Rosenberg SA, Restifo NP (2003) Tumor regression and autoimmunity after reversal of a functionally tolerant state of self-reactive CD8+ T cells. J Exp Med 198(4):569–580. doi:10.1084/jem.20030590

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Shrikant P, Mescher MF (1999) Control of syngeneic tumor growth by activation of CD8+ T cells: efficacy is limited by migration away from the site and induction of nonresponsiveness. J Immunol 162(5):2858–2866

    CAS  PubMed  Google Scholar 

  20. Ohlen C, Kalos M, Hong DJ, Shur AC, Greenberg PD (2001) Expression of a tolerizing tumor antigen in peripheral tissue does not preclude recovery of high-affinity CD8+ T cells or CTL immunotherapy of tumors expressing the antigen. J Immunol 166(4):2863–2870

    CAS  PubMed  Google Scholar 

  21. Willimsky G, Blankenstein T (2005) Sporadic immunogenic tumours avoid destruction by inducing T-cell tolerance. Nature 437(7055):141–146. doi:10.1038/nature03954

    CAS  PubMed  Google Scholar 

  22. Lee PP, Yee C, Savage PA, Fong L, Brockstedt D, Weber JS, Johnson D, Swetter S, Thompson J, Greenberg PD, Roederer M, Davis MM (1999) Characterization of circulating T cells specific for tumor-associated antigens in melanoma patients. Nat Med 5(6):677–685. doi:10.1038/9525

    CAS  PubMed  Google Scholar 

  23. Noonan K, Matsui W, Serafini P, Carbley R, Tan G, Khalili J, Bonyhadi M, Levitsky H, Whartenby K, Borrello I (2005) Activated marrow-infiltrating lymphocytes effectively target plasma cells and their clonogenic precursors. Cancer Res 65(5):2026–2034. doi:10.1158/0008–5472.CAN-04–3337

    CAS  PubMed  Google Scholar 

  24. Pardoll D (2003) Does the immune system see tumors as foreign or self? Annu Rev Immunol 21:807–839. doi:10.1146/annurev.immunol.21.120601.141135

    CAS  PubMed  Google Scholar 

  25. Adler AJ, Marsh DW, Yochum GS, Guzzo JL, Nigam A, Nelson WG, Pardoll DM (1998) CD4+ T cell tolerance to parenchymal self-antigens requires presentation by bone marrow-derived antigen-presenting cells. J Exp Med 187(10):1555–1564

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Kurts C, Cannarile M, Klebba I, Brocker T (2001) Dendritic cells are sufficient to cross-present self-antigens to CD8 T cells in vivo. J Immunol 166(3):1439–1442

    CAS  PubMed  Google Scholar 

  27. Sotomayor EM, Borrello I, Rattis FM, Cuenca AG, Abrams J, Staveley-O’Carroll K, Levitsky HI (2001) Cross-presentation of tumor antigens by bone marrow-derived antigen-presenting cells is the dominant mechanism in the induction of T-cell tolerance during B-cell lymphoma progression. Blood 98(4):1070–1077

    CAS  PubMed  Google Scholar 

  28. Miyazaki T, Suzuki G, Yamamura K (1993) The role of macrophages in antigen presentation and T cell tolerance. Int Immunol 5(9):1023–1033

    CAS  PubMed  Google Scholar 

  29. Watson GA, Lopez DM (1995) Aberrant antigen presentation by macrophages from tumor-bearing mice is involved in the down-regulation of their T cell responses. J Immunol 155(6):3124–3134

    CAS  PubMed  Google Scholar 

  30. Ronchese F, Hausmann B (1993) B lymphocytes in vivo fail to prime naive T cells but can stimulate antigen-experienced T lymphocytes. J Exp Med 177(3):679–690

    CAS  PubMed  Google Scholar 

  31. Lassila O, Vainio O, Matzinger P (1988) Can B cells turn on virgin T cells? Nature 334(6179):253–255. doi:10.1038/334253a0

    CAS  PubMed  Google Scholar 

  32. Fuchs EJ, Matzinger P (1992) B cells turn off virgin but not memory T cells. Science 258(5085):1156–1159

    CAS  PubMed  Google Scholar 

  33. Heath WR, Belz GT, Behrens GM, Smith CM, Forehan SP, Parish IA, Davey GM, Wilson NS, Carbone FR, Villadangos JA (2004) Cross-presentation, dendritic cell subsets, and the generation of immunity to cellular antigens. Immunol Rev 199:9–26. doi:10.1111/j.0105–2896.2004.00142.x

    CAS  PubMed  Google Scholar 

  34. Itano AA, Jenkins MK (2003) Antigen presentation to naive CD4 T cells in the lymph node. Nat Immunol 4(8):733–739. doi:10.1038/ni957

    CAS  PubMed  Google Scholar 

  35. Tian T, Woodworth J, Skold M, Behar SM (2005) In vivo depletion of CD11c+ cells delays the CD4+ T cell response to Mycobacterium tuberculosis and exacerbates the outcome of infection. J Immunol 175(5):3268–3272

    CAS  PubMed  Google Scholar 

  36. Jung S, Unutmaz D, Wong P, Sano G, De los Santos K, Sparwasser T, Wu S, Vuthoori S, Ko K, Zavala F, Pamer EG, Littman DR, Lang RA (2002) In vivo depletion of CD11c+ dendritic cells abrogates priming of CD8+ T cells by exogenous cell-associated antigens. Immunity 17 (2):211–220

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Hawiger D, Inaba K, Dorsett Y, Guo M, Mahnke K, Rivera M, Ravetch JV, Steinman RM, Nussenzweig MC (2001) Dendritic cells induce peripheral T cell unresponsiveness under steady state conditions in vivo. J Exp Med 194(6):769–779

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Bonifaz L, Bonnyay D, Mahnke K, Rivera M, Nussenzweig MC, Steinman RM (2002) Efficient targeting of protein antigen to the dendritic cell receptor DEC-205 in the steady state leads to antigen presentation on major histocompatibility complex class I products and peripheral CD8+ T cell tolerance. J Exp Med 196(12):1627–1638

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Horna P, Sotomayor EM (2007) Cellular and molecular mechanisms of tumor-induced T-cell tolerance. Curr Cancer Drug Targets 7(1):41–53

    CAS  PubMed  Google Scholar 

  40. Munn DH, Sharma MD, Hou D, Baban B, Lee JR, Antonia SJ, Messina JL, Chandler P, Koni PA, Mellor AL (2004) Expression of indoleamine 2,3-dioxygenase by plasmacytoid dendritic cells in tumor-draining lymph nodes. J Clin Investig 114(2):280–290. doi:10.1172/JCI21583

    CAS  PubMed  Google Scholar 

  41. Correll PH, Morrison AC, Lutz MA (2004) Receptor tyrosine kinases and the regulation of macrophage activation. J Leukoc Biol 75(5):731–737. doi:10.1189/jlb.0703347

    CAS  PubMed  Google Scholar 

  42. Lemke G, Lu Q (2003) Macrophage regulation by Tyro 3 family receptors. Curr Opin Immunol 15(1):31–36

    CAS  PubMed  Google Scholar 

  43. Nagata K, Ohashi K, Nakano T, Arita H, Zong C, Hanafusa H, Mizuno K (1996) Identification of the product of growth arrest-specific gene 6 as a common ligand for Axl, Sky, and Mer receptor tyrosine kinases. J Biol Chem 271(47):30022–30027

    CAS  PubMed  Google Scholar 

  44. Lai C, Lemke G (1991) An extended family of protein-tyrosine kinase genes differentially expressed in the vertebrate nervous system. Neuron 6(5):691–704

    CAS  PubMed  Google Scholar 

  45. Lu Q, Lemke G (2001) Homeostatic regulation of the immune system by receptor tyrosine kinases of the Tyro 3 family. Science 293(5528):306–311. doi:10.1126/science.1061663

    CAS  PubMed  Google Scholar 

  46. Camenisch TD, Koller BH, Earp HS, Matsushima GK (1999) A novel receptor tyrosine kinase, Mer, inhibits TNF-alpha production and lipopolysaccharide-induced endotoxic shock. J Immunol 162(6):3498–3503

    CAS  PubMed  Google Scholar 

  47. Cohen PL, Caricchio R, Abraham V, Camenisch TD, Jennette JC, Roubey RA, Earp HS, Matsushima G, Reap EA (2002) Delayed apoptotic cell clearance and lupus-like autoimmunity in mice lacking the c-mer membrane tyrosine kinase. J Exp Med 196(1):135–140

    CAS  PubMed Central  PubMed  Google Scholar 

  48. Scott RS, McMahon EJ, Pop SM, Reap EA, Caricchio R, Cohen PL, Earp HS, Matsushima GK (2001) Phagocytosis and clearance of apoptotic cells is mediated by MER. Nature 411(6834):207–211. doi:10.1038/35075603

    CAS  PubMed  Google Scholar 

  49. Uehara H, Shacter E (2008) Auto-oxidation and oligomerization of protein S on the apoptotic cell surface is required for Mer tyrosine kinase-mediated phagocytosis of apoptotic cells. J Immunol 180(4):2522–2530

    CAS  PubMed  Google Scholar 

  50. Mevorach D, Zhou JL, Song X, Elkon KB (1998) Systemic exposure to irradiated apoptotic cells induces autoantibody production. J Exp Med 188(2):387–392

    CAS  PubMed Central  PubMed  Google Scholar 

  51. Casiano CA, Tan EM (1996) Recent developments in the understanding of antinuclear autoantibodies. Int Arch Allergy Immunol 111(4):308–313

    CAS  PubMed  Google Scholar 

  52. Rosen A, Casciola-Rosen L (1999) Autoantigens as substrates for apoptotic proteases: implications for the pathogenesis of systemic autoimmune disease. Cell Death Differ 6(1):6–12. doi:10.1038/sj.cdd.4400460

    CAS  PubMed  Google Scholar 

  53. Taylor PR, Carugati A, Fadok VA, Cook HT, Andrews M, Carroll MC, Savill JS, Henson PM, Botto M, Walport MJ (2000) A hierarchical role for classical pathway complement proteins in the clearance of apoptotic cells in vivo. J Exp Med 192(3):359–366

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Voll RE, Herrmann M, Roth EA, Stach C, Kalden JR, Girkontaite I (1997) Immunosuppressive effects of apoptotic cells. Nature 390(6658):350–351. doi:10.1038/37022

    CAS  PubMed  Google Scholar 

  55. Fadok VA, Bratton DL, Konowal A, Freed PW, Westcott JY, Henson PM (1998) Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-beta, PGE2, and PAF. J Clin Investig 101(4):890–898. doi:10.1172/JCI1112

    CAS  PubMed  Google Scholar 

  56. Sen P, Wallet MA, Yi Z, Huang Y, Henderson M, Mathews CE, Earp HS, Matsushima G, Baldwin AS Jr, Tisch RM (2007) Apoptotic cells induce Mer tyrosine kinase-dependent blockade of NF-kappaB activation in dendritic cells. Blood 109(2):653–660. doi:10.1182/blood-2006–04-017368

    CAS  PubMed  Google Scholar 

  57. Darnell JE Jr (1997) STATs and gene regulation. Science 277(5332):1630–1635

    CAS  PubMed  Google Scholar 

  58. Shuai K, Liu B (2003) Regulation of JAK-STAT signalling in the immune system. Nat Rev Immunol 3(11):900–911. doi:10.1038/nri1226

    CAS  PubMed  Google Scholar 

  59. Frank DA (2007) STAT3 as a central mediator of neoplastic cellular transformation. Cancer Lett 251(2):199–210. doi:10.1016/j.canlet.2006.10.017

    CAS  PubMed  Google Scholar 

  60. Johnston PA, Grandis JR (2011) STAT3 signaling: anticancer strategies and challenges. Mol Interv 11(1):18–26. doi:10.1124/mi.11.1.4

    CAS  PubMed  Google Scholar 

  61. Regis G, Pensa S, Boselli D, Novelli F, Poli V (2008) Ups and downs: the STAT1:STAT3 seesaw of interferon and gp130 receptor signalling. Semin Cell Dev Biol 19(4):351–359. doi:10.1016/j.semcdb.2008.06.004

    CAS  PubMed  Google Scholar 

  62. Yu H, Pardoll D, Jove R (2009) STATs in cancer inflammation and immunity: a leading role for STAT3. Nat Rev Cancer 9(11):798–809

    CAS  PubMed  Google Scholar 

  63. Cheng F, Wang HW, Cuenca A, Huang M, Ghansah T, Brayer J, Kerr WG, Takeda K, Akira S, Schoenberger SP, Yu H, Jove R, Sotomayor EM (2003) A critical role for Stat3 signaling in immune tolerance. Immunity 19(3):425–436

    CAS  PubMed  Google Scholar 

  64. Wolfle SJ, Strebovsky J, Bartz H, Sahr A, Arnold C, Kaiser C, Dalpke AH, Heeg K (2011) PD-L1 expression on tolerogenic APCs is controlled by STAT-3. Eur J Immunol 41(2):413–424. doi:10.1002/eji.201040979

    PubMed  Google Scholar 

  65. Grivennikov SI, Karin M (2010) Dangerous liaisons: STAT3 and NF-kappaB collaboration and crosstalk in cancer. Cytokine Growth Factor Rev 21(1):11–19. doi:10.1016/j.cytogfr.2009.11.005

    CAS  PubMed Central  PubMed  Google Scholar 

  66. Benkhart EM, Siedlar M, Wedel A, Werner T, Ziegler-Heitbrock HW (2000) Role of Stat3 in lipopolysaccharide-induced IL-10 gene expression. J Immunol 165(3):1612–1617

    CAS  PubMed  Google Scholar 

  67. Murray PJ (2005) The primary mechanism of the IL-10-regulated antiinflammatory response is to selectively inhibit transcription. Proc Natl Acad Sci U S A 102(24):8686–8691

    CAS  PubMed Central  PubMed  Google Scholar 

  68. Herrero C, Hu X, Li WP, Samuels S, Sharif MN, Kotenko S, Ivashkiv LB (2003) Reprogramming of IL-10 activity and signaling by IFN-gamma. J Immunol 171(10):5034–5041

    CAS  PubMed  Google Scholar 

  69. Sharif MN, Tassiulas I, Hu Y, Mecklenbrauker I, Tarakhovsky A, Ivashkiv LB (2004) IFN-alpha priming results in a gain of proinflammatory function by IL-10: implications for systemic lupus erythematosus pathogenesis. J Immunol 172(10):6476–6481

    CAS  PubMed  Google Scholar 

  70. Yasukawa H, Ohishi M, Mori H, Murakami M, Chinen T, Aki D, Hanada T, Takeda K, Akira S, Hoshijima M, Hirano T, Chien KR, Yoshimura A (2003) IL-6 induces an anti-inflammatory response in the absence of SOCS3 in macrophages. Nat Immunol 4(6):551–556. doi:10.1038/ni938

    CAS  PubMed  Google Scholar 

  71. Braun DA, Fribourg M, Sealfon SC (2013) Cytokine response is determined by duration of receptor and signal transducers and activators of transcription 3 (STAT3) activation. J Biol Chem 288(5):2986–2993. doi:10.1074/jbc.M112.386573

    CAS  PubMed  Google Scholar 

  72. Lang R, Pauleau AL, Parganas E, Takahashi Y, Mages J, Ihle JN, Rutschman R, Murray PJ (2003) SOCS3 regulates the plasticity of gp130 signaling. Nat Immunol 4(6):546–550. doi:10.1038/ni932

    CAS  PubMed  Google Scholar 

  73. Soltys J, Bonfield T, Chmiel J, Berger M (2002) Functional IL-10 deficiency in the lung of cystic fibrosis (cftr(–/–)) and IL-10 knockout mice causes increased expression and function of B7 costimulatory molecules on alveolar macrophages. J Immunol 168(4):1903–1910

    CAS  PubMed  Google Scholar 

  74. Nefedova Y, Nagaraj S, Rosenbauer A, Muro-Cacho C, Sebti SM, Gabrilovich DI (2005) Regulation of dendritic cell differentiation and antitumor immune response in cancer by pharmacologic-selective inhibition of the janus-activated kinase 2/signal transducers and activators of transcription 3 pathway. Cancer Res 65(20):9525–9535

    CAS  PubMed Central  PubMed  Google Scholar 

  75. Welte T, Zhang SS, Wang T, Zhang Z, Hesslein DG, Yin Z, Kano A, Iwamoto Y, Li E, Craft JE, Bothwell AL, Fikrig E, Koni PA, Flavell RA, Fu XY (2003) STAT3 deletion during hematopoiesis causes Crohn’s disease-like pathogenesis and lethality: a critical role of STAT3 in innate immunity. Proc Natl Acad Sci U S A 100(4):1879–1884

    CAS  PubMed Central  PubMed  Google Scholar 

  76. Yu H, Kortylewski M, Pardoll D (2007) Crosstalk between cancer and immune cells: role of STAT3 in the tumour microenvironment. Nat Rev Immunol 7(1):41–51. doi:nri1995[pii]10.1038/nri1995

    CAS  PubMed  Google Scholar 

  77. Fruman DA, Satterthwaite AB, Witte ON (2000) Xid-like phenotypes: a B cell signalosome takes shape. Immunity 13(1):1–3

    CAS  PubMed  Google Scholar 

  78. Kawakami Y, Inagaki N, Salek-Ardakani S, Kitaura J, Tanaka H, Nagao K, Kawakami Y, Xiao W, Nagai H, Croft M, Kawakami T (2006) Regulation of dendritic cell maturation and function by Bruton’s tyrosine kinase via IL-10 and Stat3. Proc Natl Acad Sci U S A 103(1):153–158. doi:10.1073/pnas.0509784103

    CAS  PubMed Central  PubMed  Google Scholar 

  79. Uckun F, Ozer Z, Vassilev A (2007) Bruton’s tyrosine kinase prevents activation of the anti-apoptotic transcription factor STAT3 and promotes apoptosis in neoplastic B-cells and B-cell precursors exposed to oxidative stress. Br J Haematol 136(4):574–589. doi:10.1111/j.1365–2141.2006.06468.x

    CAS  PubMed  Google Scholar 

  80. Endo TA, Masuhara M, Yokouchi M, Suzuki R, Sakamoto H, Mitsui K, Matsumoto A, Tanimura S, Ohtsubo M, Misawa H, Miyazaki T, Leonor N, Taniguchi T, Fujita T, Kanakura Y, Komiya S, Yoshimura A (1997) A new protein containing an SH2 domain that inhibits JAK kinases. Nature 387(6636):921–924. doi:10.1038/43213

    CAS  PubMed  Google Scholar 

  81. Alexander WS, Starr R, Fenner JE, Scott CL, Handman E, Sprigg NS, Corbin JE, Cornish AL, Darwiche R, Owczarek CM, Kay TW, Nicola NA, Hertzog PJ, Metcalf D, Hilton DJ (1999) SOCS1 is a critical inhibitor of interferon gamma signaling and prevents the potentially fatal neonatal actions of this cytokine. Cell 98(5):597–608

    CAS  PubMed  Google Scholar 

  82. Marine JC, Topham DJ, McKay C, Wang D, Parganas E, Stravopodis D, Yoshimura A, Ihle JN (1999) SOCS1 deficiency causes a lymphocyte-dependent perinatal lethality. Cell 98(5):609–616

    CAS  PubMed  Google Scholar 

  83. Chong MM, Cornish AL, Darwiche R, Stanley EG, Purton JF, Godfrey DI, Hilton DJ, Starr R, Alexander WS, Kay TW (2003) Suppressor of cytokine signaling-1 is a critical regulator of interleukin-7-dependent CD8+ T cell differentiation. Immunity 18(4):475–487

    CAS  PubMed  Google Scholar 

  84. Hanada T, Yoshida H, Kato S, Tanaka K, Masutani K, Tsukada J, Nomura Y, Mimata H, Kubo M, Yoshimura A (2003) Suppressor of cytokine signaling-1 is essential for suppressing dendritic cell activation and systemic autoimmunity. Immunity 19(3):437–450

    CAS  PubMed  Google Scholar 

  85. Evel-Kabler K, Song XT, Aldrich M, Huang XF, Chen SY (2006) SOCS1 restricts dendritic cells’ ability to break self tolerance and induce antitumor immunity by regulating IL-12 production and signaling. J Clin Investig 116(1):90–100. doi:10.1172/JCI26169

    CAS  PubMed  Google Scholar 

  86. Lee KK, Workman JL (2007) Histone acetyltransferase complexes: one size doesn’t fit all. Nat Rev Mol Cell Biol 8(4):284–295

    CAS  PubMed  Google Scholar 

  87. Woan KV, Sahakian E, Sotomayor EM, Seto E, Villagra A (2012) Modulation of antigen-presenting cells by HDAC inhibitors: implications in autoimmunity and cancer. Immunol Cell Biol 90(1):55–65

    CAS  PubMed  Google Scholar 

  88. Villagra A, Sotomayor EM, Seto E (2010) Histone deacetylases and the immunological network: implications in cancer and inflammation. Oncogene 29(2):157–173. doi:10.1038/onc.2009.334

    CAS  PubMed  Google Scholar 

  89. Yang XJ, Seto E (2008) The Rpd3/Hda1 family of lysine deacetylases: from bacteria and yeast to mice and men. Nat Rev Mol Cell Biol 9(3):206–218

    CAS  PubMed Central  PubMed  Google Scholar 

  90. Zhang X, Edwards JP, Mosser DM (2006) Dynamic and transient remodeling of the macrophage IL-10 promoter during transcription. J Immunol 177(2):1282–1288

    CAS  PubMed Central  PubMed  Google Scholar 

  91. Magner WJ, Kazim AL, Stewart C, Romano MA, Catalano G, Grande C, Keiser N, Santaniello F, Tomasi TB (2000) Activation of MHC class I, II, and CD40 gene expression by histone deacetylase inhibitors. J Immunol 165(12):7017–7024

    CAS  PubMed  Google Scholar 

  92. Wang H, Cheng F, Woan K, Sahakian E, Merino O, Rock-Klotz J, Vicente-Suarez I, Pinilla-Ibarz J, Wright KL, Seto E, Bhalla K, Villagra A, Sotomayor EM (2011) Histone deacetylase inhibitor LAQ824 augments inflammatory responses in macrophages through transcriptional regulation of IL-10. J Immunol 186(7):11. doi:10.4049/jimmunol.1001101

    Google Scholar 

  93. Misaki K, Morinobu A, Saegusa J, Kasagi S, Fujita M, Miyamoto Y, Matsuki F, Kumagai S (2011) Histone deacetylase inhibition alters dendritic cells to assume a tolerogenic phenotype and ameliorates arthritis in SKG mice. Arthritis Res Ther 13(3):R77. doi:10.1186/ar3339

    CAS  PubMed Central  PubMed  Google Scholar 

  94. Reddy P, Sun Y, Toubai T, Duran-Struuck R, Clouthier SG, Weisiger E, Maeda Y, Tawara I, Krijanovski O, Gatza E, Liu C, Malter C, Mascagni P, Dinarello CA, Ferrara JL (2008) Histone deacetylase inhibition modulates indoleamine 2,3-dioxygenase-dependent DC functions and regulates experimental graft-versus-host disease in mice. J Clin Invest 118(7):2562–2573. doi:10.1172/JCI34712

    CAS  PubMed Central  PubMed  Google Scholar 

  95. Pellicciotta I, Cortez-Gonzalez X, Sasik R, Reiter Y, Hardiman G, Langlade-Demoyen P, Zanetti M (2008) Presentation of telomerase reverse transcriptase, a self-tumor antigen, is down-regulated by histone deacetylase inhibition. Cancer Res 68(19):8085–8093. doi:10.1158/0008–5472.CAN-08–1014

    CAS  PubMed  Google Scholar 

  96. Li H, Ou X, Xiong J, Wang T (2006) HPV16E7 mediates HADC chromatin repression and downregulation of MHC class I genes in HPV16 tumorigenic cells through interaction with an MHC class I promoter. Biochem Biophys Res Commun 349(4):1315–1321

    CAS  PubMed  Google Scholar 

  97. Han SB, Lee JK (2009) Anti-inflammatory effect of Trichostatin-A on murine bone marrow-derived macrophages. Arch Pharm Res 32(4):613–624. doi:10.1007/s12272–009-1418–4

    CAS  PubMed  Google Scholar 

  98. Mishra N, Reilly CM, Brown DR, Ruiz P, Gilkeson GS (2003) Histone deacetylase inhibitors modulate renal disease in the MRL-lpr/lpr mouse. J Clin Investig 111(4):539–552. doi:10.1172/JCI16153

    CAS  PubMed  Google Scholar 

  99. Akimova T, Beier UH, Liu Y, Wang L, Hancock WW (2012) Histone/protein deacetylases and T-cell immune responses. Blood 119(11):2443–2451. doi:10.1182/blood-2011–10-292003

    CAS  PubMed  Google Scholar 

  100. Villagra A, Cheng F, Wang HW, Suarez I, Glozak M, Maurin M, Nguyen D, Wright KL, Atadja PW, Bhalla K, Pinilla-Ibarz J, Seto E, Sotomayor EM (2009) The histone deacetylase HDAC11 regulates the expression of interleukin 10 and immune tolerance. Nat Immunol 10(1):92–100. doi:10.1038/ni.1673

    CAS  PubMed  Google Scholar 

  101. Nusinzon I, Horvath CM (2006) Positive and negative regulation of the innate antiviral response and beta interferon gene expression by deacetylation. Mol Cell Biol 26(8):3106–3113. doi:10.1128/mcb.26.8.3106-3113.2006

    CAS  PubMed Central  PubMed  Google Scholar 

  102. Valapour M, Jia G, John TS, Judith K, Antonella C, Vincenzo C, Steve NG (2002) Histone deacetylation inhibits IL4 gene expression in T cells. J Allergy Clin Immunol 109(2):238–245

    CAS  PubMed  Google Scholar 

  103. Kato Y, Yoshimura K, Shin T, Verheul H, Hammers H, Sanni TB, Salumbides BC, Van Erp K, Schulick R, Pili R (2007) Synergistic in vivo antitumor effect of the histone deacetylase inhibitor MS-275 in combination with interleukin 2 in a murine model of renal cell carcinoma. Clin Cancer Res 13(15 Pt 1):4538–4546

    CAS  PubMed  Google Scholar 

  104. Yuan ZL, Guan YJ, Chatterjee D, Chin YE (2005) Stat3 dimerization regulated by reversible acetylation of a single lysine residue. Science 307(5707):269–273

    CAS  PubMed  Google Scholar 

  105. KrÃmer OH, Knauer SK, Greiner G, Jandt E, Reichardt S, GÃhrs K-H, Stauber RH, BÃhmer FD, Heinzel T (2009) A phosphorylation-acetylation switch regulates STAT1 signaling. Genes Dev 23(2):223–235. doi:10.1101/gad.479209

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo M. Sotomayor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Woods, D., Laino, A., Villagra, A., Sotomayor, E. (2014). Molecular Pathways in Antigen-Presenting Cells Involved in the Induction of Antigen-specific T-cell Tolerance. In: Gabrilovich, D., Hurwitz, A. (eds) Tumor-Induced Immune Suppression. Springer, New York, NY. https://doi.org/10.1007/978-1-4899-8056-4_15

Download citation

Publish with us

Policies and ethics