Active Pixel Sensor Multielectrode Array for High Spatiotemporal Resolution

Chapter

Abstract

Among the different methodologies used for electrophysiological measures in the brain, electrodes have played an undisputed role in high-quality intracellular signal recordings from a few neurons and in chronic extracellular measures with electrode-array probes implanted in the brain. Electrode arrays providing multisite extracellular measures have become a key methodology in neuroscience for studying coding and transmission of information by neuronal ensembles [1] and for the development of Brain–Machine Interfaces (BMIs) and neural prosthetics [2–8]. This is mainly because electrode arrays combine the unique features of bidirectionality (i.e., recording and stimulation), long-term stability (up to years), and of a large signal bandwidth that enables recordings of action potentials from multiple neurons as well as low-frequency field potentials (LFPs).

References

  1. 1.
    Averbeck, B.B., and Lee, D.: Coding and transmission of information by neural ensembles. Trends in Neurosciences. 27(4), 225–230 (2004)Google Scholar
  2. 2.
    Schwartz, A.B., Cortical neural prosthetics. Annual Review of Neuroscience. 27, 487–507 (2004)Google Scholar
  3. 3.
    Hatsopoulos, N.G., and Donoghue, J.P.: The science of neural interface systems. Annual Review of Neuroscience. 32, 249–266 (2009)Google Scholar
  4. 4.
    Stieglitz, T., et al.: Brain-computer interfaces: an overview of the hardware to record neural signals from the cortex. In: Verhaagen, J., et al. (eds) Neurotherapy: Progress in Restorative Neuroscience and Neurology, pp. 297–315. Elsiever, Amsterdam (2009)Google Scholar
  5. 5.
    Csicsvari, J., et al.: Mechanisms of gamma oscillations in the hippocampus of the behaving rat. Neuron 37(2), 311–322 (2003)Google Scholar
  6. 6.
    Normann, R.A., et al.: A neural interface for a cortical vision prosthesis. Vision Research, 39(15), 2577–2587 (1999)Google Scholar
  7. 7.
    Maynard, E.M., Nordhausen, C.T., and Normann, R.A.: The Utah intracortical electrode array: a recording structure for potential brain-computer interfaces. Electroencephalography and Clinical Neurophysiology. 102(3), 228–239 (2003)Google Scholar
  8. 8.
    Normann, R.A.: Technology insight: future neuroprosthetic therapies for disorders of the nervous system. Nature Clinical Practice Neurology. 3(8), 444–452 (2007)Google Scholar
  9. 9.
    Donoghue, J.P.: Connecting cortex to machines: recent advances in brain interfaces. Nature Neuroscience. 5, 1085–1088 (2002)Google Scholar
  10. 10.
    Wise, K.D.: Silicon microsystems for neuroscience and neural prostheses. IEEE Engineering in Medicine and Biology Magazine. 24(5), 22–29 (2005)Google Scholar
  11. 11.
    Pearce, T.M. and Williams, J.C.: Microtechnology: meet neurobiology. Lab on a Chip 7(1), 30–40 (2007)Google Scholar
  12. 12.
    HajjHassan, M., Chodavarapu, V., and Musallam, S.: NeuroMEMS: Neural Probe Microtechnologies. Sensors 8(10), 6704–6726 (2008)Google Scholar
  13. 13.
    Park, J.W., et al.: Advances in microfluidics-based experimental methods for neuroscience research. Lab on a Chip 13(4), 509–521 (2013)Google Scholar
  14. 14.
    Alivisatos, A.P., et al.: Nanotools for neuroscience and brain activity mapping. Acs Nano 7(3), 1850–1866 (2013)Google Scholar
  15. 15.
    Tian, B., et al.: Three-dimensional, flexible nanoscale field-effect transistors as localized bioprobes. Science 329(5993), 830–834 (2010)Google Scholar
  16. 16.
    Keefer, E.W., et al.: Carbon nanotube coating improves neuronal recordings. Nature Nanotechnology. 3(7), 434–439 (2008)Google Scholar
  17. 17.
    Lovat, V., et al.: Carbon nanotube substrates boost neuronal electrical signaling. Nano Letters. 5(6), 1107–1110 (2005)Google Scholar
  18. 18.
    Du, J., et al.: Multiplexed, high density electrophysiology with nanofabricated neural probes. Plos One. 6(10), e26204 (2011)Google Scholar
  19. 19.
    Spira, M.E., and Hai, A.: Multi-electrode array technologies for neuroscience and cardiology. Nature Nanotechnology. 8(2), 83–94 (2013)Google Scholar
  20. 20.
    Hai, A., Shappir, J., and Spira, M.E.: In-cell recordings by extracellular microelectrodes. Nature Methods. 7(3), 200–202 (2010)Google Scholar
  21. 21.
    Martiradonna, L., et al.: Beam induced deposition of 3D electrodes to improve coupling to cells. Microelectronic Engineering 97, 365–368 (2012)Google Scholar
  22. 22.
    Xie, C., et al.: Intracellular recording of action potentials by nanopillar electroporation. Nature Nanotechnology. 7(3), 185–190 (2012)Google Scholar
  23. 23.
    Robinson, J.T., et al.: Vertical nanowire electrode arrays as a scalable platform for intracellular interfacing to neuronal circuits. Nature Nanotechnology. 7(3), 180–184 (2012)Google Scholar
  24. 24.
    Buzsaki, G.: Large-scale recording of neuronal ensembles. Nature Neuroscience. 7(5), 446–451 (2004)Google Scholar
  25. 25.
    Stevenson, I.H. and Kording, K.P.: How advances in neural recording affect data analysis. Nature Neuroscience. 14(2), 139–142 (2011)Google Scholar
  26. 26.
    Kerr, J.N.D. and Denk, W.: Imaging in vivo: watching the brain in action. Nature Reviews Neuroscience. 9(3), 195–205 (2008)Google Scholar
  27. 27.
    Maschio, M.D., et al.: Two-photon calcium imaging in the intact brain. Advances in Experimental Medicine and Biology. 740, 83–102 (2012)Google Scholar
  28. 28.
    Csicsvari, J., et al.: Massively parallel recording of unit and local field potentials with silicon-based electrodes. Journal of Neurophysiology. 90(2), 1314–1323 (2003)Google Scholar
  29. 29.
    Viventi, J., et al.: Flexible, foldable, actively multiplexed, high-density electrode array for mapping brain activity in vivo. Nature Neuroscience. 14(12), 1599–1605 (2011)Google Scholar
  30. 30.
    BeMent, S.L., et al.: Solid-state electrodes for multichannel multiplexed intracortical neuronal recording. IEEE Transactions on Bio-Medical Engineering. 33(2), 230–241 (1986)Google Scholar
  31. 31.
    Hierlemann, A., et al.: Growing cells atop microelectronic chips: interfacing electrogenic cells in vitro with CMOS-based microelectrode arrays. Proceedings of the IEEE. 99(2), 252–284 (2011)Google Scholar
  32. 32.
    Franke, F., et al.: High-density microelectrode array recordings and real-time spike sorting for closed-loop experiments: an emerging technology to study neural plasticity. Frontiers in Neural Circuits. 6, 105 (2012). doi: 10.3389/fncir.2012.00105Google Scholar
  33. 33.
    Eldawlatly, S., Jin, R., and Oweiss, K.G.: Identifying functional connectivity in large-scale neural ensemble recordings: a multiscale data mining approach. Neural Computation. 21(2), 450–477 (2009)MATHMathSciNetGoogle Scholar
  34. 34.
    Wise, K.D., Integrated sensors, MEMS, and microsystems: reflections on a fantastic voyage. Sensors and Actuators A-Physical. 136(1), 39–50 (2007)Google Scholar
  35. 35.
    Berdondini, L., et al.: Active pixel sensor array for high spatio-temporal resolution electrophysiological recordings from single cell to large scale neuronal networks. Lab on a Chip 9(18), 2644–2651 (2009)Google Scholar
  36. 36.
    Fossum, E.R.: CMOS image sensors: electronic camera-on-a-chip. IEEE Transactions on Electron Devices 44(10), 1689–1698 (1997)Google Scholar
  37. 37.
    Mendis, S.K., et al.: CMOS active pixel image sensors for highly integrated imaging systems. IEEE Journal of Solid-State Circuits 32(2), 187–197 (1997)Google Scholar
  38. 38.
    Cheung, K.C.: Implantable microscale neural interfaces. Biomedical Microdevices 9(6) 923–938 (2007)Google Scholar
  39. 39.
    Najafi, K. and Wise, K.D.: An implantable multielectrode array with on-chip signal processing. Journal of Solid-State Circuits. sc-21(6), 1035–1044 (1986)Google Scholar
  40. 40.
    Jochum, T., Denison, T., and Wolf, P.: Integrated circuit amplifiers for multi-electrode intracortical recording. Journal of Neural Engineering. 6(1), 012001 (2009)Google Scholar
  41. 41.
    Denison, T., Molnar, G., and Harrison, R.: Integrated amplifier architectures for efficient coupling to the nervous system. In: Steyaert, M., Roermund, A.M.V., and Casier, H. (eds) Analog Circuit Design, pp. 167–191. Springer, The Netherlands (2009)Google Scholar
  42. 42.
    Dabrowski, W., Grybos, P., and Litke, A.M.: A low noise multichannel integrated circuit for recording neuronal signals using microelectrode arrays. Biosensors & Bioelectronics 19(7), 749–761 (2004)Google Scholar
  43. 43.
    Graham, A.H.D., et al.: Commercialisation of CMOS integrated circuit technology in multi-electrode arrays for neuroscience and cell-based biosensors. Sensors 11(5), 4943–4971 (2011)Google Scholar
  44. 44.
    Jones, I.L., et al.: The potential of microelectrode arrays and microelectronics for biomedical research and diagnostics. Analytical and Bioanalytical Chemistry 399(7), 2313–2329 (2011)Google Scholar
  45. 45.
    Chiappalone, M., et al.: Dissociated cortical networks show spontaneously correlated activity patterns during in vitro development. Brain Research 1093, 41–53 (2006).Google Scholar
  46. 46.
    Morin, F.O., Takamura, Y., and Tamiya, E.: Investigating neuronal activity with planar microelectrode arrays: achievements and new perspectives. Journal of Bioscience and Bioengineering 100(2), 131–143 (2005)Google Scholar
  47. 47.
    Potter, S.M.: Closing the loop between neurons and neurotechnology. Frontiers in Neuroscience 4, (2010). doi: 10.3389/fnins.2010.00015Google Scholar
  48. 48.
    van Pelt, J., et al.: Long-term characterization of firing dynamics of spontaneous bursts in cultured neural networks. IEEE Transactions on Biomedical Engineering 51(11), 2051–2062 (2004)Google Scholar
  49. 49.
    Wagenaar, D.A., Pine, J., and Potter, S.M.: An extremely rich repertoire of bursting patterns during the development of cortical cultures. BMC Neuroscience 7, 11 (2006). doi:10.1186/1471-2202-7-11Google Scholar
  50. 50.
    Rutten, W., et al.: Neuroelectronic interfacing with cultured multielectrode arrays toward a cultured probe. Proceedings of the IEEE 89(7), 1013–1029 (2001)Google Scholar
  51. 51.
    Egert, U., et al.: A novel organotypic long-term culture of the rat hippocampus on substrate-integrated multielectrode arrays. Brain Research Protocols 2(4), 229–242 (1998)Google Scholar
  52. 52.
    Meister, M., et al.: Synchronous bursts of action-potentials in ganglion-cells of the developing mammalian retina. Science 252(5008), 939–943 (1991)Google Scholar
  53. 53.
    Frega, M., et al.: Cortical cultures coupled to Micro-Electrode Arrays: a novel approach to perform in vitro excitotoxicity testing. Neurotoxicology and Teratology 34(1), 116–127 (2012)Google Scholar
  54. 54.
    Johnstone, A.F.M., et al.: Microelectrode arrays: a physiologically based neurotoxicity testing platform for the 21st century. Neurotoxicology 31(4), 331–350 (2010)MathSciNetGoogle Scholar
  55. 55.
    Stett, A., et al.: Biological application of microelectrode arrays in drug discovery and basic research. Analytical and Bioanalytical Chemistry 377(3), 486–495 (2003)Google Scholar
  56. 56.
    Mandenius, C.-F., et al.: Cardiotoxicity testing using pluripotent stem cell-derived human cardiomyocytes and state-of-the-art bioanalytics: a review. Journal of Applied Toxicology 31(3), 191–205 (2011)Google Scholar
  57. 57.
    Pine, J.: A history of MEA development. In: Taketani, M., and Baudry, M. (eds) Advances in Network Electrophysiology, pp. 3–23. Springer, New York, USA (2006)Google Scholar
  58. 58.
    Thomas, C.A., Jr., et al.: A miniature microelectrode array to monitor the bioelectric activity of cultured cells. Experimental Cell Research 74(1), 61–66 (1972)Google Scholar
  59. 59.
    Gross, G.W., et al.: A new fixed-array multi-microelectrode system designed for long-term monitoring of extracellular single unit neuronal activity in vitro. Neuroscience Letters 6(2–3), 101–105 (1977)Google Scholar
  60. 60.
    Pine, J.: Recording action potentials from cultured neurons with extracellular microcircuit electrodes. Journal of Neuroscience Methods. 2(1), 19–31 (1980)Google Scholar
  61. 61.
    Robinson, D.A.: The electrical properties of metal microelectrodes. Proceedings of the IEEE 56(6), 1065–1071 (1968)Google Scholar
  62. 62.
    Thiebaud, P., et al.: Microelectrode arrays for electrophysiological monitoring of hippocampal organotypic slice cultures. IEEE Transactions on Biomedical Engineering 44(11), 1159–1163 (1997)Google Scholar
  63. 63.
    Berdondini, L., et al.: A microelectrode array (MEA) integrated with clustering structures for investigating in vitro neurodynamics in confined interconnected sub-populations of neurons. Sensors and Actuators B-Chemical 114(1), 530–541 (2006)Google Scholar
  64. 64.
    Rutten, W.L.C.: Selective electrical interfaces with the nervous system. Annual Review of Biomedical Engineering 4, 407–452 (2002)Google Scholar
  65. 65.
    Martinoia, S., et al.: A general-purpose system for long-term recording from a microelectrode array. Journal of Neuroscience Methods 48(1–2), 115–121 (1993)Google Scholar
  66. 66.
    Norlin, A., Pan, J., and Leygraf, C.: Investigation of interfacial capacitance of Pt, Ti and TiN coated electrodes by electrochemical impedance spectroscopy. Biomolecular Engineering 19(2–6), 67–71 (2002)Google Scholar
  67. 67.
    Cogan, S.F.: Neural stimulation and recording electrodes. Annual Review of Biomedical Engineering. 10, 275–309 (2008)Google Scholar
  68. 68.
    Navarro, X., et al.: A critical review of interfaces with the peripheral nervous system for the control of neuroprostheses and hybrid bionic systems. Journal of the Peripheral Nervous System 10(3), 229–258 (2005)Google Scholar
  69. 69.
    Polikov, V.S., Tresco, P.A., and Reichert, W.M.: Response of brain tissue to chronically implanted neural electrodes. Journal of Neuroscience Methods 148(1), 1–18 (2005)Google Scholar
  70. 70.
    Heuschkel, M.O., et al.: A three-dimensional multi-electrode array for multi-site stimulation and recording in acute brain slices. Journal of Neuroscience Methods. 114(2), 135–148 (2002)Google Scholar
  71. 71.
    Kotov, N.A., et al.: Nanomaterials for neural interfaces. Advanced Materials 21(40), 3970–4004 (2009)Google Scholar
  72. 72.
    Bareket-Keren, L. and Hanein, Y.: Carbon nanotube-based multielectrode arrays for neuronal interfacing: progress and prospects. Frontiers in Neural Circuits 6, 122 (2013). doi: 10.3389/fncir.2012.00122.Google Scholar
  73. 73.
    Soe, A.K., Nahavandi, S., and Khoshmanesh, K.: Neuroscience goes on a chip. Biosensors & Bioelectronics 35(1), 1–13 (2012)Google Scholar
  74. 74.
    Huang, Y., Williams, J.C., and Johnson, S.M.: Brain slice on a chip: opportunities and challenges of applying microfluidic technology to intact tissues. Lab on a Chip 12(12), 2103–2117 (2012)Google Scholar
  75. 75.
    Claverol-Tinture, E., et al.: Multielectrode arrays with elastomeric microstructured overlays for extracellular recordings from patterned neurons. Journal of Neural Engineering 2(2), L1–7 (2005)Google Scholar
  76. 76.
    Wang, L., et al.: Biophysics of microchannel-enabled neuron-electrode interfaces. Journal of Neural Engineering 9(2), 026010 (2012)Google Scholar
  77. 77.
    Suzuki, I., et al.: Stepwise pattern modification of neuronal network in photo-thermally-etched agarose architecture on multi-electrode array chip for individual-cell-based electrophysiological measurement. Lab on a Chip 5(3), 241–247 (2005)Google Scholar
  78. 78.
    E. Marconi, A. Maccione, T. Nieus, P. L. Valente, M. Messa, P. Baldelli, L. Berdondini and F. Benfenati, “Investigating emergent functional properties of spontaneously active neuronal networks with controlled topology”, PLoS One, 2012;7(4):e34648, 2012Google Scholar
  79. 79.
    Wise, K.D., Angell, J.B., and Starr, A.: An integrated-circuit approach to extracellular microelectrodes. IEEE Transactions on Bio-Medical Engineering 17(3), 238–247 (1970)Google Scholar
  80. 80.
    Wise, K.D., et al.: Microelectrodes, microelectronics, and implantable neural microsystems. Proceedings of the IEEE 96(7), 1184–1202 (2008)Google Scholar
  81. 81.
    Hoogerwerf, A.C. and Wise, K.D., A 3-dimensional microelectrode array for chronic neural recording. IEEE Transactions on Biomedical Engineering 41(12), 1136–1146 (1994)Google Scholar
  82. 82.
    Wise, K.D., et al.: Wireless implantable microsystems: high-density electronic interfaces to the nervous system. Proceedings of the IEEE 92(1), 76–97 (2004)MathSciNetGoogle Scholar
  83. 83.
    Leong, K.H., et al.: Multichannel microelectrode probes machined in silicon. Biosensors & Bioelectronics 5(4), 303–310 (1990)Google Scholar
  84. 84.
    Kewley, D.T., et al.: Plasma-etched neural probes. Sensors and Actuators A-Physical 58(1), 27–35 (1997)Google Scholar
  85. 85.
    Errachid, A., et al.: New technology for multi-sensor silicon needles for biomedical applications. Sensors and Actuators B-Chemical 78(1–3), 279–284 (2001)Google Scholar
  86. 86.
    Wassum, K.M., et al.: Silicon wafer-based platinum microelectrode array biosensor for near real-time measurement of glutamate in vivo. Sensors 8(8), 5023–5036 (2008)Google Scholar
  87. 87.
    Cheung, K.C., et al., Implantable multichannel electrode array based on SOI technology. Journal of Microelectromechanical Systems 12(2), 179–184 (2003)Google Scholar
  88. 88.
    Ensell, G., et al.: Silicon-based microelectrodes for neurophysiology, micromachined from silicon-on-insulator wafers. Medical & Biological Engineering & Computing 38(2), 175–179 (2000)Google Scholar
  89. 89.
    Norlin, P., et al.: A 32-site neural recording probe fabricated by DRIE of SOI substrates. Journal of Micromechanics and Microengineering 12(4), 414–419 (2002)Google Scholar
  90. 90.
    Merriam, S.M.E., et al.: A three-dimensional 64-site folded electrode array using planar fabrication. Journal of Microelectromechanical Systems 20(3), 594-600 (2011)Google Scholar
  91. 91.
    Wise, K.D. and Najafi, K.: Microfabrication techniques for integrated sensors and microsystems. Science 254(5036), 1335–1342 (1991)Google Scholar
  92. 92.
    Ji, J., Najafi, K., and Wise, K.D.: A low-noise demultiplexing system for active multichannel microelectrode arrays. IEEE Transactions on Biomedical Engineering 38(1), 75–81 (1991)Google Scholar
  93. 93.
    Sodagar, A.M., Wise, K.D., and Najafi, K.: A wireless implantable microsystem for multichannel neural recording. IEEE Transactions on Microwave Theory and Techniques 57(10), 2565–2573 (2009)Google Scholar
  94. 94.
    Tanghe, S.J. and Wise, K.D., A 16-channel CMOS neural stimulating array. IEEE Journal of Solid-State Circuits 27(12), 1819–1825 (1992)Google Scholar
  95. 95.
    Campbell, P.K., et al.: A silicon-based, 3-dimensional interface-manufacturing processes for an intracortical electrode array. IEEE Transactions on Biomedical Engineering 38(8), 758–768 (1991)Google Scholar
  96. 96.
    Rousche, P.J. and Normann R.A.: Chronic recording capability of the Utah Intracortical Electrode Array in cat sensory cortex. Journal of Neuroscience Methods 82(1), 1–15 (1998)Google Scholar
  97. 97.
    Nordhausen, C.T., Rousche, P.J., and Normann, R.A.: Optimizing recording capabilities of the Utah-intracortical-electrode-array. Brain Research, 637(1-2), 27-36 (1994)Google Scholar
  98. 98.
    Neves, H.P., et al.: The NeuroProbes project: a concept for electronic depth control. Paper presented at the 30th Annual International IEEE EMBS Conference, British Columbia, Vancouver, Canada, 20–24 August, pp. 1857–1857 (2008)Google Scholar
  99. 99.
    Ruther, P., et al.: Recent progress in neural probes using silicon MEMS technology. IEEE Transactions on Electrical and Electronic Engineering 5(5), 505–515 (2010)Google Scholar
  100. 100.
    Seidl, K., et al.: CMOS-based high-density silicon microprobe arrays for electronic depth control in intracortical neural recording. Journal of Microelectromechanical Systems 20(6), 1439–1448 (2011)Google Scholar
  101. 101.
    Aarts, A.A., et al.: A 3D slim-base probe array for in vivo recorded neuron activity. Paper presented at the 30th Annual International IEEE EMBS Conference, British Columbia, Vancouver, Canada, 20–24 August, pp. 5798–5801 (2008)Google Scholar
  102. 102.
    Herwik, S., et al.: Fabrication technology for silicon-based microprobe arrays used in acute and sub-chronic neural recording. Journal of Micromechanics and Microengineering 19(7), 074008 (2009)Google Scholar
  103. 103.
    Oldenziel, W.H., et al.: In vivo monitoring of extracellular glutamate in the brain with a microsensor. Brain Research 1118, 34–42 (2006)Google Scholar
  104. 104.
    Chen, J.K., et al.: A multichannel neural probe for selective chemical delivery at the cellular level. IEEE Transactions on Biomedical Engineering 44(8), 760–769 (1997)Google Scholar
  105. 105.
    Spieth, S., et al.: A floating 3D silicon microprobe array for neural drug delivery compatible with electrical recording. Journal of Micromechanics and Microengineering 21(12), 125001 (2011)Google Scholar
  106. 106.
    Frey, O., et al.: Biosensor microprobes with integrated microfluidic channels for bi-directional neurochemical interaction. Journal of Neural Engineering 8(6), 066001 (2011)Google Scholar
  107. 107.
    Psoma, S.D., et al.: A novel enzyme entrapment in SU-8 microfabricated films for glucose micro-biosensors. Biosensors & Bioelectronics 26(4), 1582–1587 (2010)Google Scholar
  108. 108.
    Rousche, P.J., et al.: Flexible polyimide-based intracortical electrode arrays with bioactive capability. IEEE Transactions on Biomedical Engineering 48(3), 361–371 (2001)Google Scholar
  109. 109.
    Chen, C.-H., et al.: A three-dimensional flexible microprobe array for neural recording assembled through electrostatic actuation. Lab on a Chip 11(9), 1647–1655 (2011)Google Scholar
  110. 110.
    Chen, Y.-Y., et al.: Design and fabrication of a polyimide-based microelectrode array: application in neural recording and repeatable electrolytic lesion in rat brain. Journal of Neuroscience Methods 182(1), 6–16 (2009)Google Scholar
  111. 111.
    Cheung, K.C., et al.: Flexible polyimide microelectrode array for in vivo recordings and current source density analysis. Biosensors & Bioelectronics 22(8), 1783–1790 (2007)Google Scholar
  112. 112.
    Hassler, C., Boretius, T., and Stieglitz, T.: Polymers for neural implants. Journal of Polymer Science Part B-Polymer Physics 49(1), 18–33 (2011)Google Scholar
  113. 113.
    Lai, H.-Y., et al.: Design, simulation and experimental validation of a novel flexible neural probe for deep brain stimulation and multichannel recording. Journal of Neural Engineering 9(3), 036001 (2012)Google Scholar
  114. 114.
    Mercanzini, A., et al.: Demonstration of cortical recording using novel flexible polymer neural probes. Sensors and Actuators A-Physical 143(1), 90–96 (2008)Google Scholar
  115. 115.
    Chow, W.W.Y., et al.: Bio-polymer coatings on neural probe surfaces: Influence of the initial sample composition. Applied Surface Science 258(20), 7864–7871 (2012)Google Scholar
  116. 116.
    Mercanzini, A., et al.: Controlled release nanoparticle-embedded coatings reduce the tissue reaction to neuroprostheses. Journal of Controlled Release 145(3), 196–202 (2010)Google Scholar
  117. 117.
    Perlin, G.E. and Wise K.D.: An ultra compact integrated front end for wireless neural recording microsystems. Journal of Microelectromechanical Systems 19(6), 1409–1421 (2010)Google Scholar
  118. 118.
    Sodagar, A.M., et al.: An implantable 64-channel wireless microsystem for single-unit neural recording. IEEE Journal of Solid-State Circuits 44(9), 2591–2604 (2009)Google Scholar
  119. 119.
    Harrison, R.R.: The design of integrated circuits to observe brain activity. Proceedings of the IEEE 96(7), 1203–1216 (2008)Google Scholar
  120. 120.
    Harrison, R.R., et al.: A low-power integrated circuit for a wireless 100-electrode neural recording system. IEEE Journal of Solid-State Circuits 42(1), 123–133 (2007)Google Scholar
  121. 121.
    Blum, R.A., et al.: An integrated system for simultaneous, multichannel neuronal stimulation and recording. IEEE Transactions on Circuits and Systems I-Regular Papers 54(12), 2608–2618 (2007)Google Scholar
  122. 122.
    Grybos, P., et al.: 64 channel neural recording amplifier with tunable bandwidth in 180 nm CMOS technology. Metrology and Measurement Systems 18(4), 631–643 (2011)Google Scholar
  123. 123.
    Bottino, E., et al., Low-noise low-power CMOS preamplifier for multisite extracellular neuronal recordings. Microelectronics Journal 40(12), 1779–1787 (2009)Google Scholar
  124. 124.
    Gunning, D.E., et al.: High spatial resolution probes for neurobiology applications. Nuclear Instruments & Methods in Physics Research Section A-Accelerators Spectrometers Detectors and Associated Equipment 604(1–2), 104–107 (2009)Google Scholar
  125. 125.
    Field, G.D., et al.: Functional connectivity in the retina at the resolution of photoreceptors. Nature 467(7316), 673–677 (2010)Google Scholar
  126. 126.
    Imfeld, K., et al.: Large-scale, high-resolution data acquisition system for extracellular recording of electrophysiological activity. IEEE Transactions on Biomedical Engineering 55(8), 2064–2073 (2008)Google Scholar
  127. 127.
    Franks, W., et al.: CMOS monolithic microelectrode array for stimulation and recording of natural neural networks. IEEE Transducers Dig. Tech. Papers 2, 963–966 (2003)Google Scholar
  128. 128.
    Frey, U., et al.: Cell recordings with a CMOS high-density microelectrode array. Paper presented at the 29th Annual International IEEE EMBS Conference, Lyon, Canada, 22–26 August, pp. 167–170 (2007)Google Scholar
  129. 129.
    Berdondini, L., et al.: High-density microelectrode arrays for electrophysiological activity imaging of neuronal networks. Paper presented at the 8th IEEE International Conference on Electronics, Circuits and Systems, Malta (2001)Google Scholar
  130. 130.
    Hafizovic, S., et al.: A CMOS-based microelectrode array for interaction with neuronal cultures. Journal of Neuroscience Methods 164(1), 93–106 (2007)Google Scholar
  131. 131.
    Heer, F., et al.: Single-chip microelectronic system to interface with living cells. Biosensors & Bioelectronics 22(11), 2546–2553 (2007)Google Scholar
  132. 132.
    Eversmann, B., et al.: A 128x128 CMOS biosensor array for extracellular recording of neural activity. IEEE Journal of Solid-State Circuits 38(12), 2306–2317 (2003)Google Scholar
  133. 133.
    Fromherz, P., et al.: A neuron-silicon junction - a retzius cell of the leech on an insulated-gate field-effect transistor. Science 252(5010), 1290–1293 (1991)Google Scholar
  134. 134.
    Fromherz, P.: Electrical interfacing of nerve cells and semiconductor chips. Chemphyschem 3(3), 276–284 (2002)Google Scholar
  135. 135.
    Lambacher, A., et al.: Identifying firing mammalian neurons in networks with high-resolution multi-transistor array (MTA). Applied Physics A 102(1), 1–11 (2011)Google Scholar
  136. 136.
    Eversmann, B., et al: A neural tissue interfacing chip for in-vitro applications with 32k recording/stimulation channels on an active area of 2.6 mm2. ESSCIRC 41, 211–214 (2011)Google Scholar
  137. 137.
    Berdondini, L., et al.: High-density electrode array for imaging in vitro electrophysiological activity. Biosensors & Bioelectronics 21(1), 167–174 (2005)Google Scholar
  138. 138.
    Maccione, A., et al.: A novel algorithm for precise identification of spikes in extracellularly recorded neuronal signals. Journal of Neuroscience Methods 177(1), 241–249 (2009)Google Scholar
  139. 139.
    Maccione, A., et al.: Multiscale functional connectivity estimation on low-density neuronal cultures recorded by high-density CMOS Micro Electrode Arrays. Journal of Neuroscience Methods 207(2), 161–171 (2012)Google Scholar
  140. 140.
    Lewicki, M.S.: A review of methods for spike sorting: the detection and classification of neural. Network: Computation in Neural Systems 9(4), 53–78 (1998)MathSciNetGoogle Scholar
  141. 141.
    Delescluse, M. and Pouzat, C.: Efficient spike-sorting of multi-state neurons using inter-spike intervals information. Journal of Neuroscience Methods 150(1), 16–29 (2006)Google Scholar
  142. 142.
    Quiroga, R.Q., Nadasdy, Z., and Ben-Shaul, Y.: Unsupervised spike detection and sorting with wavelets and superparamagnetic clustering. Neural Computation 16(8), 1661–1687 (2004)MATHGoogle Scholar
  143. 143.
    Takekawa, T., Isomura, Y., and Fukai, T.: Spike sorting of heterogeneous neuron types by multimodality-weighted PCA and explicit robust variational Bayes. Frontiers in Neuroinformatics 6, 5 (2012). doi: 10.3389/fninf.2012.00005Google Scholar
  144. 144.
    Bologna, L.L., et al.: Low-frequency stimulation enhances burst activity in cortical cultures during development. Neuroscience 165(3), 692–704 (2010)Google Scholar
  145. 145.
    Chiappalone, M., Massobrio, P., and Martinoia, S.: Network plasticity in cortical assemblies. European Journal of Neuroscience 28(1), 221–237 (2008)Google Scholar
  146. 146.
    Maccione, A., et al.: Experimental investigation on spontaneously active hippocampal cultures recorded by means of high-density MEAs: analysis of the spatial resolution effects. Frontiers in Neuroengineering 3, 4 (2010). doi: 10.3389/fneng.2010.00004Google Scholar
  147. 147.
    Grün, S., and Rotter, S. (eds): Analysis of parallel spike trains. Springer Series in Computational Neuroscience, vol. 7, p. 444. Springer, Berlin (2010)Google Scholar
  148. 148.
    Bullmore, E. and O. Sporns, Complex brain networks: graph theoretical analysis of structural and functional systems. Nature Reviews Neuroscience 10(3), 186–198 (2009)Google Scholar
  149. 149.
    D’Angelo, E.: Toward the connectomic era. Functional Neurology 27(2), 77 (2012)MathSciNetGoogle Scholar
  150. 150.
    Churchland, M.M., et al.: Techniques for extracting single-trial activity patterns from large-scale neural recordings. Current Opinion in Neurobiology 17(5), 609–618 (2007)Google Scholar
  151. 151.
    Nirenberg, S.H. and Victor, J.D.: Analyzing the activity of large populations of neurons: how tractable is the problem? Current Opinion in Neurobiology 17(4), 397–400 (2007)Google Scholar
  152. 152.
    Zenas, C.C., Douglas, J.B., and Steve, M.P.: Region-specific network plasticity in simulated and living cortical networks: comparison of the center of activity trajectory (CAT) with other statistics. Journal of Neural Engineering 4(3), 294 (2007)Google Scholar
  153. 153.
    Gandolfo, M., et al.: Tracking burst patterns in hippocampal cultures with high-density CMOS-MEAs. Journal of Neural Engineering, 7(5), 056001 (2010). doi: 10.1088/1741-2560/7/5/056001Google Scholar
  154. 154.
    Ferrea, E., et al.: Large-scale, high-resolution electrophysiological imaging of field potentials in brain slices with microelectronic multielectrode arrays. Frontiers in Neural Circuits 6, 80 (2012). doi: 10.3389/fncir.2012.00080Google Scholar
  155. 155.
    Kim, S., et al.: Thermal impact of an active 3-D microelectrode array implanted in the brain. IEEE Transactions on Neural Systems and Rehabilitation Engineering 15(4), 493–501 (2007)Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • L. Berdondini
    • 1
  • A. Bosca
    • 1
  • T. Nieus
    • 1
  • A. Maccione
    • 1
  1. 1.NetS3 Laboratory, Neuroscience and Brain TechnologiesIstituto Italiano di TecnologiaGenoaItaly

Personalised recommendations