Skip to main content

Proteomics in Cancer Diagnostics

  • Chapter
Book cover Molecular Testing in Cancer

Abstract

This chapter provides an introduction to proteomics and describes current applications of proteomic technologies in investigative and clinical settings. Mass spectrometry-based proteomics is emphasized as a technology for unbiased and targeted interrogation of complex protein mixtures. Technological advances now permit higher sensitivity and accuracy for detection and quantification of biomarkers. Perspectives on current and future applications of mass spectrometry-based proteomics are provided in the context of diagnostic laboratory testing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bauer JA, Chakravarthy AB, et al. Identification of markers of taxane sensitivity using proteomic and genomic analyses of breast tumors from patients receiving neoadjuvant paclitaxel and radiation. Clin Cancer Res. 2010;16(2):681–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Blume-Jensen P, Hunter T. Oncogenic kinase signalling. Nature. 2001;411(6835):355–65.

    Article  CAS  PubMed  Google Scholar 

  3. Conlon KP, Basrur V, et al. Fusion peptides from oncogenic chimeric proteins as putative specific biomarkers of cancer. Mol Cell Proteomics. 2013.

    Google Scholar 

  4. Druker BJ, Guilhot F, et al. Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia. N Engl J Med. 2006;355(23):2408–17.

    Article  CAS  PubMed  Google Scholar 

  5. Fenn JB, Mann M, et al. Electrospray ionization for mass spectrometry of large biomolecules. Science. 1989;246(4926):64–71.

    Article  CAS  PubMed  Google Scholar 

  6. Figueroa JJ, Peter Bosch E, et al. Amyloid-like IgM deposition neuropathy: a distinct clinico-pathologic and proteomic profiled disorder. J Peripher Nerv Syst. 2012;17(2):182–90.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Flatley B, Malone P, et al. MALDI mass spectrometry in prostate cancer biomarker discovery. Biochim Biophys Acta. 2013. pii: S1570-9639(13)00252–5.

    Google Scholar 

  8. Fortin T, Salvador A, et al. Clinical quantitation of prostate-specific antigen biomarker in the low nanogram/milliliter range by conventional bore liquid chromatography-tandem mass spectrometry (multiple reaction monitoring) coupling and correlation with ELISA tests. Mol Cell Proteomics. 2009;8(5):1006–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Groseclose MR, Massion PP, et al. High-throughput proteomic analysis of formalin-fixed paraffin-embedded tissue microarrays using MALDI imaging mass spectrometry. Proteomics. 2008;8(18):3715–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hunter T. Signaling—2000 and beyond. Cell. 2000;100(1):113–27.

    Article  CAS  PubMed  Google Scholar 

  11. Karas M, Bachamann D, et al. Matrix-assisted ultraviolet laser desorption of non-volatile compounds. Int J Mass Spectrom Ion Proc. 1989;78:53–68.

    Article  Google Scholar 

  12. Kuhn E, Wu J, et al. Quantification of C-reactive protein in the serum of patients with rheumatoid arthritis using multiple reaction monitoring mass spectrometry and 13C-labeled peptide standards. Proteomics. 2004;4(4):1175–86.

    Article  CAS  PubMed  Google Scholar 

  13. Lange V, Picotti P, et al. Selected reaction monitoring for quantitative proteomics: a tutorial. Mol Syst Biol. 2008;4:222.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Larsen MR, Thingholm TE, et al. Highly selective enrichment of phosphorylated peptides from peptide mixtures using titanium dioxide microcolumns. Mol Cell Proteomics. 2005;4(7):873–86.

    Article  CAS  PubMed  Google Scholar 

  15. Matsuo K, Arito M, et al. Arthritogenicity of annexin VII revealed by phosphoproteomics of rheumatoid synoviocytes. Ann Rheum Dis. 2011;70(8):1489–95.

    Article  CAS  PubMed  Google Scholar 

  16. Olsen JV, Ong SE, et al. Trypsin cleaves exclusively C-terminal to arginine and lysine residues. Mol Cell Proteomics. 2004;3(6):608–14.

    Article  CAS  PubMed  Google Scholar 

  17. Oppenheimer SR, Mi D, et al. Molecular analysis of tumor margins by MALDI mass spectrometry in renal carcinoma. J Proteome Res. 2010;9(5):2182–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rauser S, Marquardt C, et al. Classification of HER2 receptor status in breast cancer tissues by MALDI imaging mass spectrometry. J Proteome Res. 2010;9(4):1854–63.

    Article  CAS  PubMed  Google Scholar 

  19. Rush J, Moritz A, et al. Immunoaffinity profiling of tyrosine phosphorylation in cancer cells. Nat Biotechnol. 2005;23(1):94–101.

    Article  CAS  PubMed  Google Scholar 

  20. Schlessinger J. Cell signaling by receptor tyrosine kinases. Cell. 2000;103(2):211–25.

    Article  CAS  PubMed  Google Scholar 

  21. Schwamborn K, Krieg RC, et al. Identifying prostate carcinoma by MALDI-Imaging. Int J Mol Med. 2007;20(2):155–9.

    CAS  PubMed  Google Scholar 

  22. Stoeckli M, Chaurand P, et al. Imaging mass spectrometry: a new technology for the analysis of protein expression in mammalian tissues. Nat Med. 2001;7(4):493–6.

    Article  CAS  PubMed  Google Scholar 

  23. Tanaka K, Waki H, et al. Protein and polymer analysis up to m/z 100 000 by ionization time-flight mass spectrometry. Rapid Commun Mass Spectrom. 1988;2(151–2).

    Google Scholar 

  24. van den Broek I, Sparidans RW, et al. Quantitative assay for six potential breast cancer biomarker peptides in human serum by liquid chromatography coupled to tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci. 2010;878(5–6):590–602.

    Article  PubMed  Google Scholar 

  25. Vrana JA, Gamez JD, et al. Classification of amyloidosis by laser microdissection and mass spectrometry-based proteomic analysis in clinical biopsy specimens. Blood. 2009;114(24):4957–9.

    Article  CAS  PubMed  Google Scholar 

  26. Wang Q, Chaerkady R, et al. Mutant proteins as cancer-specific biomarkers. Proc Natl Acad Sci U S A. 2011;A108(6):2444–9.

    Article  Google Scholar 

  27. Zahedi RP, Lewandrowski U, et al. Phosphoproteome of resting human platelets. J Proteome Res. 2008;7(2):526–34.

    Article  CAS  PubMed  Google Scholar 

  28. Zhang H, Li XJ, et al. Identification and quantification of N-linked glycoproteins using hydrazide chemistry, stable isotope labeling and mass spectrometry. Nat Biotechnol. 2003;21(6):660–6.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kojo S. J. Elenitoba-Johnson M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Conlon, K.P., Rolland, D., Elenitoba-Johnson, K.S.J. (2014). Proteomics in Cancer Diagnostics. In: Yousef, G., Jothy, S. (eds) Molecular Testing in Cancer. Springer, New York, NY. https://doi.org/10.1007/978-1-4899-8050-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-8050-2_8

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4899-8049-6

  • Online ISBN: 978-1-4899-8050-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics