Nanostructured Coatings for Improved Charge Delivery to Neurons

  • Takashi D. Y. KozaiEmail author
  • Nicolas A. Alba
  • Huanan Zhang
  • Nicolas A. Kotov
  • Robert A. Gaunt
  • Xinyan Tracy Cui


This chapter explores the variability and limitations of traditional stimulation electrodes by first appreciating how electrical potential differences lead to efficacious activation of nearby neurons and examining the basic electrochemical mechanisms of charge transfer at an electrode/electrolyte interface. It then covers the advantages and current challenges of emerging micro-/nanostructured electrode materials for next-generation neural stimulation microelectrodes.


Electrical Stimulation Stimulation Electrode Charge Injection PEDOT Film Neural Stimulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to acknowledge Kip A Ludwig and Jim Hokanson for critical insight and scientific discussion, as well as valuable discussions from Christi L Kolarcik, Kasey Catt, and Cassandra Weaver. The authors would also like to thank technical contribution by Zhannetta Gugel, Alberto L Vazquez, Noah Snyder, James R Eles, Zhanhong Du, Linn Zhang, Ali Aneizi, and Paras R Patel.


  1. 1.
    McWilliam, J.A.: Electrical stimulation of the heart in man. BMJ 1, 348–350 (1889). doi: 10.1136/bmj.1.1468.348 Google Scholar
  2. 2.
    House, W.F.: Cochlear implants. Ann Otol Rhinol Laryngol 85 suppl 27, 1–93 (1976)Google Scholar
  3. 3.
    Vidailhet, M. et al.: Bilateral Deep-Brain Stimulation of the Globus Pallidus in Primary Generalized Dystonia. New England Journal of Medicine 352, 459–467 (2005). doi: 10.1056/NEJMoa042187 Google Scholar
  4. 4.
    Benabid, A.L. et al.: Long-term suppression of tremor by chronic stimulation of the ventral intermediate thalamic nucleus. The Lancet 337, 403–406 (1991). Google Scholar
  5. 5.
    Deuschl, G. et al.: A Randomized Trial of Deep-Brain Stimulation for Parkinson’s Disease. New England Journal of Medicine 355, 896–908 (2006). doi: 10.1056/NEJMoa060281 Google Scholar
  6. 6.
    Halpern, C.H. et al.: Deep brain stimulation in the treatment of obesity. J. Neurosurg. 109, 625–634 (2008). doi: 10.3171/JNS/2008/109/10/0625 Google Scholar
  7. 7.
    Sani, S., Jobe, K., Smith, A., Kordower, J.H. and Bakay, R.A. Deep brain stimulation for treatment of obesity in rats. J. Neurosurg. 107, 809–813 (2007). doi: 10.3171/JNS-07/10/0809 Google Scholar
  8. 8.
    Mayberg, H.S., et al.: Deep Brain Stimulation for Treatment-Resistant Depression. Neuron 45, 651–660 (2005). Google Scholar
  9. 9.
    Richardson, D.E. and Akil, H.: Pain reduction by electrical brain stimulation in man. Part 1: Acute administration in periaqueductal and periventricular sites. J. Neurosurg. 47, 178–183 (1977). doi: 10.3171/jns.1977.47.2.0178 Google Scholar
  10. 10.
    Richardson, D.E. and Akil, H.: Pain reduction by electrical brain stimulation in man. Part 2: Chronic self-administration in the periventricular gray matter. J. Neurosurg. 47, 184–194 (1977). doi: 10.3171/jns.1977.47.2.0184 Google Scholar
  11. 11.
    Penry, J. K. and Dean, J.C.: Prevention of intractable partial seizures by intermittent vagal stimulation in humans: preliminary results. Epilepsia 31 Suppl 2, S40–43 (1990).Google Scholar
  12. 12.
    Rutecki, P.: Anatomical, physiological, and theoretical basis for the antiepileptic effect of vagus nerve stimulation. Epilepsia 31 Suppl 2, S1–6 (1990).Google Scholar
  13. 13.
    Peckham, P.H. and Knutson, J.S.: Functional electrical stimulation for neuromuscular applications. Annu. Rev. Biomed. Eng. 7, 327–360 (2005). doi: 10.1146/annurev.bioeng.6.040803.140103 Google Scholar
  14. 14.
    Durand, D.M.: Electric Stimulation of Excitable Tissue, Ch. 17. In: Bronzino, J.D. (ed.), The Biomedical Engineering Handbook. 2nd edn., CRC Press LLC, Boca Raton, FL (2000).Google Scholar
  15. 15.
    Gaunt, R.A. and Prochazka, A.: Control of urinary bladder function with devices: successes and failures. Prog. Brain. Res. 152, 163–194 (2006) doi: 10.1016/S0079-6123(05)52011-9 Google Scholar
  16. 16.
    Dobelle, W.H., Mladejovsky, M.G. and Girvin, J.P.: Artificial vision for the blind: electrical stimulation of visual cortex offers hope for a functional prosthesis. Science 183, 440–444 (1974)Google Scholar
  17. 17.
    Abell, T. et al. Gastric electrical stimulation for medically refractory gastroparesis. Gastroenterology 125, 421–428 (2003). Google Scholar
  18. 18.
    O’Doherty, J. E. et al. Active tactile exploration using a brain-machine-brain interface. Nature 479, 228–231 (2011). doi: 10.1038/nature10489, nature10489 [pii]Google Scholar
  19. 19.
    Van den Brand, R., et al.: Restoring voluntary control of locomotion after paralyzing spinal cord injury. Science 336, 1182–1185 (2012) doi: 10.1126/science.1217416, 336/6085/1182 [pii]Google Scholar
  20. 20.
    Hirst, G.D. and Edwards, F.R.: Sympathetic neuroeffector transmission in arteries and arterioles. Physiol. Rev. 69, 546–604 (1989)Google Scholar
  21. 21.
    Hodgkin, A.L., Huxley, A.F. and Katz, B.: Measurement of current-voltage relations in the membrane of the giant axon of Loligo. J. Physiol. 116, 424–448 (1952)Google Scholar
  22. 22.
    Kuffler, S.W. and Vaughan Williams, E.M.: Small-nerve junctional potentials; the distribution of small motor nerves to frog skeletal muscle, and the membrane characteristics of the fibres they innervate. J. Physiol. 121, 289–317 (1953)Google Scholar
  23. 23.
    Hodgkin, A.L. and Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117, 500–544 (1952)Google Scholar
  24. 24.
    Skou, J.C.: Enzymatic Basis for Active Transport of Na+ and K+ across Cell Membrane. Physiol. Rev. 45, 596–617 (1965)Google Scholar
  25. 25.
    Skou, J.C.: The influence of some cations on an adenosine triphosphatase from peripheral nerves. Biochim. Biophys. Acta 23, 394–401 (1957). Google Scholar
  26. 26.
    Fonnum, F.: Glutamate: a neurotransmitter in mammalian brain. J. Neurochem. 42, 1–11 (1984)Google Scholar
  27. 27.
    Spehlmann, R.: Acetylcholine and the synaptic transmission of non-specific impulses to the visual cortex. Brain 94, 139–150 (1971).Google Scholar
  28. 28.
    Foote, S.L., Freedman, R. and Oliver, A.P.: Effects of putative neurotransmitters on neuronal activity in monkey auditory cortex. Brain. Res. 86, 229–242 (1975). 0006-8993(75)90699-X [pii]Google Scholar
  29. 29.
    Loewi, O.: Über humorale Übertragbarkeit der Herznervenwirkung. Pflügers Arch. 204, 629–640 (1924). doi: 10.1007/bf01731235 Google Scholar
  30. 30.
    Agnew, W.S., Moore, A.C., Levinson, S.R. and Raftery, M.A.: Identification of a large molecular weight peptide associated with a tetrodotoxin binding protein from the electroplax of Electrophorus electricus. Biochem. Biophys. Res. Commun. 92, 860–866 (1980). 0006-291X(80)90782-2 [pii]Google Scholar
  31. 31.
    Beneski, D.A. and Catterall, W.A.: Covalent labeling of protein components of the sodium channel with a photoactivable derivative of scorpion toxin. Proc Natl Acad Sci U S A 77, 639–643 (1980)Google Scholar
  32. 32.
    Bendahhou, S., Cummins, T.R., Tawil, R., Waxman, S.G. and Ptacek, L.J.: Activation and inactivation of the voltage-gated sodium channel: role of segment S5 revealed by a novel hyperkalaemic periodic paralysis mutation. The Journal of neuroscience: the official journal of the Society for Neuroscience 19, 4762–4771 (1999)Google Scholar
  33. 33.
    Lin, W.H., Wright, D.E., Muraro, N.I. and Baines, R.A.: Alternative splicing in the voltage-gated sodium channel DmNav regulates activation, inactivation, and persistent current. J. Neurophysiol. 102, 1994–2006 (2009).Google Scholar
  34. 34.
    Keynes, R.D. and Elinder, F.: Modelling the activation, opening, inactivation and reopening of the voltage-gated sodium channel. Proc. Biol. Sci. 265, 263–270 (1998). doi: 10.1098/rspb.1998.0291 Google Scholar
  35. 35.
    Eyzaguirre, C. and Kuffler, S.W.: Further study of soma, dendrite, and axon excitation in single neurons. The Journal of General Physiology 39, 121–153 (1955). doi: 10.1085/jgp.39.1.121 Google Scholar
  36. 36.
    Cannon, W.: Biographical Memoir: Henry Pickering Bowdich. National Academy of Sciences 17, 181–196 (1922)Google Scholar
  37. 37.
    Theunissen, F. and Miller, J.P.: Temporal encoding in nervous systems: a rigorous definition. J Comput. Neurosci. 2, 149–162 (1995)Google Scholar
  38. 38.
    Optican, L.M. and Richmond, B.J.: Temporal encoding of two-dimensional patterns by single units in primate inferior temporal cortex. III. Information theoretic analysis. J. Neurophysiol. 57, 162–178 (1987)Google Scholar
  39. 39.
    Buonomano, D.V. and Merzenich, M.M.: Temporal Information Transformed into Spatial Code by Neural Network with Realistic Properties. Science 267, 17 (1995)Google Scholar
  40. 40.
    Andersen, R.A., Essick, G.K. and Siegel, R.M.: Encoding of spatial location by posterior parietal neurons. Science 230, 456–458 (1985)Google Scholar
  41. 41.
    Hubel, D.H. and Wiesel, T.N.: Receptive fields of single neurones in the cat’s striate cortex. The Journal of Physiology 148, 574–591 (1959)Google Scholar
  42. 42.
    Henneman, E., Somjen, G. and Carpenter, D.O.: Functional Significance of Cell Size in Spinal Motoneurons. J. Neurophysiol. 28, 560–580 (1965)Google Scholar
  43. 43.
    Cope, T.C., Sokoloff, A.J., Dacko, S.M., Huot, R. and Feingold, E.: Stability of motor-unit force thresholds in the decerebrate cat. J. Neurophysiol. 78, 3077–3082 (1997)Google Scholar
  44. 44.
    Burke, R.E., et al: A HRP study of the relation between cell size and motor unit type in cat ankle extensor motoneurons. The Journal of comparative neurology 209, 17–28 (1982) doi: 10.1002/cne.902090103 Google Scholar
  45. 45.
    Ulfhake, B. and Kellerth, J.O.: Does alpha-motoneurone size correlate with motor unit type in cat triceps surae? Brain Res. 251, 201–209 (1982). 0006-8993(82)90738-7 [pii]Google Scholar
  46. 46.
    Milner-Brown, H.S., Stein, R.B. and Yemm, R.: The orderly recruitment of human motor units during voluntary isometric contractions. J. Physiol. 230, 359–370 (1973)Google Scholar
  47. 47.
    Binder, M.C., Bawa, P., Ruenzel, P. and Henneman, E. Does orderly recruitment of motoneurons depend on the existence of different types of motor units? Neurosci. Lett. 36, 55–58 (1983)Google Scholar
  48. 48.
    Shoham, S., O’Connor, D.H. and Segev, R. How silent is the brain: is there a “dark matter” problem in neuroscience? Journal of Comparative Physiology a-Neuroethology Sensory Neural and Behavioral Physiology 192, 777–784 (2006). doi: 10.1007/s00359-006-0117-6 Google Scholar
  49. 49.
    Carrascal, L., Nieto-Gonzalez, J.L., Torres, B. and Nunez-Abades, P.: Diminution of voltage threshold plays a key role in determining recruitment of oculomotor nucleus motoneurons during postnatal development. PLoS ONE 6, e28748 (2011) doi: 10.1371/journal.pone.0028748. PONE-D-11-20770 [pii]Google Scholar
  50. 50.
    Henneman, E., Somjen, G. and Carpenter, D.O.: Excitability and inhibitability of motoneurons of different sizes. J. Neurophysiol. 28, 599–620 (1965)Google Scholar
  51. 51.
    Burke, R.E., Walmsley, B. and Hodgson, J.A.: HRP anatomy of group Ia afferent contacts on alpha motoneurones. Brain Res 160, 347–352 (1979)Google Scholar
  52. 52.
    Burke, R.E. and Rymer, W.Z.: Relative strength of synaptic input from short-latency pathways to motor units of defined type in cat medial gastrocnemius. J. Neurophysiol. 39, 447–458 (1976)Google Scholar
  53. 53.
    Calancie, B. and Bawa, P.: Voluntary and reflexive recruitment of flexor carpi radialis motor units in humans. J. Neurophysiol. 53, 1194–1200 (1985)Google Scholar
  54. 54.
    Schmied, A., Morin, D., Vedel, J.P. and Pagni, S.: The “size principle” and synaptic effectiveness of muscle afferent projections to human extensor carpi radialis motoneurones during wrist extension. Experimental brain research. Experimentelle Hirnforschung. Experimentation cerebrale 113, 214–229 (1997)Google Scholar
  55. 55.
    Muniak, M.A., Ray, S., Hsiao, S.S., Dammann, J.F. and Bensmaia, S.J.: The neural coding of stimulus intensity: linking the population response of mechanoreceptive afferents with psychophysical behavior. The Journal of neuroscience: the official journal of the Society for Neuroscience 27, 11687–11699 (2007). doi: 10.1523/JNEUROSCI.1486-07.2007. 27/43/11687 [pii]Google Scholar
  56. 56.
    Henneman, E.: The size-principle: a deterministic output emerges from a set of probabilistic connections. The Journal of experimental biology 115, 105–112 (1985)Google Scholar
  57. 57.
    McNeal, D. R.: Analysis of a model for excitation of myelinated nerve. IEEE Trans. Biomed. Eng. 23, 329–337 (1976)Google Scholar
  58. 58.
    Llewellyn, M.E., Thompson, K.R., Deisseroth, K. and Delp, S.L.: Orderly recruitment of motor units under optical control in vivo. Nat. Med. 16, 1161–1165 (2010). doi: 10.1038/nm.2228. nm.2228 [pii]Google Scholar
  59. 59.
    Gregory, C.M. and Bickel, C.S.: Recruitment patterns in human skeletal muscle during electrical stimulation. Phys. Ther. 85, 358–364 (2005)Google Scholar
  60. 60.
    Bourbeau, D.J., Hokanson, J.A., Rubin, J.E. and Weber, D.J.: A computational model for estimating recruitment of primary afferent fibers by intraneural stimulation in the dorsal root ganglia. J. Neural. Eng. 8, 056009 (2011). doi: 10.1088/1741-2560/8/5/056009. S1741-2560(11)80621-X [pii]Google Scholar
  61. 61.
    Histed, M.H., Bonin, V. and Reid, R.C.: Direct activation of sparse, distributed populations of cortical neurons by electrical microstimulation. Neuron 63, 508–522 (2009). doi: 10.1016/j.neuron.2009.07.016 Google Scholar
  62. 62.
    Gaunt, R.A., Prochazka, A., Mushahwar, V.K., Guevremont, L. and Ellaway, P.H.: Intraspinal microstimulation excites multisegmental sensory afferents at lower stimulus levels than local alpha-motoneuron responses. Journal of Neurophysiology 96, 2995–3005 (2006) doi: 10.1152/jn.00061.2006 Google Scholar
  63. 63.
    Jankowska, E. and Roberts, W.J.: An electrophysiological demonstration of the axonal projections of single spinal interneurones in the cat. The Journal of Physiology 222, 597–622 (1972)Google Scholar
  64. 64.
    Roberts, W.J. and Smith, D.O.: Analysis of threshold currents during microstimulation of fibres in the spinal cord. Acta Physiol Scand 89, 384–394 (1973). doi: 10.1111/j.1748-716.1973.tb05533.x Google Scholar
  65. 65.
    Nowak, L.G. and Bullier, J.: Axons, but not cell bodies, are activated by electrical stimulation in cortical gray matter. II. Evidence from selective inactivation of cell bodies and axon initial segments. Experimental brain research. Experimentelle Hirnforschung. Experimentation cerebrale 118, 489–500 (1998)Google Scholar
  66. 66.
    Nowak, L.G. and Bullier, J.: Axons, but not cell bodies, are activated by electrical stimulation in cortical gray matter. I. Evidence from chronaxie measurements. Experimental brain research. Experimentelle Hirnforschung. Experimentation cerebrale 118, 477–488 (1998)Google Scholar
  67. 67.
    Tehovnik, E. J. and Slocum, W. M. Two-photon imaging and the activation of cortical neurons. Neuroscience (2013). doi: 10.1016/j.neuroscience.2013.04.022 Google Scholar
  68. 68.
    Eccles, J.C.: The central action of antidromic impulses in motor nerve fibres. Pflugers Arch 260, 385–415 (1955)Google Scholar
  69. 69.
    Malmivuo, J. and Plonsey, R.: Bioelectromagnetism: Principles and Applications of Bioelectric and Biomagnetic Fields. Oxford University Press, New York, NY (1995)Google Scholar
  70. 70.
    Basser, P.J. and Roth, B.J.: New currents in electrical stimulation of excitable tissues. Annu. Rev. Biomed. Eng. 2, 377–397 (2000). doi: 10.1146/annurev.bioeng.2.1.377 Google Scholar
  71. 71.
    Mortimer, J. and Bhadra, N.: Peripheral nerve and muscle stimulation. In: Horch, K., Dhillon, G.S. (eds.) Neuroprosthetics: theory and practice. Singapore: World Scientific Publishing Co. Pte. Ltd. (2004)Google Scholar
  72. 72.
    Al-Majed, A.A., Neumann, C.M., Brushart, T.M. and Gordon, T.: Brief electrical stimulation promotes the speed and accuracy of motor axonal regeneration. The Journal of neuroscience: the official journal of the Society for Neuroscience 20, 2602–2608 (2000)Google Scholar
  73. 73.
    Protas, E.J., et al.: Supported treadmill ambulation training after spinal cord injury: a pilot study. Arch. Phys. Med. Rehabil. 82, 825–831 (2001). doi: 10.1053/apmr.2001.23198. S0003-9993(01)33942-4 [pii]Google Scholar
  74. 74.
    Colombo, G., Joerg, M., Schreier, R. and Dietz, V.: Treadmill training of paraplegic patients using a robotic orthosis. J. Rehabil. Res. Dev. 37(6), 693–700 (2000)Google Scholar
  75. 75.
    Field-Fote, E.C.: Combined use of body weight support, functional electric stimulation, and treadmill training to improve walking ability in individuals with chronic incomplete spinal cord injury. Arch. Phys. Med. Rehabil. 82, 818–824 (2001)Google Scholar
  76. 76.
    Ming, G., Henley, J., Tessier-Lavigne, M., Song, H. and Poo, M.: Electrical activity modulates growth cone guidance by diffusible factors. Neuron 29, 441–452 (2001). S0896-6273(01)00217-3 [pii]Google Scholar
  77. 77.
    Lindholm, D.: Role of neurotrophins in preventing glutamate induced neuronal cell death. J. Neurol. 242, S16–18 (1994)Google Scholar
  78. 78.
    Morrison, M.E. and Mason, C.A. Granule neuron regulation of Purkinje cell development: striking a balance between neurotrophin and glutamate signaling. The Journal of neuroscience: the official journal of the Society for Neuroscience 18, 3563–3573 (1998)Google Scholar
  79. 79.
    Al-Majed, A.A., Brushart, T.M. and Gordon, T: Electrical stimulation accelerates and increases expression of BDNF and trkB mRNA in regenerating rat femoral motoneurons. Eur. J. Neurosci. 12, 4381–4390 (2000). ejn1341 [pii]Google Scholar
  80. 80.
    Muir, G.D. and Steeves, J.D.: Sensorimotor stimulation to improve locomotor recovery after spinal cord injury. Trends Neurosci. 20, 72–77 (1997). S0166-2236(96)10068-0 [pii]Google Scholar
  81. 81.
    McCaig, C.D., Rajnicek, A.M., Song, B. and Zhao, M.: Has electrical growth cone guidance found its potential? Trends Neurosci. 25, 354–359 (2002). S0166-2236(02)02174-4 [pii]Google Scholar
  82. 82.
    Shi, R. and Borgens, R.B.: Three-dimensional gradients of voltage during development of the nervous system as invisible coordinates for the establishment of embryonic pattern. Dev. Dyn. 202, 101–114 (1995). doi: 10.1002/aja.1002020202.Google Scholar
  83. 83.
    Cogan, S. F.: Neural Stimulation and Recording Electrodes. Annu. Rev. Biomed. Eng. 10, 275–309 (2008). doi: 10.1146/annurev.bioeng.10.061807.160518 Google Scholar
  84. 84.
    Venugopalan, S.: Kinetics of Hydrogen-Evolution Reaction on Lead and Lead-Alloy Electrodes in Sulfuric-Acid Electrolyte with Phosphoric-Acid and Antimony Additives. J. Power Sources 48, 371–384 (1994)Google Scholar
  85. 85.
    Merrill, D. R., Bikson, M. and Jefferys, J. G.: Electrical stimulation of excitable tissue: design of efficacious and safe protocols. J. Neurosci. Methods 141, 171–198 (2005). doi: 10.1016/j.jneumeth.2004.10.020, S0165-0270(04)00382-6 [pii]Google Scholar
  86. 86.
    Bard, A.J., and Faulkner, L.R.: Electrochemical Methods: Fundamentals and Applications. 2nd. edn. John Wiley and Sons, Inc., New York, NY (1980)Google Scholar
  87. 87.
    Rand, D.A.J., and Woods, R.: The nature of adsorbed oxygen on rhodium, palladium and gold electrodes. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 31, 29–38 (1971). Google Scholar
  88. 88.
    Conway, B.E., and Mozota, J.: Surface and bulk processes at oxidized iridium electrodes—II. Conductivity-switched behaviour of thick oxide films. Electrochim. Acta 28, 9–16 (1983). Google Scholar
  89. 89.
    Gileadi, E., Kirowa-Eisner, E. and Penciner, J. Interfacial Electrochemistry - An Experimental Approach. Addison-Wesley Publishing Company Inc., Reading, MA (1975)Google Scholar
  90. 90.
    Grupioni, A.A.F., Arashiro, E. and Lassali, T.A.F.: Voltammetric characterization of an iridium oxide-based system: the pseudocapacitive nature of the Ir0.3Mn0.7O2 electrode. Electrochim. Acta. 48, 407–418 (2002). Google Scholar
  91. 91.
    Rose, T.L. and Robblee, L.S.: Electrical stimulation with Pt electrodes. VIII. Electrochemically safe charge injection limits with 0.2 ms pulses (neuronal application). Biomedical Engineering, IEEE Transactions on 37, 1118–1120 (1990). doi: 10.1109/10.61038 Google Scholar
  92. 92.
    McCreery, D., Pikov, V. and Troyk, P.R.: Neuronal loss due to prolonged controlled-current stimulation with chronically implanted microelectrodes in the cat cerebral cortex. Journal of Neural Engineering 7, 036005 (2010). doi: 10.1088/1741-2560/7/3/036005 Google Scholar
  93. 93.
    Cogan, S.F., Guzelian, A.A., Agnew, W.F., Yuen, T.G. and McCreery, D.B.: Over-pulsing degrades activated iridium oxide films used for intracortical neural stimulation. Journal of Neuroscience Methods 137, 141–150 (2004). doi: 10.1016/j.jneumeth.2004.02.019 Google Scholar
  94. 94.
    Brummer, S.B. and Turner, M.J.: Electrochemical Considerations for Safe Electrical Stimulation of the Nervous System with Platinum Electrodes. Biomedical Engineering, IEEE Transactions on BME-24, 59–63 (1977). doi: 10.1109/tbme.1977.326218 Google Scholar
  95. 95.
    Short, G.D. and Bishop, E.: Concentration Overpotentials on Antimony Electrodes in Differential Electrolytic Potentiometry. Analytical Chemistry 37, 962–967 (1965). doi: 10.1021/ac60227a003 Google Scholar
  96. 96.
    Wang, Q., Millard, D.C., Zheng, H.J. and Stanley, G.B.: Voltage-sensitive dye imaging reveals improved topographic activation of cortex in response to manipulation of thalamic microstimulation parameters. Journal of Neural Engineering 9, 026008 (2012). doi: 10.1088/1741-2560/9/2/026008 Google Scholar
  97. 97.
    McIntyre, C.C. and Grill, W.M.: Selective microstimulation of central nervous system neurons. Ann Biomed Eng 28, 219–233 (2000)Google Scholar
  98. 98.
    Elwassif, M.M., Datta, A., Rahman, A. and Bikson, M.: Temperature control at DBS electrodes using a heat sink: experimentally validated FEM model of DBS lead architecture. J. Neural Eng. 9, 046009 (2012)Google Scholar
  99. 99.
    Mortimer, J.T., Shealy, C.N. and Wheeler, C.: Experimental nondestructive electrical stimulation of the brain and spinal cord. J. Neurosurg. 32, 553–559 (1970). doi: 10.3171/jns.1970.32.5.0553 Google Scholar
  100. 100.
    Pudenz, R.H., Bullara, L.A., Jacques, S. and Hambrecht, F.T.: Electrical stimulation of the brain. III. The neural damage model. Surg. Neurol. 4, 389–400 (1975)Google Scholar
  101. 101.
    Pudenz, R.H., Bullara, L.A., Dru, D. and Talalla, A.: Electrical stimulation of the brain. II. Effects on the blood-brain barrier. Surg. Neurol. 4, 265–270 (1975)Google Scholar
  102. 102.
    Yuen, T.G., Agnew, W.F., Bullara, L.A., Jacques, S. and McCreery, D.B.: Histological evaluation of neural damage from electrical stimulation: considerations for the selection of parameters for clinical application. Neurosurgery 9, 292–299 (1981)Google Scholar
  103. 103.
    Shannon, R.V.: A model of safe levels for electrical stimulation. IEEE Trans. Biomed. Eng. 39, 424–426 (1992). doi: 10.1109/10.126616 Google Scholar
  104. 104.
    Mccreery, D.B., Agnew, W.F., Yuen, T.G. H. and Bullara, L.: Charge-Density and Charge Per Phase as Cofactors in Neural Injury Induced by Electrical-Stimulation. IEEE Trans. Biomed. Eng. 37, 996–1001 (1990). doi: 10.1109/10.102812 Google Scholar
  105. 105.
    Agnew, W.F., McCreery, D.B., Yuen, T.G. and Bullara, L.A.: Histologic and physiologic evaluation of electrically stimulated peripheral nerve: considerations for the selection of parameters. Ann. Biomed. Eng. 17, 39–60 (1989)Google Scholar
  106. 106.
    Bhargava, A.: Long-term effects of quasi-trapezoidal pulses on the structure and function of sacral anterior roots. Dissertation, Case Western Reserve University (1993)Google Scholar
  107. 107.
    Townsend, G., Peloquin, P., Kloosterman, F., Hetke, J.F. and Leung, L.S.: Recording and marking with silicon multichannel electrodes. Brain Res Brain Res Protoc 9, 122–129 (2002). S1385299X02001393 [pii]Google Scholar
  108. 108.
    Schaldach, M., Hubmann, M., Weikl, A. and Hardt, R.: Sputter-Deposited TiN Electrode Coatings for Superior Sensing and Pacing Performance. PACE 13, 1891–1895 (1990)Google Scholar
  109. 109.
    Negi, S., Bhandari, R. and Solzbacher, F.: A novel technique for increasing charge injection capacity of neural electrodes for efficacious and safe neural stimulation. In: Engineering in Medicine and Biology Society (EMBC), 2012 Annual International Conference of the IEEE, 5142–5145, San Diego 28 August–1 September (2012)Google Scholar
  110. 110.
    Tykocinski, M., Duan, Y., Tabor, B. and Cowan, R.S.: Chronic electrical stimulation of the auditory nerve using high surface area (HiQ) platinum electrodes. Hearing research 159, 53–68 (2001)Google Scholar
  111. 111.
    Del Bufalo, A. G., Schlaepfer, J., Fromer, M. and Kappenberger, L.: Acute and long-term ventricular stimulation thresholds with a new, iridium oxide-coated electrode. Pacing Clin Electrophysiol 16, 1240–1244 (1993)Google Scholar
  112. 112.
    Gradaus, R. et al.: Fractally coated defibrillation electrodes: is an improvement in defibrillation threshold possible? Europace 2, 154–159 (2000). doi: 10.1053/eupc.1999.0084 Google Scholar
  113. 113.
    Frohlig, G. et al.: A fractally coated, 1.3 mm2 high impedance pacing electrode. Pacing Clin Electrophysiol 21, 1239–1246 (1998)Google Scholar
  114. 114.
    Lau, C. et al.: Intraoperative study of polarization and evoked response signals in different endocardial electrode designs. Pacing Clin Electrophysiol 24, 1055–1060 (2001)Google Scholar
  115. 115.
    Mond, H. et al.: The porous titanium steroid eluting electrode: a double blind study assessing the stimulation threshold effects of steroid. Pacing Clin Electrophysiol 11, 214–219 (1988)Google Scholar
  116. 116.
    Norlin, A., Pan, J. and Leygraf, C.: Investigation of Electrochemical Behavior of Stimulation/Sensing Materials for Pacemaker Electrode Applications: I. Pt, Ti, and TiN Coated Electrodes. J. Electrochem. Soc. 152, J7–J15 (2005). doi: 10.1149/1.1842092 Google Scholar
  117. 117.
    De Levie, R. The Influence of Surface Roughness of Solid Electrodes on Electrochemical Measurements. Electrochim. Acta 10, 113–130 (1965)Google Scholar
  118. 118.
    Song, H., Jung, Y., Lee, K. and Dao, L.: Electrochemical impedance spectroscopy of porous electrodes: the effect of pore size distribution. Electrochim. Acta 44, 3513–3519 (1999)Google Scholar
  119. 119.
    Santini, M., De Seta, F.: Do Steroid-Eluting Electrodes Really Have Better Performance Than Other State-of-the-Art Designs? The Italian Multicenter Study Group on Low Output Stimulation. Pacing. Clin. Electrophysiol. 16, 722–728 (1993).Google Scholar
  120. 120.
    Johnson, M. D., Otto, K. J. and Kipke, D. R. Repeated Voltage Biasing Improves Unit Recordings by Reducing Resistive Tissue Impedances. IEEE Trans. Neural Syst. Rehabil. Eng. 13, 160–165 (2005). doi: 10.1109/TNSRE.2005.847373 Google Scholar
  121. 121.
    Prasad, A. and Sanchez, J.C.: Quantifying long-term microelectrode array functionality using chronic in vivo impedance testing. J. Neural Eng. 9, 026028 (2012). doi: 10.1088/1741-2560/9/2/026028 Google Scholar
  122. 122.
    Williams, J.C., Hippensteel, J.A., Dilgen, J., Shain, W. and Kipke, D.R.: Complex impedance spectroscopy for monitoring tissue responses to inserted neural implants. J. Neural Eng. 4, 410–423 (2007)Google Scholar
  123. 123.
    Lempka, S.F., Miocinovic, S., Johnson, M.D., Vitek, J. and McIntyre, C.C.: In vivo impedance spectroscopy of deep brain stimulation electrodes. Journal of Neural Engineering 6, 046001 (2009). doi: 10.1088/1741-2560/6/4/046001 Google Scholar
  124. 124.
    Gaylor, J.M. et al.: Cochlear implantation in adults: a systematic review and meta-analysis. JAMA Otolaryngol Head Neck Surg 139, 265–272 (2013). doi: 10.1001/jamaoto.2013.1744 Google Scholar
  125. 125.
    Gustafsson, B. and Jankowska, E.: Direct and indirect activation of nerve cells by electrical pulses applied extracellularly. The Journal of Physiology 258, 33–61 (1976)Google Scholar
  126. 126.
    Wei, X.F., and Grill, W.M.: Analysis of high-perimeter planar electrodes for efficient neural stimulation. Front. Neuroengineering 2, 15 (2009). doi: 10.3389/neuro.16.015.2009 Google Scholar
  127. 127.
    Han, J. et al.: Elimination of nanovoids induced during electroforming of metallic nanostamps with high-aspect-ratio nanostructures by the pulse reverse current electroforming process. Journal of Micromechanics and Microengineering 22, 065004 (2012). doi: 10.1088/0960-1317/22/6/065004 Google Scholar
  128. 128.
    Babb, T.L., and Kupfer, W.: Phagocytic and metabolic reactions to chronically implanted metal brain electrodes. Exp. Neurol. 86, 171–182 (1984). Google Scholar
  129. 129.
    Miller, L., and Zhou, X.: Poly(N-methylpyrrolylium) poly(styrenesulfonate) - a conductive, electrically switchable cation exchanger that cathodically binds and anodically releases dopamine. Macromolecules 20, 1594–1597 (1987)Google Scholar
  130. 130.
    Dymond, A.M., Kaechele, L.E., Jurist, J.M. and Crandall, P.H.: Brain tissue reaction to some chronically implanted metals. J. Neurosurg. 33, 574–580 (1970). doi: 10.3171/jns.1970.33.5.0574 Google Scholar
  131. 131.
    Fischer, G., Sayre, G. and Bickford, R.: Histological Changes in the Cat’s Brain after Introduction of Metallic and Plastic-Coated Wire. In: Sheer, D.E. (ed.) Electrical stimulation of the brain, pp. 55–59. University of Texas Press, Austin, TX (1961)Google Scholar
  132. 132.
    Sawyer, P., and Srinivasan, S.:Synthetics and Implants. In: Ray, C.D. (ed.), Medical engineering, pp. 1099–1100. Year Book Medical Publishers, Chicago, IL (1974)Google Scholar
  133. 133.
    Kozai, T.D.Y., et al.: Ultrasmall implantable composite microelectrodes with bioactive surfaces for chronic neural interfaces. Nat. Mater. 11, 1065–1073 (2012). doi: 10.1038/nmat3468 Google Scholar
  134. 134.
    Kozai, T.D., et al.: Reduction of neurovascular damage resulting from microelectrode insertion into the cerebral cortex using in vivo two-photon mapping. J. Neural Eng. 7, 046011 (2010) doi: 10.1088/1741-2560/7/4/046011. S1741-2560(10)46092-9 [pii]Google Scholar
  135. 135.
    Beebe, X. and Rose, T.L.: Charge injection limits of activated iridium oxide electrodes with 0.2 ms pulses in bicarbonate buffered saline. IEEE Trans. Biomed. Eng. 35, 494–495 (1988). doi: 10.1109/10.2122 Google Scholar
  136. 136.
    Blau, A., et al.: Characterization and optimization of microelectrode arrays for in vivo nerve signal recording and stimulation. Biosens. Bioelectron. 12, 883–892 (1977). Google Scholar
  137. 137.
    Johnson, M.D., Langhals, N.B. and Kipke, D.R.: Neural interface dynamics following insertion of hydrous iridium oxide microelectrode arrays. Conf. Proc. IEEE Eng. Med. Biol. Soc. 1, 3178–3181 (2006). doi: 10.1109/IEMBS.2006.260521 Google Scholar
  138. 138.
    Meyer, R.D., Cogan, S.F., Nguyen, T.H., and Rauh, R.D.: Electrodeposited iridium oxide for neural stimulation and recording electrodes. IEEE transactions on neural systems and rehabilitation engineering: a publication of the IEEE Engineering in Medicine and Biology Society 9, 2–11 (2001). doi: 10.1109/7333.918271 Google Scholar
  139. 139.
    Mcintyre, J.D.E., Peck, W.F., and Nakahara, S.: Oxidation-State Changes and Structure of Electrochromic Iridium Oxide-Films. J. Electrochem. Soc. 127, 1264–1268 (1980). doi: 10.1149/1.2129868 Google Scholar
  140. 140.
    Cogan, S.F. et al.: Sputtered Iridium Oxide Films for Neural Stimulation Electrodes. Journal of Biomedical Materials Research Part B-Applied Biomaterials 89B, 353–361(2009). doi: 10.1002/Jbm.B.31223 Google Scholar
  141. 141.
    Klein, J.D., Clauson, S.L. and Cogan, S.F.: Reactive Iro2 Sputtering in Reducing Oxidizing Atmospheres. J. Mater. Res. 10, 328–333 (1995). doi: 10.1557/Jmr.1995.0328 Google Scholar
  142. 142.
    Negi, S., Bhandari, R., Rieth, L., Van Wagenen, R. and Solzbacher, F.: Neural electrode degradation from continuous electrical stimulation: Comparison of sputtered and activated iridium oxide. J. Neurosci. Methods 186, 8–17 (2010). doi: 10.1016/j.jneumeth.2009.10.016 Google Scholar
  143. 143.
    Klein, J.D., Clauson, S.L. and Cogan, S.F.: Morphology and charge capacity of sputtered iridium oxide films. Journal of Vacuum Science and Technology A: Vacuum, Surfaces, and Films 7, 3043–3047 (1989)Google Scholar
  144. 144.
    Desai, S.A., Rolston, J.D., Guo, L. and Potter, S.M.: Improving impedance of implantable microwire multi-electrode arrays by ultrasonic electroplating of durable platinum black. Front Neuroeng 3, 5 (2010). doi: 10.3389/fneng.2010.00005 Google Scholar
  145. 145.
    Cui, X. and Martin, D.C.: Fuzzy gold electrodes for lowering impedance and improving adhesion with electrodeposited conducting polymer films. Sensors and Actuators A: Physical 103, 384–394 (2003). Google Scholar
  146. 146.
    Kim, J.H., Kang, G., Nam, Y. and Choi, Y.K.: Surface-modified microelectrode array with flake nanostructure for neural recording and stimulation. Nanotechnology 21(8), 85303 (2010). doi: 10.1088/0957-4484/21/8/085303 Google Scholar
  147. 147.
    Park, S., Song, Y.J., Boo, H. and Chung, T.D.: Nanoporous Pt Microelectrode for Neural Stimulation and Recording: In Vitro Characterization. J. Phys. Chem. C 114, 8721–8726 (2010). doi: 10.1021/Jp911256h Google Scholar
  148. 148.
    Cogan, S.F., Troyk, P.R., Ehrlich, J., and Plante, T.D.: In vitro comparison of the charge-injection limits of activated iridium oxide (AIROF) and platinum-iridium microelectrodes. Biomedical Engineering, IEEE Transactions on 52, 1612–1614 (2005). doi: 10.1109/tbme.2005.851503 Google Scholar
  149. 149.
    Johnson, M.D., Kao, O.E. and Kipke, D.R.: Spatiotemporal pH dynamics following insertion of neural microelectrode arrays. J Neurosci Methods 160, 276–287 (2007). doi: 10.1016/j.jneumeth.2006.09.023 Google Scholar
  150. 150.
    Johnson, M.D., Franklin, R.K., Gibson, M.D., Brown, R.B. and Kipke, D.R.: Implantable microelectrode arrays for simultaneous electrophysiological and neurochemical recordings. J. Neurosci. Methods 174, 62–70 (2008). doi: 10.1016/j.jneumeth.2008.06.036, S0165-0270(08)00391-9 [pii]Google Scholar
  151. 151.
    McCreery, D.B., Agnew, W.F., Yuen, T.G. and Bullara, L.A.: Comparison of neural damage induced by electrical stimulation with faradaic and capacitor electrodes. Ann. Biomed. Eng. 16, 463–481 (1988)Google Scholar
  152. 152.
    Rose, T.L., Kelliher, E.M., and Robblee, L.S.: Assessment of capacitor electrodes for intracortical neural stimulation. J. Neurosci. Methods 12, 181–193 (1985)Google Scholar
  153. 153.
    Guyton, D.L., and Hambrecht, F.T.: Capacitor Electrode Stimulates Nerve or Muscle without Oxidation-Reduction Reactions. Science 181 (1973). 74–76, doi: 10.1126/science.181.4094.74 Google Scholar
  154. 154.
    Chouard, C.H., and Pialoux, P.: Biocompatibility of Cochlear Implants. Bull. Acad. Natl. Med. 179(3), 549–555 (1995)Google Scholar
  155. 155.
    Weiland, J.D., Anderson, D.J. and Humayun, M.S.: In vitro electrical properties for iridium oxide versus titanium nitride stimulating electrodes. Biomedical Engineering, IEEE Transactions 49, 1574–1579 (2002). doi: 10.1109/tbme.2002.805487 Google Scholar
  156. 156.
    Schmidt, E.M., Hambrecht, F.T. and McIntosh, J.S.: Intracortical capacitor electrodes: preliminary evaluation. J. Neurosci. Methods 5, 33–39 (1982). doi: 10.1016/0165-0270(82)90048-6 Google Scholar
  157. 157.
    Fairbrother, F.: The Chemistry of Niobium and Tantalum, pp. 1–28. Elsevier Publishing Company, Amsterdam (1967)Google Scholar
  158. 158.
    Nashed, R., Hassan, W.M., Ismail, Y. and Allam, N.K.: Unravelling the interplay of crystal structure and electronic band structure of tantalum oxide (Ta2O5). Phys. Chem. Chem. Phys. 15, 1352–1357 (2013). doi: 10.1039/c2cp43492j Google Scholar
  159. 159.
    Posey, F.A. and Morozumi, T.: Theory of Potentiostatic and Galvanostatic Charging of the Double Layer in Porous Electrodes. J. Electrochem. Soc. 113, 176–184 (1966) doi: 10.1149/1.2423897 Google Scholar
  160. 160.
    Goldberg, I.B. and Bard, A.J.: Resistive effects in thin electrochemical cells: Digital simulations of current and potential steps in thin layer electrochemical cells. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 38, 313–322 (1972). Google Scholar
  161. 161.
    Schoen, I., and Fromherz, P.: Extracellular stimulation of mammalian neurons through repetitive activation of Na+ channels by weak capacitive currents on a silicon chip. J. Neurophysiol. 100, 346–357 (2008). doi: 10.1152/jn.90287.2008, 90287.2008 [pii]Google Scholar
  162. 162.
    Long, T.C., Saleh, N., Tilton, R.D., Lowry, G.V. and Veronesi, B. Titanium dioxide (P25) produces reactive oxygen species in immortalized brain microglia (BV2): implications for nanoparticle neurotoxicity. Environ. Sci. Technol. 40, 4346–4352 (2006)Google Scholar
  163. 163.
    Fromherz, P. and Stett, A. Silicon-Neuron Junction: Capacitive Stimulation of an Individual Neuron on a Silicon Chip. Phys. Rev. Lett. 75, 1670–1673 (1995)Google Scholar
  164. 164.
    Fromherz, P., Offenhausser, A., Vetter, T. and Weis, J.: A neuron-silicon junction: a Retzius cell of the leech on an insulated-gate field-effect transistor. Science 252, 1290–1293 (1991)Google Scholar
  165. 165.
    Fromherz, P. Electrical interfacing of nerve cells and semiconductor chips. Chemphyschem: a European journal of chemical physics and physical chemistry 3, 276–284 (2002). doi:10.1002/1439-7641(20020315)3:3<276::AID-CPHC276>3.0.CO;2-AGoogle Scholar
  166. 166.
    Hammerle, H., et al.: Biostability of micro-photodiode arrays for subretinal implantation. Biomaterials 23, 797–804 (2002)Google Scholar
  167. 167.
    Janders, M., Egert, U., Stelzle, M. and Nisch, W.: Novel thin film titanium nitride micro-electrodes with excellent charge transfer capability for cell stimulation and sensing applications. In Engineering in Medicine and Biology Society, 1996. Bridging Disciplines for Biomedicine. Proceedings of the 18th Annual International Conference of the IEEE 241, 245–247 (1996)Google Scholar
  168. 168.
    Kress, H., et al.: Cell stimulation with optically manipulated microsources. Nat. Methods 6, 905–909 (2009). doi: 10.1038/nmeth.1400 Google Scholar
  169. 169.
    Hai, A., Shappir, J. and Spira, M.E.: Long-term, multisite, parallel, in-cell recording and stimulation by an array of extracellular microelectrodes. J. Neurophysiol. 104, 559–568 (2010). doi: 10.1152/jn.00265.2010 Google Scholar
  170. 170.
    Hai, A. et al.: Changing gears from chemical adhesion of cells to flat substrata toward engulfment of micro-protrusions by active mechanisms. J. Neural Eng. 6, 066009 (2009). doi: 10.1088/1741-2560/6/6/066009 Google Scholar
  171. 171.
    Braeken, D., et al.: Local electrical stimulation of single adherent cells using three-dimensional electrode arrays with small interelectrode distances. Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference 2009, 2756–2759 (2009). doi: 10.1109/IEMBS.2009.5333871 Google Scholar
  172. 172.
    Hai, A. and Spira, M.E.: On-chip electroporation, membrane repair dynamics and transient in-cell recordings by arrays of gold mushroom-shaped microelectrodes. Lab. Chip 12, 2865–2873 (2012). doi: 10.1039/c2lc40091j Google Scholar
  173. 173.
    Xie, C., Lin, Z., Hanson, L., Cui, Y. and Cui, B.: Intracellular recording of action potentials by nanopillar electroporation. Nat. Nanotechnol. 7, 185–190 (2012). doi: 10.1038/nnano.2012.8 Google Scholar
  174. 174.
    Hai, A., Shappir, J. and Spira, M.E.: In-cell recordings by extracellular microelectrodes. Nature methods 7 (2010). 200–202, doi: 10.1038/nmeth.1420 Google Scholar
  175. 175.
    Huys, R., et al.: Single-cell recording and stimulation with a 16k micro-nail electrode array integrated on a 0.18 mum CMOS chip. Lab. Chip 12, 1274–1280 (2012). doi: 10.1039/c2lc21037a Google Scholar
  176. 176.
    Robinson, J.T., et al.: Vertical nanowire electrode arrays as a scalable platform for intracellular interfacing to neuronal circuits. Nat. Nanotechnol. 7, 180–184 (2012). doi: 10.1038/nnano.2011.249, nnano.2011.249 [pii]Google Scholar
  177. 177.
    Ciofani, G., et al.: Enhancement of neurite outgrowth in neuronal-like cells following boron nitride nanotube-mediated stimulation. ACS Nano 4, 6267–6277 (2010). doi: 10.1021/nn101985a Google Scholar
  178. 178.
    Bredas, J. and Street, G.: Polarons, Bipolarons, and Solitons in Conducting Polymers. Acc. Chem. Res. 18, 309–315 (1985)Google Scholar
  179. 179.
    Svirskis, D., Travas-Sejdic, J., Rodgers, A. and Garg, S. Electrochemically controlled drug delivery based on intrinsically conducting polymers. J. Control. Release 146, 6–15 (2010). doi: 10.1016/j.jconrel.2010.03.023 Google Scholar
  180. 180.
    Green, R. A., Lovell, N. H., Wallace, G. G. and Poole-Warren, L. A. Conducting polymers for neural interfaces: Challenges in developing an effective long-term implant. Biomaterials 29, 3393–3399 (2008). doi: 10.1016/j.biomaterials.2008.04.047 Google Scholar
  181. 181.
    Cui, X., Hetke, J.F., Wiler, J.A., Anderson, D.J., and Martin, D.C.: Electrochemical deposition and characterization of conducting polymer polypyrrole/PSS on multichannel neural probes. Sensors and Actuators A: Physical 93, 8–18 (2001)Google Scholar
  182. 182.
    Vernitskaya, T. and Efimov, O.: Polypyrrole: a conducting polymer; its synthesis, properties and applications. Russ. Chem. Rev. 66, 443–457 (1997)Google Scholar
  183. 183.
    Cui, X., and Martin, D.C.: Electrochemical deposition and characterization of poly (3, 4-ethylenedioxythiophene) on neural microelectrode arrays. Sensors and Actuators B: Chemical 89, 92–102 (2003)Google Scholar
  184. 184.
    Cui, X.T., and Zhou, D.D.: Poly (3,4-Ethylenedioxythiophene) for Chronic Neural Stimulation. IEEE Trans. Neural Syst. Rehabil. Eng. 15, 502–508 (2007). doi: 10.1109/TNSRE.2007.909811 Google Scholar
  185. 185.
    Wilks, S., Richardson-Burns, S. M., Hendricks, J. L., Martin, D. C. and Otto, K. J.: Poly(3,4-ethylene dioxythiophene) (PEDOT) as a micro-neural interface material for electrostimulation. Front. Neuroengineering 2, 7 (2009). doi: 10.3389/neuro.16.007.2009 Google Scholar
  186. 186.
    Xiao, Y. et al.: Electrochemical polymerization of poly (hydroxymethylated-3, 4-ethylenedioxythiophene) (PEDOT-MeOH) on multichannel neural probes. Sensors and Actuators B: Chemical 99, 437–443 (2004)Google Scholar
  187. 187.
    Xiao, Y., Cui, X. and Martin, D.C.: Electrochemical polymerization and properties of PEDOT/S-EDOT on neural microelectrode arrays. J. Electroanal. Chem. 573, 43–48 (2004)Google Scholar
  188. 188.
    Kotwal, A., and Schmidt, C.E.: Electrical stimulation alters protein adsorption and nerve cell interactions with electrically conducting biomaterials. Biomaterials 22, 1055–1064 (2001)Google Scholar
  189. 189.
    Schmidt, C.E., Shastri, V.R., Vacanti, J.P. and Langer, R.: Stimulation of neurite outgrowth using an electrically conducting polymer. Proc. Natl. Acad. Sci. U. S. A. 94, 8948–8953 (1997)Google Scholar
  190. 190.
    Thaning, E.M., Asplund, M.L.M., Nyberg, T.A., Inganäs, O.W., and von Holst, H.: Stability of poly(3,4-ethylene dioxythiophene) materials intended for implants. Journal of Biomedical Materials Research Part B: Applied Biomaterials 93B, 407–415 (2010). doi: 10.1002/jbm.b.31597 Google Scholar
  191. 191.
    Soforo, E., et al.: Induction of systemic lupus erythematosus with tumor necrosis factor blockers. J Rheumatol 37, 204–205 (2010). doi: 10.3899/jrheum.081312, 37/1/204 [pii]Google Scholar
  192. 192.
    Yamato, H., Ohwa, M. and Wernet, W.: Stability of polypyrrole and poly(3,4-ethylenedioxythiophene) for biosensor application. J. Electroanal. Chem. 397, 163–170 (1995). doi: 10.1016/0022-0728(95)04156-8 Google Scholar
  193. 193.
    Green, R., Baek, S., Poole-Warren, L. and Martens, P.: Conducting polymer-hydrogels for medical electrode applications. Sci Technol Adv Mater. 11, 014107 (2010)Google Scholar
  194. 194.
    Hardy, J.G., Lee, J.Y., and Schmidt, C.E.: Biomimetic conducting polymer-based tissue scaffolds. Curr. Opin. Biotechnol. 24,847–854 (2013). doi: 10.1016/j.copbio.2013.03.011 Google Scholar
  195. 195.
    Li, C., Sun, C., Chen, W., and Pan, L.: Electrochemical thin film deposition of polypyrrole on different substrates. Surf. Coat. Technol. 198, 474–477 (2005)Google Scholar
  196. 196.
    Fonner, J. M. et al. Biocompatibility implications of polypyrrole synthesis techniques. Biomed Mater 3, 034124 (2008). doi: 10.1088/1748-6041/3/3/034124 Google Scholar
  197. 197.
    Baker, C., Qiu, Y., and Reynolds, J.: Electrochemically Induced Charge and Mass Transport In Polypyrrole/Poly(styrenesulfonate) Molecular Composites. J. Phys. Chem. 95, 4446–4452 (1991)Google Scholar
  198. 198.
    Ludwig, K.A., et al.: Poly (3, 4-ethylenedioxythiophene) (PEDOT) polymer coatings facilitate smaller neural recording electrodes. J. Neural Eng. 8, 014001 (2011)Google Scholar
  199. 199.
    Ludwig, K.A., Uram, J.D., Yang, J., Martin, D.C., and Kipke, D.R.: Chronic neural recordings using silicon microelectrode arrays electrochemically deposited with a poly(3,4-ethylenedioxythiophene) (PEDOT) film. J. Neural Eng. 3, 59–70 (2006). doi: 10.1088/1741-2560/3/1/007 Google Scholar
  200. 200.
    Yang, J., and Martin, D.C.: Microporous conducting polymers on neural microelectrode arrays. Sensors and Actuators A: Physical 113, 204–211 (2004). doi: 10.1016/j.sna.2004.02.029 Google Scholar
  201. 201.
    Yang, J. and Martin, D. C. Microporous conducting polymers on neural microelectrode arrays. Sensors and Actuators B: Chemical 101, 133–142 (2004). doi: 10.1016/j.snb.2004.02.056 Google Scholar
  202. 202.
    Venkatraman, S., et al.: In Vitro and In Vivo Evaluation of PEDOT Microelectrodes for Neural Stimulation and Recording. IEEE Trans. Neural Syst. Rehabil. Eng. 19, 307–316 (2011). doi: 10.1109/TNSRE.2011.2109399 Google Scholar
  203. 203.
    Silk, T., Hong, Q., Tamm, J., and Compton, R.: AFM studies of polypyrrole film surface morphology I. The influence of film thickness and dopant nature. Synth. Met. 93, 59–64 (1998)Google Scholar
  204. 204.
    Kim, J., Jung, J., Lee, D. and Joo, J.: Enhancement of electrical conductivity of poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate) by a change of solvents. Synthetic Metals 126, 311–316 (2002)zbMATHGoogle Scholar
  205. 205.
    Nyberg, T., Shimada, A. and Torimitsu, K. Ion conducting polymer microelectrodes for interfacing with neural networks. J. Neurosci. Methods 160, 16–25 (2007). doi: 10.1016/j.jneumeth.2006.08.008 Google Scholar
  206. 206.
    Cogan, S., et al.: Polyethylenedioxythiophene (PEDOT) coatings for neural stimulation and recording electrodes. Mater. Res. Soc. Meet., Abstr. QQ2. 7 (2007)Google Scholar
  207. 207.
    Cogan, S.F., Troyk, P.R., Ehrlich, J., Plante, T.D., and Detlefsen, D.E.: Potential-biased, asymmetric waveforms for charge-injection with activated iridium oxide (AIROF) neural stimulation electrodes. IEEE Transactions on Bio-medical Engineering 53, 327–332 (2006). doi: 10.1109/TBME.2005.862572 Google Scholar
  208. 208.
    Kelliher, E.M., and Rose, T.L.: Evaluation of Charge Injection Properties of Thin Film Redox Materials for use as Neural Stimulation Electrodes. MRS Online Proceedings Library 110, 23–27 (1987). doi: 10.1557/PROC-110-23 Google Scholar
  209. 209.
    Boretius, T., Schuettler, M. and Stieglitz, T.: On the Stability of Poly-Ethylenedioxythiopene as Coating Material for Active Neural Implants. Artif. Organs 35, 245–248 (2011)Google Scholar
  210. 210.
    Xue, F., Su, Y., and Varahramyan, K.: Modified PEDOT-PSS Conducting Polymer as S/D Electrodes for Device Performance Enhancement of P3HT TFTs. IEEE Trans. Electron Devices 52, 1982–1987 (2005)Google Scholar
  211. 211.
    Drillet, J., Dittmeyer, R., and Jüttner, K.: Activity and long-term stability of PEDOT as Pt catalyst support for the DMFC anode. J. Appl. Electrochem. 37, 1219–1226 (2007)Google Scholar
  212. 212.
    Green, R.A., et al.: Substrate dependent stability of conducting polymer coatings on medical electrodes. Biomaterials 33, 5875–5886 (2012). doi: 10.1016/j.biomaterials.2012.05.017 Google Scholar
  213. 213.
    Isaksson, J., et al.: Electronic control of Ca2+ signalling in neuronal cells using an organic electronic ion pump. Nat. Mater. 6, 673–679 (2007). doi: 10.1038/nmat1963 Google Scholar
  214. 214.
    Cui, X., et al.: Surface modification of neural recording electrodes with conducting polymer/biomolecule blends. J. Biomed. Mater. Res. 56, 261–272 (2001)Google Scholar
  215. 215.
    Cui, X., Wiler, J., Dzaman, M., Altschuler, R.A., and Martin, D.C.: In vivo studies of polypyrrole/peptide coated neural probes. Biomaterials 24, 777–787 (2003)Google Scholar
  216. 216.
    Green, R.A., Lovell, N.H., and Poole-Warren, L.A.: Impact of co-incorporating laminin peptide dopants and neurotrophic growth factors on conducting polymer properties. Acta Biomater. 6, 63–71 (2010). doi: 10.1016/j.actbio.2009.06.030 Google Scholar
  217. 217.
    Stauffer, W.R., and Cui, X.T.: Polypyrrole doped with 2 peptide sequences from laminin. Biomaterials 27, 2405–2413 (2006)Google Scholar
  218. 218.
    Collier, J.H., Camp, J.P., Hudson, T.W., and Schmidt, C.E.: Synthesis and characterization of polypyrrole-hyaluronic acid composite biomaterials for tissue engineering applications. J. Biomed. Mater. Res. 50, 574–584 (2000)Google Scholar
  219. 219.
    Asplund, M., von Holst, H., and Inganas, O.: Composite biomolecule/PEDOT materials for neural electrodes. Biointerphases 3, 83–93 (2008). doi: 10.1116/1.2998407 Google Scholar
  220. 220.
    Ru, X., et al.: Synthesis of polypyrrole nanowire network with high adenosine triphosphate release efficiency. Electrochim. Acta 56, 9887–9892 (2011)Google Scholar
  221. 221.
    Kim, D.H., Richardson-Burns, S.M., Hendricks, J.L., Sequera, C., and Martin, D.C.: Effect of Immobilized Nerve Growth Factor on Conductive Polymers: Electrical Properties and Cellular Response. Adv. Funct. Mater. 17, 79–86 (2007). doi: 10.1002/adfm.200500594 Google Scholar
  222. 222.
    Wadhwa, R., Lagenaur, C.F., and Cui, X.T.: Electrochemically controlled release of dexamethasone from conducting polymer polypyrrole coated electrode. J. Control. Release 110, 531–541 (2006)Google Scholar
  223. 223.
    Richardson, R.T., et al.: The effect of polypyrrole with incorporated neurotrophin-3 on the promotion of neurite outgrowth from auditory neurons. Biomaterials 28, 513–523 (2007)Google Scholar
  224. 224.
    Richardson, R.T., et al. Polypyrrole-coated electrodes for the delivery of charge and neurotrophins to cochlear neurons. Biomaterials 30, 2614–2624 (2009). doi: 10.1016/j.biomaterials.2009.01.015 Google Scholar
  225. 225.
    Thompson, B.C., et al.: Optimising the incorporation and release of a neurotrophic factor using conducting polypyrrole. J. Control. Release 116, 285–294 (2006). doi: 10.1016/j.jconrel.2006.09.004 Google Scholar
  226. 226.
    Thompson, B.C., Moulton, S.E., Richardson, R.T., and Wallace, G.G.: Effect of the dopant anion in polypyrrole on nerve growth and release of a neurotrophic protein. Biomaterials 32, 3822–3831 (2011). doi: 10.1016/j.biomaterials.2011.01.053 Google Scholar
  227. 227.
    Thompson, B.C., et al.: Conducting polymers, dual neurotrophins and pulsed electrical stimulation - dramatic effects on neurite outgrowth. J. Control. Release 141, 161–167 (2010). doi: 10.1016/j.jconrel.2009.09.016 Google Scholar
  228. 228.
    Bidez, P.R., et al.: Polyaniline, an electroactive polymer, supports adhesion and proliferation of cardiac myoblasts. Journal of Biomaterials Science, Polymer Edition 17, 199–212 (2006)Google Scholar
  229. 229.
    Di, L., et al.: Protein adsorption and peroxidation of rat retinas under stimulation of a neural probe coated with polyaniline. Acta Biomater. 7, 3738–3745 (2011). doi: 10.1016/j.actbio.2011.06.009 Google Scholar
  230. 230.
    Lee, H., Dellatore, S.M., Miller, W.M., and Messersmith, P.B.: Mussel-Inspired Surface Chemistry for Multifunctional Coatings. Science 318, 426–430 (2007). doi: 10.1126/science.1147241 Google Scholar
  231. 231.
    Kang, K., Choi, I. and Nam, Y.: A biofunctionalization scheme for neural interfaces using polydopamine polymer. Biomaterials 32, 6374–6380 (2011)Google Scholar
  232. 232.
    Abidian, M.R., Corey, J.M., Kipke, D.R., and Martin, D.C.: Conducting-Polymer Nanotubes Improve Electrical Properties, Mechanical Adhesion, Neural Attachment, and Neurite Outgrowth of Neural Electrodes. Small 6, 421–429 (2010)Google Scholar
  233. 233.
    Abidian, M.R., Ludwig, K.A., Marzullo, T.C., Martin, D.C., and Kipke, D.R.: Interfacing Conducting Polymer Nanotubes with the Central Nervous System: Chronic Neural Recording using Poly(3,4-ethylenedioxythiophene) Nanotubes. Adv. Mater. 21, 3764–3770 (2009). doi: 10.1002/adma.200900887 Google Scholar
  234. 234.
    Abidian, M.R., and Martin, D.C.: Experimental and theoretical characterization of implantable neural microelectrodes modified with conducting polymer nanotubes. Biomaterials 29, 1273–1283 (2008)Google Scholar
  235. 235.
    González, M.B., and Saidman, S.B.: Electrosynthesis of hollow polypyrrole microtubes with a rectangular cross-section. Electrochem. Commun. 13, 513–516 (2011). Google Scholar
  236. 236.
    Lee, J.Y., Lee, J.W., and Schmidt, C.E.: Neuroactive conducting scaffolds: nerve growth factor conjugation on active ester-functionalized polypyrrole. J. R. Soc. Interface 6, 801–810 (2009). doi: 10.1098/rsif.2008.0403 Google Scholar
  237. 237.
    Xie, J., et al.: Conductive Core-Sheath Nanofibers and Their Potential Application in Neural Tissue Engineering. Adv. Funct. Mater. 19, 2312–2318 (2009). doi: 10.1002/adfm.200801904 Google Scholar
  238. 238.
    Bolin, M.H., et al.: Nano-fiber scaffold electrodes based on PEDOT for cell stimulation. Sensors and Actuators B: Chemical 142, 451–456 (2009). Google Scholar
  239. 239.
    Ghasemi-Mobarakeh, L., Prabhakaran, M. P., Morshed, M., Nasr-Esfahani, M. H. and Ramakrishna, S. Electrical stimulation of nerve cells using conductive nanofibrous scaffolds for nerve tissue engineering. Tissue Eng. Part A 15, 3605–3619 (2009). doi: 10.1089/ten.TEA.2008.0689 Google Scholar
  240. 240.
    Huang, J., et al.: Electrical regulation of Schwann cells using conductive polypyrrole/chitosan polymers. J. Biomed. Mater. Res. A 93, 164–174 (2010). doi: 10.1002/jbm.a.32511 Google Scholar
  241. 241.
    Jeong, S.I., et al.: Development of electroactive and elastic nanofibers that contain polyaniline and poly(L-lactide-co-epsilon-caprolactone) for the control of cell adhesion. Macromol. Biosci. 8, 627–637 (2008). doi: 10.1002/mabi.200800005 Google Scholar
  242. 242.
    Li, M., Guo, Y., Wei, Y., MacDiarmid, A.G., and Lelkes, P.I.: Electrospinning polyaniline-contained gelatin nanofibers for tissue engineering applications. Biomaterials 27, 2705–2715 (2006). doi: 10.1016/j.biomaterials.2005.11.037 Google Scholar
  243. 243.
    Rowlands, A.S., and Cooper-White, J.J.: Directing phenotype of vascular smooth muscle cells using electrically stimulated conducting polymer. Biomaterials 29, 4510–4520 (2008). doi: 10.1016/j.biomaterials.2008.07.052 Google Scholar
  244. 244.
    Shi, G., Rouabhia, M., Wang, Z., Dao, L.H., and Zhang, Z.: A novel electrically conductive and biodegradable composite made of polypyrrole nanoparticles and polylactide. Biomaterials 25, 2477–2488 (2004)Google Scholar
  245. 245.
    Shi, G., Zhang, Z., and Rouabhia, M.: The regulation of cell functions electrically using biodegradable polypyrrole-polylactide conductors. Biomaterials 29, 3792–3798 (2008). doi: 10.1016/j.biomaterials.2008.06.010 Google Scholar
  246. 246.
    Zhang, Z., et al.: Electrically conductive biodegradable polymer composite for nerve regeneration: electricity-stimulated neurite outgrowth and axon regeneration. Artif. Organs 31, 13–22 (2007). doi: 10.1111/j.1525-1594.2007.00335.x Google Scholar
  247. 247.
    Ghasemi-Mobarakeh, L., et al.: Application of conductive polymers, scaffolds and electrical stimulation for nerve tissue engineering. J. Tissue Eng. Regen. Med. 5, e17–35 (2011). doi: 10.1002/term.383 Google Scholar
  248. 248.
    Heo, C., et al.: The control of neural cell-to-cell interactions through non-contact electrical field stimulation using graphene electrodes. Biomaterials 32, 19–27 (2011). doi: 10.1016/j.biomaterials.2010.08.095 Google Scholar
  249. 249.
    Treacy, M.M.J., Ebbesen, T.W., and Gibson, J.M.: Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature 381, 678–680 (1996). doi: 10.1038/381678a0 Google Scholar
  250. 250.
    Yu, M. F. et al. Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287, 637–640 (2000).Google Scholar
  251. 251.
    Charlier, J.-C., Blase, X., and Roche, S.: Electronic and transport properties of nanotubes. Reviews of Modern Physics 79, 677–732 (2007)Google Scholar
  252. 252.
    Gabay, T., et al.: Electro-chemical and biological properties of carbon nanotube based multi-electrode arrays. Nanotechnology 18, 035201 (2007). doi: 10.1088/0957-4484/18/3/035201, S0957-4484(07)32481-1 [pii]Google Scholar
  253. 253.
    Wang, K., Fishman, H.A., Dai, H., and Harris, J.S.: Neural stimulation with a carbon nanotube microelectrode array. Nano Lett. 6, 2043–2048 (2006). doi: 10.1021/nl061241t Google Scholar
  254. 254.
    Cannizzaro, C. et al.: Tissue Engineering. In: Hauser, H., and Fussenegger, M.M. (eds.) Methods Molecular Medicine, pp. 291–307. Humana Press, Totowa, NJ (2007)Google Scholar
  255. 255.
    Lee, C.Y., Choi, W., Han, J.H., and Strano, M.S.: Coherence resonance in a single-walled carbon nanotube ion channel. Science 329, 1320–1324 (2010). doi: 10.1126/science.1193383 Google Scholar
  256. 256.
    Fang, W.-C., et al.: Carbon Nanotubes Grown Directly on Ti Electrodes and Enhancement of Their Electrochemical Properties by Nitric Acid Treatment. Electrochem. Solid-State Lett. 9, A5–A8 (2006). doi: 10.1149/1.2128123 Google Scholar
  257. 257.
    Li, J., Cassell, A., Delzeit, L., Han, J., and Meyyappan, M.: Novel Three-Dimensional Electrodes: Electrochemical Properties of Carbon Nanotube Ensembles. The Journal of Physical Chemistry B 106, 9299–9305 (2002). doi: 10.1021/jp021201n Google Scholar
  258. 258.
    Chmiola, J., et al.: Anomalous Increase in Carbon Capacitance at Pore Sizes Less Than 1 Nanometer. Science 313, 1760–1763 (2006). doi: 10.1126/science.1132195 Google Scholar
  259. 259.
    Barisci, J. N., Wallace, G. G., and Baughman, R.H.: Electrochemical studies of single-wall carbon nanotubes in aqueous solutions. J. Electroanal. Chem. 488, 92–98 (2000). Google Scholar
  260. 260.
    Lu, X., and Chen, Z.: Curved pi-conjugation, aromaticity, and the related chemistry of small fullerenes (< C60) and single-walled carbon nanotubes. Chem. Rev. 105, 3643–3696 (2005). doi: 10.1021/cr030093d Google Scholar
  261. 261.
    Hong, S., and Myung, S.: Nanotube electronics: a flexible approach to mobility. Nat. Nanotechnol. 2, 207–208 (2007). doi: 10.1038/nnano.2007.89, nnano.2007.89 [pii]Google Scholar
  262. 262.
    Jiang, L.Q., and Gao, L.: Fabrication and characterization of carbon nanotube-titanium nitride composites with enhanced electrical and electrochemical properties. J. Am. Ceram. Soc. 89, 156–161 (2006). doi: 10.1111/j.1551-2916.2005.00687.x Google Scholar
  263. 263.
    Liopo, A.V., Stewart, M.P., Hudson, J., Tour, J.M., and Pappas, T.C.: Biocompatibility of native and functionalized single-walled carbon nanotubes for neuronal interface. J. Nanosci. Nanotechnol. 6, 1365–1374 (2006). doi: 10.1166/Jnn.2006.155 Google Scholar
  264. 264.
    Jan, E., et al.: Layered carbon nanotube-polyelectrolyte electrodes outperform traditional neural interface materials. Nano Lett 9, 4012–4018 (2009). doi: 10.1021/nl902187z Google Scholar
  265. 265.
    Mazzatenta, A., et al.: Interfacing Neurons with Carbon Nanotubes: Electrical Signal Transfer and Synaptic Stimulation in Cultured Brain Circuits. J. Neurosci. 27, 6931–6936 (2007). doi: 10.1523/JNEUROSCI.1051-07.2007 Google Scholar
  266. 266.
    de Asis, E.D., et al.: High efficient electrical stimulation of hippocampal slices with vertically aligned carbon nanofiber microbrush array. Biomed Microdevices 11, 801–808 (2009). doi: 10.1007/s10544-009-9295-7 Google Scholar
  267. 267.
    Mattson, M.P., Haddon, R.C., and Rao, A.M.: Molecular functionalization of carbon nanotubes and use as substrates for neuronal growth. J. Mol. Neurosci. 14, 175–182 (2000). doi: 10.1385/JMN:14:3:175 Google Scholar
  268. 268.
    Hu, H., et al.: Polyethyleneimine functionalized single-walled carbon nanotubes as a substrate for neuronal growth. J. Phys. Chem. B 109, 4285–4289 (2005). doi: 10.1021/jp0441137 Google Scholar
  269. 269.
    Voge, C. M. and Stegemann, J. P. Carbon nanotubes in neural interfacing applications. J. Neural Eng. 8, 011001 (2011). doi: 10.1088/1741-2560/8/1/011001, S1741-2560(11)68242-0 [pii]Google Scholar
  270. 270.
    Guitchounts, G., Markowitz, J.E., Liberti, W.A., and Gardner, T.J.: A carbon-fiber electrode array for long-term neural recording. J. Neural Eng. 10, 046016 (2013)Google Scholar
  271. 271.
    Decher, G., Hong, J.D., and Schmitt, J.: Buildup of Ultrathin Multilayer Films by a Self-Assembly Process. 3. Consecutively Alternating Adsorption of Anionic and Cationic Polyelectrolytes on Charged Surfaces. Thin Solid Films 210, 831–835 (1992). doi: 10.1016/0040-6090(92)90417-A Google Scholar
  272. 272.
    Iler, R.K.: Multilayers of Colloidal Particles. J. Colloid Interface Sci. 21, 569–594 (1966). doi: 10.1016/0095-8522(66)90018-3 Google Scholar
  273. 273.
    Tang, Z., Wang, Y., Podsiadlo, P., and Kotov, N.A.: Biomedical applications of layer-by-layer assembly: from biomimetics to tissue engineering. Adv. Mater. 18, 3203–24 (2007)Google Scholar
  274. 274.
    Cogan, S.F.: Neural Stimulation and Recording Electrodes. Annu. Rev. Biomed. Eng. 10, 275–309 (2008)Google Scholar
  275. 275.
    Shim, B.S., et al.: Multiparameter Structural Optimization of Single-Walled Carbon Nanotube Composites: Toward Record Strength, Stiffness, and Toughness. ACS Nano 3, 1711–1722 (2009)Google Scholar
  276. 276.
    Kozai, T.D., and Kipke, D.R.: Insertion shuttle with carboxyl terminated self-assembled monolayer coatings for implanting flexible polymer neural probes in the brain. J. Neurosci. Methods 184, 199–205 (2009). doi: 10.1016/j.jneumeth.2009.08.002, S0165-0270(09)00434-8 [pii]Google Scholar
  277. 277.
    Subbaroyan, J., Martin, D. C. and Kipke, D. R. A finite-element model of the mechanical effects of implantable microelectrodes in the cerebral cortex. J. Neural Eng. 2, 103–113 (2005). doi: 10.1088/1741-2560/2/4/006, S1741-2560(05)99280-X [pii]Google Scholar
  278. 278.
    Bai, Y.X., Ho, S.S., and Kotov, N.A.: Direct-write maskless lithography of LBL nanocomposite films and its prospects for MEMS technologies. Nanoscale 4, 4393–4398 (2012). doi: 10.1039/C2nr30197k Google Scholar
  279. 279.
    Jan, E., and Kotov, N.A.: Successful Differentiation of Mouse Neural Stem Cells on Layer-by-Layer Assembled Single-Walled Carbon Nanotube Composite. Nano Lett. 7, 1123–1128 (2007)Google Scholar
  280. 280.
    Gheith, M.K., et al.: Stimulation of Neural Cells by Lateral Currents in Conductive Layer-by-Layer Films of Single-Walled Carbon Nanotubes. Adv. Mater. 18, 2975–2979 (2006). doi: 10.1002/adma.200600878 Google Scholar
  281. 281.
    Jan, E., et al.: Layered carbon nanotube-polyelectrolyte electrodes outperform traditional neural interface materials. Nano Lett 9, 4012–4018 (2009). doi: 10.1021/nl902187z Google Scholar
  282. 282.
    Zhang, H., et al.: Tissue-Compliant Neural Implants from Microfabricated Carbon Nanotube Multilayer Composite. ACS Nano 7, 7619–7629 (2013). doi: 10.1021/nn402074y Google Scholar
  283. 283.
    Zhang, H., Shih, J., Zhu, J. and Kotov, N.A.: Layered Nanocomposites from Gold Nanoparticles for Neural Prosthetic Devices. Nano Lett. 12, 3391–3398 (2012). doi: 10.1021/Nl3015632 Google Scholar
  284. 284.
    Kam, N.W.S., Jan, E., and Kotov, N.A.: Electrical Stimulation of Neural Stem Cells Mediated by Humanized Carbon Nanotube Composite Made with Extracellular Matrix Protein. Nano Lett. 9, 273–278 (2009)Google Scholar
  285. 285.
    Jan, E., Pereira, F.N., Turner, D.L., and Kotov, N.A.: In situ gene transfection and neuronal programming on electroconductive nanocomposite to reduce inflammatory response. J. Mater. Chem. 21, 1109–1114 (2011). doi: 10.1039/C0jm01895c Google Scholar
  286. 286.
    Chen, G. Z., et al.: Carbon Nanotube and Polypyrrole Composites: Coating and Doping. Adv. Mater. 12, 522–526 (2000).Google Scholar
  287. 287.
    Lee, Y., Lee, K., Kim, D., Lee, D., and Kim, J.: Polypyrrole-carbon nanotube composite films synthesized through gas-phase polymerization. Synth. Met. 160, 814–818 (2010)Google Scholar
  288. 288.
    Lu, Y. et al. Electrodeposited polypyrrole/carbon nanotubes composite films electrodes for neural interfaces. Biomaterials 31, 5169–5181 (2010). doi: 10.1016/j.biomaterials.2010.03.022 Google Scholar
  289. 289.
    Bhandari, S., Deepa, M., Srivastava, A.K., Joshi, A.G., and Kant, R.: Poly(3,4-ethylenedioxythiophene)-multiwalled carbon nanotube composite films: structure-directed amplified electrochromic response and improved redox activity. J. Phys. Chem. B 113, 9416–9428 (2009). doi: 10.1021/jp9012976 Google Scholar
  290. 290.
    Gerwig, R., et al.: PEDOT-CNT Composite Microelectrodes for Recording and Electrostimulation Applications: Fabrication, Morphology, and Electrical Properties. Front. Neuroengineering 5, 8 (2012). doi: 10.3389/fneng.2012.00008 Google Scholar
  291. 291.
    Luo, X., Weaver, C.L., Zhou, D.D., Greenberg, R., and Cui, X.T.: Highly stable carbon nanotube doped poly(3,4-ethylenedioxythiophene) for chronic neural stimulation. Biomaterials 32, 5551–5557 (2011). doi: 10.1016/j.biomaterials.2011.04.051 Google Scholar
  292. 292.
    Zhou, H., Cheng, X., Rao, L., Li, T., and Duan, Y.Y.: Poly(3,4-ethylenedioxythiophene)/multiwall carbon nanotube composite coatings for improving the stability of microelectrodes in neural prostheses applications. Acta Biomater. 9, 6439–6449 (2013). doi: 10.1016/j.actbio.2013.01.042 Google Scholar
  293. 293.
    Zou, J., Tran, B., Huo, Q., and Zhai, L.: Transparent carbon nanotube/poly (3,4-ethylenedioxythiophene) composite electrical conductors. Soft Materials 7, 355–365 (2009)Google Scholar
  294. 294.
    Luo, X., Matranga, C., Tan, S., Alba, N., and Cui, X.T.: Carbon nanotube nanoreservior for controlled release of anti-inflammatory dexamethasone. Biomaterials 32, 6316–6323 (2011). doi: 10.1016/j.biomaterials.2011.05.020 Google Scholar
  295. 295.
    Starovoytov, A., Choi, J., and Seung, H.S.: Light-directed electrical stimulation of neurons cultured on silicon wafers. J. Neurophysiol. 93, 1090–1098 (2005). doi: 10.1152/jn.00836.200400836.2004 Google Scholar
  296. 296.
    Kimura, M., et al.: Evaluation of thin-film photodevices and application to an artificial retina. Journal of the Society for Information Display 16, 661–667 (2008). doi: 10.1889/1.2938867 Google Scholar
  297. 297.
    Bucher, V., Brunner, B., Leibrock, C., Schubert, M., and Nisch, W.: Electrical properties of a light-addressable microelectrode chip with high electrode density for extracellular stimulation and recording of excitable cells. Biosens. Bioelectron. 16, 205–210 (2001). S095656630100135X [pii]Google Scholar
  298. 298.
    Zochowski, M., et al.: Imaging membrane potential with voltage-sensitive dyes. The Biological bulletin 198, 1–21 (2000)Google Scholar
  299. 299.
    Gross, G.W., Rhoades, B.K., Reust, D.L., and Schwalm, F.U.: Stimulation of monolayer networks in culture through thin-film indium-tin oxide recording electrodes. J. Neurosci. Methods 50, 131–143 (1993)Google Scholar
  300. 300.
    Fraser, D.B., and Cook, H.D.: Highly Conductive, Transparent Films of Sputtered In2-Xsnxo3-Y. J. Electrochem. Soc. 119, 1368–1374 (1972). doi: 10.1149/1.2403999 Google Scholar
  301. 301.
    Pappas, T.C., et al.: Nanoscale engineering of a cellular interface with semiconductor nanoparticle films for photoelectric stimulation of neurons. Nano Lett. 7, 513–519 (2007). doi: 10.1021/Nl062513v Google Scholar
  302. 302.
    Zhao, Y., Larimer, P., Pressler, R.T., Strowbridge, B.W., and Burda, C.: Wireless Activation of Neurons in Brain Slices Using Nanostructured Semiconductor Photoelectrodes. Angewandte Chemie International Edition 48, 2407–2410 (2009). doi: 10.1002/anie.200806093 Google Scholar
  303. 303.
    Yue, Z., Moulton, S.E., Cook, M., O’Leary, S., and Wallace, G.G.: Controlled delivery for neuro-bionic devices. Adv Drug Deliv Rev 65, 559–569 (2013). doi: 10.1016/j.addr.2012.06.002 Google Scholar
  304. 304.
    Otero, T.F., Martinez, J.G., and Arias-Pardilla, J.: Biomimetic electrochemistry from conducting polymers. A review Artificial muscles, smart membranes, smart drug delivery and computer/neuron interfaces. Electrochim. Acta. 84, 112–128 (2012)Google Scholar
  305. 305.
    Abidian, M.R., Kim, D.H., and Martin, D.C.: Conducting-Polymer Nanotubes for Controlled Drug Release. Adv. Mater. 18, 405–409 (2006). doi: 10.1002/adma.200501726 Google Scholar
  306. 306.
    Hepel, M., and Mahdavi, F.: Application of the Electrochemical Quartz Crystal Microbalance for Electrochemically Controlled Binding and Release of Chlorpromazine from Conductive Polymer Matrix. Microchem. J. 56, 54–64 (1997)Google Scholar
  307. 307.
    Gade, V., et al.: Synthesis and Characterization of Ppy-PVS, Ppy-pTS, and Ppy-DBS Composite Films. International Journal of Polymeric Materials and Polymeric Biomaterials 56, 107–114 (2007)Google Scholar
  308. 308.
    Svirskis, D. and Garg, S.: Polypyrrole Film as a Drug Delivery System for the Controlled Release of Risperidone. In: Hendy, S.C., and Brown I.W.M. (eds.) Proceedings of the International Conference on Advanced Materials and Nanotechnology, Dunedin, New Zeland, February 2009. AIP Conference Proceedings, vol. 1151, pp. 36–39. Amer. Inst. Physics, New York (2009)Google Scholar
  309. 309.
    Sharma, M., Waterhouse, G.I., Loader, S.W., Garg, S., and Svirskis, D.: High surface area polypyrrole scaffolds for tunable drug delivery. Int. J. Pharm. 443, 163–168 (2013). doi: 10.1016/j.ijpharm.2013.01.006 Google Scholar
  310. 310.
    Svirskis, D., Sharma, M., Yu, Y., and Garg, S.: Electrically switchable polypyrrole film for the tunable release of progesterone. Ther Deliv 4, 307–313 (2013). doi: 10.4155/tde.12.166 Google Scholar
  311. 311.
    Zhou, Q., Miller, L., and Valentine, J.: Electrochemically controlled binding and release of protonated dimethyldopamine and other cations from poly(N-methyl-pyrrole)/polyanion composite redox polymers. J. Electroanal. Chem. 261, 147–164 (1989)Google Scholar
  312. 312.
    Pyo, M., and Reynolds, J.: Electrochemically Stimulated Adenosine 5’-Triphosphate (ATP) Release through Redox Switching of Conducting Polypyrrole Films and Bilayers. Chem. Mater. 8, 128–133 (1996)Google Scholar
  313. 313.
    Stauffer, W.R., Lau, P.M., Bi, G.Q., and Cui, X.T.: Rapid modulation of local neural activity by controlled drug release from polymer-coated recording microelectrodes. J. Neural Eng. 8, 044001 (2011). doi: 10.1088/1741-2560/8/4/044001 Google Scholar
  314. 314.
    Kontturi, K., Pentti, P., and Sundholm, G.: Polypyrrole as a model membrane for drug delivery. J Electroanal Chem 453, 231–238 (1998). Google Scholar
  315. 315.
    Bidan, G., Lopez, C., Mendes-Viegas, F., Vieil, E., and Gadelle, A.: Incorporation of sulphonated cyclodextrins into polypyrrole: an approach for the electro-controlled delivering of neutral drugs. Biosens. Bioelectron. 10, 219–229 (1995). doi: 10.1016/0956-5663(95)96808-C Google Scholar
  316. 316.
    Sirivisoot, S., Pareta, R.A., and Webster, T.J.: Electrically-Controlled Penicillin/Streptomycin Release from Nanostructured Polypyrrole Coated on Titanium for Orthopedic Implants. Solid State Phenomena 151, 197–202 (2009)Google Scholar
  317. 317.
    Zinger, B., and Miller, L. Timed release of chemicals from polypyrrole films. J. Am. Chem. Soc. 106, 6861–6863 (1984)Google Scholar
  318. 318.
    Cho, Y., Shi, R., Ivanisevic, A., and Ben Borgens, R.:A mesoporous silica nanosphere-based drug delivery system using an electrically conducting polymer. Nanotechnology 20, 275102 (2009). doi: 10.1088/0957-4484/20/27/275102 Google Scholar
  319. 319.
    Jiang, S., et al.: Enhanced drug loading capacity of polypyrrole nanowire network for controlled drug release. Synth. Met. 163, 19–23 (2013)Google Scholar
  320. 320.
    Luo, X., and Cui, X.T.: Electrochemically controlled release based on nanoporous conducting polymers. Electrochem. Commun. 11, 402–404, (2009). doi: 10.1016/j.elecom.2008.11.052 Google Scholar
  321. 321.
    Luo, X., and Cui, X.T.: Sponge-like nanostructured conducting polymers for electrically controlled drug release. Electrochem. Commun. 11, 1956–1959 (2009). doi: 10.1016/j.elecom.2009.08.027 Google Scholar
  322. 322.
    Luo, X., Matranga, C., Tan, S., Alba, N., and Cui, X.T.: Carbon nanotube nanoreservior for controlled release of anti-inflammatory dexamethasone. Biomaterials 32, 6316–6323 (2011). doi: 10.1016/j.biomaterials.2011.05.020 Google Scholar
  323. 323.
    Xiao, Y., Ye, X., He, L., and Che, J.: New carbon nanotube-conducting polymer composite electrodes for drug delivery applications. Polym. Int. 61, 190–196 (2012)Google Scholar
  324. 324.
    Sirivisoot, S., Pareta, R., and Webster, T.J.: Electrically controlled drug release from nanostructured polypyrrole coated on titanium. Nanotechnology 22, 085101 (2011). doi: 10.1088/0957-4484/22/8/085101 Google Scholar
  325. 325.
    Leprince, L., Dogimont, A., Magnin, D. and Demoustier-Champagne, S. Dexamethasone electrically controlled release from polypyrrole-coated nanostructured electrodes. J. Mater. Sci. Mater. Med. 21, 925–930 (2010). doi: 10.1007/s10856-010-4008-6 Google Scholar
  326. 326.
    Simon, D.T., et al.: Organic electronics for precise delivery of neurotransmitters to modulate mammalian sensory function. Nat. Mater. 8, 742–746 (2009). doi: 10.1038/nmat2494 Google Scholar
  327. 327.
    Kopell, B.H., Machado, A., and Butson, C. Stimulation technology in functional neurosurgery. In: Lozano, A.M., Gildenberg, P.L., Tasker, R.R. (eds.) Textbook of Stereotactic and Functional Neurosurgery, pp. 1401–1425. Springer, Berlin (2009)Google Scholar
  328. 328.
    Yoo, J.-M., et al.: Excimer laser deinsulation of Parylene-C on iridium for use in an activated iridium oxide film-coated Utah electrode array. J. Neurosci. Methods 215, 78–87 (2013). Google Scholar
  329. 329.
    Eick, S., et al.: Iridium oxide microelectrode arrays for in vitro stimulation of individual rat neurons from dissociated cultures. Front Neuroeng 2, 16 (2009). doi: 10.3389/neuro.16.016.2009 Google Scholar
  330. 330.
    Guimard, N.K., Gomez, N., and Schmidt, C.E.: Conducting polymers in biomedical engineering. Prog. Polym. Sci. 32, 876–921 (2007). doi: 10.1016/j.progpolymsci.2007.05.012 Google Scholar
  331. 331.
    Wang, L., Wang, W., Di, L., Lu, Y., and Wang, J.: Protein Adsorption under electrical stimulation of neural probe coated with polyaniline. Colloids and Surfaces B: Biointerfaces 80, 72–78 (2010)Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Takashi D. Y. Kozai
    • 1
    Email author
  • Nicolas A. Alba
    • 1
  • Huanan Zhang
    • 2
  • Nicolas A. Kotov
    • 2
  • Robert A. Gaunt
    • 3
  • Xinyan Tracy Cui
    • 1
  1. 1.Department of Biomedical EngineeringUniversity of PittsburghPittsburghUSA
  2. 2.Department of Chemical EngineeringUniversity of MichiganAnn ArborUSA
  3. 3.Department of Physical Medicine and RehabilitationUniversity of PittsburghPittsburghUSA

Personalised recommendations