Skip to main content

Oxidative Stress and Complications of the Diabetic Foot

  • Chapter
  • First Online:
Studies in Diabetes

Abstract

The leading factor contributing to amputation in diabetes is usually diabetic foot disease and ulceration. The optimal approach to the management of complications of the lower limb in diabetes lies in prevention through the implementation of screening programs aimed at the early detection of neuropathy, ischemia, deformity, and edema. However, even with aggressive screening, chronic ulceration of the lower limbs remains one of the most common and serious consequences of diabetes. Understanding the causes of diabetic foot ulceration is critical to supplement traditional management approaches. In diabetes, recent evidence suggests that skin structural and functional deficits may contribute to the risk of developing foot ulceration. In diabetes, oxidative and nitrosative stress are implicated in the development of wide-ranging complications including neuropathy, and evidence is accumulating that it may play an important role in the development of skin structural and perfusion deficits, foot ulceration, and impaired wound healing. Better understanding of the causes of these deficits may offer the opportunity to develop new therapeutic approaches which may ultimately reduce the risk of developing this common and disabling complication of diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Edmonds ME (2004) The diabetic foot. Diabetes Metab Res Rev 20(Suppl 1):S9–S12

    PubMed  Google Scholar 

  2. Boulton AJ, Kirsner RS, Vileikyte L (2004) Clinical practice. Neuropathic diabetic foot ulcers. N Engl J Med 351:48–55

    CAS  PubMed  Google Scholar 

  3. Golinko MS, Margolis DJ, Tal A et al (2009) Preliminary development of a diabetic foot ulcer database from a wound electronic medical record: a tool to decrease limb amputations. Wound Repair Regen 17:657–665

    PubMed Central  PubMed  Google Scholar 

  4. Pecoraro RE, Reiber GE, Burgess EM (1990) Pathways to diabetic limb amputation. Basis for prevention. Diabet Care 13:513–521

    CAS  Google Scholar 

  5. Reiber GE (1996) The epidemiology of diabetic foot problems. Diabet Med 13(Suppl 1):S6–S11

    PubMed  Google Scholar 

  6. Lavery LA, Armstrong DG, Wunderlich RP et al (2003) Diabetic foot syndrome: evaluating the prevalence and incidence of foot pathology in Mexican Americans and non-Hispanic whites from a diabetes disease management cohort. Diabet Care 26:1435–1438

    Google Scholar 

  7. Reiber GE (2001) Epidemiology of foot ulcers and amputations in the diabetic foot. In: Bowker JH, Pfeifer MA (eds) The diabetic foot. Mosby, St Louis, pp 13–32

    Google Scholar 

  8. Gregg EW, Sorlie P, Paulose-Ram R et al (2004) Prevalence of lower-extremity disease in the US adult population >=40 years of age with and without diabetes: 1999–2000 national health and nutrition examination survey. Diabetes Care 27:1591–1597

    PubMed  Google Scholar 

  9. Vileikyte L (2001) Diabetic foot ulcers: a quality of life issue. Diabetes Metab Res Rev 17:246–249

    CAS  PubMed  Google Scholar 

  10. Carrington AL, Mawdsley SK, Morley et al (1996) Psychological status of diabetic people with or without lower limb disability. Diabetes Res Clin Pract 32:19–25

    CAS  PubMed  Google Scholar 

  11. Singh N, Armstrong DG, Lipsky BA (2005) Preventing foot ulcers in patients with diabetes. JAMA 293:217–228

    CAS  PubMed  Google Scholar 

  12. Edmonds ME (1987) Experience in a multidisciplinary diabetic foot clinic. In: Connor H, Bouton AJM, Ward JD (eds) The foot in diabetes: proceedings of the first national conference on the diabetic foot, Malvern, May 1986. Wiley, Chicester, pp 121–134

    Google Scholar 

  13. Boulton AJM (1990) The diabetic foot: neuropathic in aetiology? Diabet Med 7:852–858

    CAS  PubMed  Google Scholar 

  14. Ctercteko GC, Dhanendran M, Hutton WC et al (1981) Vertical forces acting on the feet of diabetic patients with neuropathic ulceration. Br J Surg 68:608–614

    CAS  PubMed  Google Scholar 

  15. Brand PW (1998) Repetitive stress in the development of diabetic foot ulcers. In: Levin ME, O’Neal LW (eds) The diabetic foot, 4th edn. CV Mosby, St. Louis, pp 83–90

    Google Scholar 

  16. Gibbons GW, Eliopoulos GM (1984) Infection of the diabetic foot. In: Kozak GP, Hoar CS Jr., Rowbotham JL, Wheelock FC Jr, Gibbons GW, Campbell D (eds) Management of diabetic foot problems: Joslin Clinic and New England Deaconess Hospital. WB Saunders, Philadelphia, pp 97–102

    Google Scholar 

  17. LoGerfo FW, Coffman JD (1984) Vascular and microvascular disease of the foot. In diabetes: implications for foot care. N Engl J Med 311:1615–1619

    CAS  PubMed  Google Scholar 

  18. Tur E, Yosipovitch G, Bar-On Y (1991) Skin reactive hyperemia in diabetic patients: a study by laser Doppler flowmetry. Diabet Care 14:958–962

    CAS  Google Scholar 

  19. Stevens MJ, Edmonds ME, Douglas SLE et al (1991) Influence of neuropathy on the microvascular response to local heating in the human diabetic foot. Clin Sci 80:249–256

    CAS  PubMed  Google Scholar 

  20. Rendell M, Bamisedun O (1992) Diabetic cutaneous microangiopathy. Am J Med 93:611–618

    CAS  PubMed  Google Scholar 

  21. Bornmyr S, Svensson H, Lilja B et al (1997) Cutaneous vasomotor responses in young type I diabetic patients. J Diabet Comp 11:21–26

    CAS  Google Scholar 

  22. Rayman G, Williams SA, Spencer PD et al (1986) Impaired microvascular response to minor skin trauma in type 1 diabetes. BMJ (Clin Res Ed) 292:1295–1298

    CAS  Google Scholar 

  23. Varani J, Dame MK, Rittie L et al (2006) Decreased collagen synthesis in chronologically aged skin: roles of age-dependent alterations in cellular aging and alterations in mechanical tension. Am J Pathol 168:1861–1868

    CAS  PubMed  Google Scholar 

  24. Lateef H, Sevens M, Varani J (2004) All-trans retinoic acid suppresses matrix metalloproteinase production/activation and increases collagen synthesis in diabetic skin in organ culture. Am J Pathol 165:167–174

    CAS  PubMed  Google Scholar 

  25. Teno S, Kanno H, Oga S et al (1999) Increased activity of membrane glycoprotein pc-1 in the fibroblasts from non-insulin-dependent diabetes mellitus patients with insulin resistance. Diabetes Res Clin Pract 45:25–30

    CAS  PubMed  Google Scholar 

  26. Loots MA, Lamme EN, Mekkes JR et al (1999) Cultured fibroblasts from chronic diabetic wounds on the lower extremity (non-insulin-dependent diabetes mellitus) show disturbed proliferation. Arch Dermatol Res 291:93–99

    CAS  PubMed  Google Scholar 

  27. Wolff SP (1993) Diabetes mellitus and free radicals. Br Med Bull 49:642–652

    CAS  PubMed  Google Scholar 

  28. Pop-Busui R, Sima AAF, Stevens MJ (2006) Diabetic neuropathy and oxidative stress. Diab Metab Res Rev 22(4):257–273

    CAS  Google Scholar 

  29. Tahrani AA, Askwith T, Stevens MJ (2010) Emerging drugs for diabetic neuropathy. Expert Opin Emerg Drugs 20(15):661–683

    Google Scholar 

  30. Pomposelli FB Jr, Jepsen SJ, Gibbons GW et al (1990) Efficacy of the dorsal pedal bypass for limb salvage in diabetic patients: short-term observations. J Vasc Surg 11:745–752

    PubMed  Google Scholar 

  31. Rees RS, Smith DJ, Adamson B et al (1995) Oxidant stress: the role of the glutathione redox cycle in skin preconditioning. J Surg Res 58:395–400

    CAS  PubMed  Google Scholar 

  32. Shukla A, Rasik A, Dhawan B (1999) Asiatic-induced elevation of antioxidant levels in healing wounds. Phythother Res 13:50

    CAS  Google Scholar 

  33. Wenk J, Foitzik A, Achterberg V et al (2001) Selective pick-up of increased iron by deferoxamine-coupled cellulose abrogates the iron-driven induction of matrix-degrading metalloproteinase 1 and lipid peroxidation in human dermal fibroblasts in vitro: a new dressing concept. J Invest Dermatol 116:833–839

    CAS  PubMed  Google Scholar 

  34. Allhorn M, Lundqvist K, Schmidtchen A et al (2003) Heme-scavenging role of alpha1-microglobulin in chronic ulcers. J Invest Dermatol 121:640–646

    CAS  PubMed  Google Scholar 

  35. James TJ, Hughes MA, Cherry GW et al (2003) Evidence of oxidative stress in chronic venous ulcers. Wound Repair Regen 11:172–176

    PubMed  Google Scholar 

  36. Yeoh-Ellerton S, Stacey MC (2003) Iron and 8-isoprostane levels in acute and chronic wounds. J Invest Dermatol 121:918–925

    PubMed  Google Scholar 

  37. Wlaschek M, Scharffetter-Kochanek K (2005) Oxidative stress in chronic venous leg ulcers. Wound Repair Regen 13:452–461

    PubMed  Google Scholar 

  38. Shukla A, Rasik AM, Patnaik GK (1997) Depletion of reduced glutathione, ascorbic acid, vitamin E and antioxidant defence enzymes in a healing cutaneous wound. Free Radic Res 26:93–101

    Google Scholar 

  39. Steiling H, Munz B, Werner S et al (1999) Different types of ROS-scavenging enzymes are expressed during cutaneous wound repair. Exp Cell Res 247:484–494

    CAS  PubMed  Google Scholar 

  40. Wall IB, Moseley R, Baird DM et al (2008) J Invest Dermatol 128:2526–2540

    CAS  PubMed  Google Scholar 

  41. Finkel T, Holbrook NJ (2000) Oxidants, oxidative stress and the biology of ageing. Nature 408:239–247

    CAS  PubMed  Google Scholar 

  42. Passos JF, Zglinicki T (2012) Mitochondrial dysfunction and cell senescence—skin deep into mammalian aging. Aging 4(2):74–75

    CAS  PubMed Central  PubMed  Google Scholar 

  43. Gurjala AN, Liu WR, Mogford JE et al (2005) Age-dependent response of primary human dermal fibroblasts to oxidative stress: cell survival, pro-survival kinases, and entrance into cellular senescence. Wound Repair Regen 13:565–575

    PubMed  Google Scholar 

  44. Clarke RAF (2008) Oxidative stress and “senescent” fibroblasts in non-healing wounds as potential therapeutic targets. J Invest Dermatol 128:2361–2364

    Google Scholar 

  45. Shen H-M, Liu Z (2006) JNK signaling pathway is a key modulator in cell death mediated by reactive oxygen and nitrogen species. Free Radic Biol Med 40:928–939

    CAS  PubMed  Google Scholar 

  46. Wulf D (2002) Free radicals in regulation of physiological functions. Physiol Rev 82:47–95

    Google Scholar 

  47. Hellwig-Bürgel T, Stiehl DP, Wagner AE et al (2005) Hypoxia-inducible factor-1 (HIF-1): a novel transcription factor in immune reactions. J Interferon Cytokine Res 25:297–310

    PubMed  Google Scholar 

  48. Woodhouse BC, Dianov GL (2008) Poly ADP-ribose polymerase-1: an international molecule of mystery. DNA Repair (Amst) 7(7):1077–1086

    CAS  Google Scholar 

  49. Pacher P, Szabo C (2007) Role of poly(ADP-ribose) polymerase 1 (PARP-1) in cardiovascular diseases: the therapeutic potential of PARP inhibitors. Cardiovasc Drug Rev 25(3):235–260

    CAS  PubMed Central  PubMed  Google Scholar 

  50. Pacher P, Szabo C (2008) Role of the peroxynitrite-poly(ADP-ribose) polymerase pathway in human disease. Am J Pathol 173(1):2–13

    CAS  PubMed  Google Scholar 

  51. Vincent AM, Russell JW, Low P et al (2004) Oxidative stress in the pathogenesis of diabetic neuropathy. Endocr Rev 25(4):612–628

    CAS  PubMed  Google Scholar 

  52. Feldman EL (2008) Diabetic neuropathy. Curr Drug Targets 9(1):1–2

    CAS  PubMed  Google Scholar 

  53. Edwards JL, Vincent AM, Cheng HL et al (2008) Diabetic neuropathy: mechanisms to management. Pharmacol Ther 120(1):1–34

    CAS  PubMed  Google Scholar 

  54. Brownlee M (2005) The pathobiology of diabetic complications: a unifying mechanism. Diabetes 54(6):1615–1625

    CAS  PubMed  Google Scholar 

  55. Du X, Matsumura T, Edelstein D et al (2003) Inhibition of GAPDH activity by poly(ADP-ribose) polymerase activates three major pathways of hyperglycemic damage in endothelial cells. J Clin Invest 112(7):1049–1057

    CAS  PubMed Central  PubMed  Google Scholar 

  56. Du XL, Edelstein D, Rossetti L et al (2000) Hyperglycemia-induced mitochondrial superoxide overproduction activates the hexosamine pathway and induces plasminogen activator inhibitor-1 expression by increasing Sp1 glycosylation. Proc Natl Acad Sci USA 97(22):12222–12226

    CAS  PubMed  Google Scholar 

  57. Griffiths CE, Russman AN, Majmudar G (1993) Restoration of collagen formation in photodamaged human skin by tretinoin (retinoic acid). N Engl J Med 329:530–535

    CAS  PubMed  Google Scholar 

  58. Varani J, Perone P, Fligiel SE et al (2002) Inhibition of type i procollagen production in photodamage: correlation between presence of high molecular weight collagen fragments and reduced procollagen synthesis. J Invest Dermatol 119:122–129

    CAS  PubMed  Google Scholar 

  59. Brandner JM, Zacheja S, Houdek P et al (2008) Expression of matrix metalloproteinases, cytokines, and connexins in diabetic and nondiabetic human keratinocytes before and after transplantation Into an ex vivo wound-healing model. Diabetes Care 31:114–120

    CAS  PubMed  Google Scholar 

  60. Trengove NJ, Stacey MC, Macauley S et al (1999) Analysis of the acute and chronic wounds environments: the role of proteases and their inhibitors. Wound Repair Regen 7:442–452

    CAS  PubMed  Google Scholar 

  61. Wysocki AB, Staiano-Coico L, Grinnell F (1993) Wound fluid from chronic leg ulcers contain elevated levels of metalloproteinases MMP-2 and MMP-9. J Invest Dermatol 101:64–68

    CAS  PubMed  Google Scholar 

  62. Yager DR, Zhang LY, Liang H et al (1996) Wound fluids from human pressure ulcers contain elevated matrix metalloproteinase levels and activity compared to surgical wound fluids. J Invest Dermatol 107:743–748

    CAS  PubMed  Google Scholar 

  63. Yager DR, Stephen MC, Ward SI et al (1997) Ability of chronic wound fluids to degrade peptide growth factors is associated with increased levels of elastase activity and diminished levels of proteinase inhibitors. Wound Repair Regen 5:23–32

    Google Scholar 

  64. Bullen EC, Longaker MT, Updike DL et al (1995) Tissue inhibitor of metalloproteinases-1 is decreased and activated gelatinases are increased in chronic wounds. J Invest Dermatol 104:236–240

    CAS  PubMed  Google Scholar 

  65. Vaalamo M, Weckroth M, Puolakkainen P et al (1996) Patterns of matrix metalloproteinase and TIMP-1 expression in chronic and normally healing human cutaneous wounds. Br J Dermatol 135:52–59

    CAS  PubMed  Google Scholar 

  66. Muller M, Trocme C, Lardy B et al (2008) Matrix metalloproteinases and diabetic foot ulcers: the ratio of MMP-1 to TIMP-1 is a predictor of wound healing. Diabet Med 25:419–426

    CAS  PubMed Central  PubMed  Google Scholar 

  67. Nwomeh BC, Liang HX, Cohen IK et al (1999) MMP-8 is the predominant collagenase in healing wounds and nonhealing ulcers. J Surg Res 81:189–195

    CAS  PubMed  Google Scholar 

  68. Vaalamo M, Mattila L, Johansson N et al (1997) Distinct populations of stromal cells express collagenase-3 (MMP-13) and collagenase-1 (MMP-1) in chronic ulcers but not in normally healing wounds. J Invest Dermatol 109:96–101

    CAS  PubMed  Google Scholar 

  69. Lobmann R, Ambrosch A, Schultz G et al (2002) Expression of matrix-metalloproteinases and their inhibitors in the wounds of diabetic and non-diabetic patients. Diabetologia 45:1011–1016

    CAS  PubMed  Google Scholar 

  70. Sibbald RG, Woo KY (2008) The biology of chronic foot ulcers in persons with diabetes. Diabetes Metab Res Rev 24:S25–S30

    Google Scholar 

  71. Lobmann R, Schultz G, Lehnert H (2005) Proteases and the diabetic foot syndrome: mechanisms and therapeutic implications. Diabetes Care 28:461–471

    CAS  PubMed  Google Scholar 

  72. Ladwig GP, Robson MC, Liu R et al (2002) Ratios of activated matrix metalloproteinase-9 to tissue inhibitor of matrix metalloproteinase-1 in wound fluids are inversely correlated with healing of pressure ulcers. Wound Repair Regen 10:26–37

    PubMed  Google Scholar 

  73. Trengove NJ, Bielefeldt-Ohmann H, Stacey MC (2000) Mitogenic activity and cytokine levels in non-healing and healing chronic leg ulcers. Wound Repair Regen 8:13–25

    CAS  PubMed  Google Scholar 

  74. Piaggesi A, Viacava P, Rizzo L et al (2003) Semiquantitative analysis of the histopathological features of the neuropathic foot ulcer. Diabetes Care 26:3123–3128

    PubMed  Google Scholar 

  75. Chung JH, Seo JY, Choi HR et al (2001) Modulation of skin collagen metabolism in aged and photoaged human skin in vivo. J Invest Dermatol 117:1218–1224

    CAS  PubMed  Google Scholar 

  76. Dimri GP, Lee X, Basile G et al (1995) A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci USA 92:9363–9367

    CAS  PubMed  Google Scholar 

  77. Chiba Y, Yamashita Y, Ueno M et al (2005) Cultured murine dermal fibroblast-like cells from senescence-accelerated mice as in vitro models for higher oxidative stress due to mitochondrial alterations. J Gerontol A Biol Sci Med Sci 60:1087–1098

    PubMed  Google Scholar 

  78. Song YS, Lee BY, Hwang ES (2005) Distinct ROS and biochemical profiles in cells undergoing DNA damage-induced senescence and apoptosis. Mech Ageing Dev 126:580–590

    CAS  PubMed  Google Scholar 

  79. Wall SJ, Sampson MJ, Levell N et al (2003) Elevated matrix metalloproteinase-2 and n-3 production from human diabetic dermal fibroblasts. Br J Dermatol 149:13–16

    CAS  PubMed  Google Scholar 

  80. Price SA, Agthong S, Middlemas AB et al (2004) Mitogen-activated protein kinase p38 mediates reduced nerve conduction velocity in experimental diabetic neuropathy: interactions with aldose reductase. Diabetes 53:1851–1856

    CAS  PubMed  Google Scholar 

  81. Purves T, Middlemas A, Agthong S et al (2001) A role for mitogen-activated protein kinases in the etiology of diabetic neuropathy. FASEB J 15:2508–2514

    CAS  PubMed  Google Scholar 

  82. Brenneisen P, Wenk J, Klotz LO et al (1998) J Biol Chem 273:5279–5287

    CAS  PubMed  Google Scholar 

  83. Fisher GJ, Talwar HS, Lin JY et al (1998) J Clin Invest 101:1432–1440

    CAS  PubMed Central  PubMed  Google Scholar 

  84. Fisher GJ, Quan T, Purohit T et al (2009) Collagen fragmentation promotes oxidative stress and elevated matrix metalloproteinase-1 in fibroblasts in aged human skin. Am J Pathol 174:101–114

    CAS  PubMed  Google Scholar 

  85. Varani J, Warner RL, Gharaee-Kermani M et al (2000) Vitamin a antagonizes decreased cell growth and elevated collagen-degrading matrix metalloproteinases and stimulates collagen accumulation in naturally aged human skin. J Invest Dermatol 114:480–486

    CAS  PubMed  Google Scholar 

  86. Zaw KK, Yokoyama Y, Abe M et al (2006) Catalase restores the altered mRNA expression of collagen and matrix metalloproteinases by dermal fibroblasts exposed to reactive oxygen species. Eur J Dermatol 16:375–379

    CAS  PubMed  Google Scholar 

  87. Choi MS, Yoo MS, Son DJ et al (2007) Increase of collagen synthesis by obovatol through stimulation of the TGF-β signaling and inhibition of matrix metalloproteinase in UVB-irradiated human fibroblast. J Dermatol Sci 46:127–137

    CAS  PubMed  Google Scholar 

  88. Desfalts AC, Serri O, Renier G (1998) Normalization of plasma lipid peroxides, monocyte adhesion, and tumor necrosis factor-alpha production in NIDDM patients after gliclazide treatment. Diabetes Care 21:487–493

    Google Scholar 

  89. Siwik DA, Chang DL, Colucci WS (2000) Interleukin-1 beta and tumor necrosis-factor-alpha decrease collagen synthesis and increased matrix metalloproteinase activity in cardiac fibroblasts in vitro. Circ Res 86:1259–1265

    CAS  PubMed  Google Scholar 

  90. Gao C-F, Wang H, Wang A-H et al (2004) Transcriptional regulation of human a1(I) procollagen gene in dermal fibroblasts. World J Gastroenterol 10:1447–1451

    CAS  PubMed  Google Scholar 

  91. Levenson SM, Demetriou AA (1992) Metabolic factors. In: Cohen IK, Diegelmann RF, Lindblad WJ (eds) Wound healing: biochemical and clinical aspects. W.B. Saunders, Philadelphia, pp 248–273

    Google Scholar 

  92. Varani J, Perone P, Griffiths CEM et al (1994) All-trans retinoic acid (RA) stimulates events in organ-cultured human skin that underlie repair. J Clin Invest 94:1747–1753

    CAS  PubMed Central  PubMed  Google Scholar 

  93. Varani J, Perone P, Fligiel SEG et al (1994) All-trans retinoic acid preserves viability of fibroblasts and keratinocytes in full-thickness human skin and fibroblasts in isolated dermis in organ culture. Arch Dermatol Res 1994(286):443–447

    Google Scholar 

  94. Guzik TJ, Mussa S, Gastaldi D et al (2002) Mechanisms of increased vascular superoxide production in human diabetes mellitus: role of NAD(P)H oxidase and endothelial nitric oxide synthase. Circulation 105:1656–1662

    CAS  PubMed  Google Scholar 

  95. Frank S, Kampfer H, Wetzler C et al (2002) Nitric oxide drives skin repair: novel function of an established mediator. Kidney Int 61:882–888

    CAS  PubMed  Google Scholar 

  96. Ziche M, Morbidelli L, Masini E et al (1994) Nitric oxide mediates angiogenesis in vivo and endothelial cell growth and migration in vitro promoted by substance P. J Clin Invest 94:2036–2044

    CAS  PubMed Central  PubMed  Google Scholar 

  97. Schaffer MR, Efron PA, Thornton FJ et al (1997) Nitric oxide, an autocrine regulator of wound fibroblast synthetic function. J Immunol 158:2375–2381

    CAS  PubMed  Google Scholar 

  98. Noiri E, Peresleni T, Srivastava N et al (1996) Nitric oxide is necessary for a switch from stationary to locomoting phenotype in epithelial cells. Am J Physiol 170:C794–C802

    Google Scholar 

  99. Witte MB, Thornton FJ, Tantry U et al (2002) l-arginine supplementation enhances diabetic wound healing: involvement of the nitric oxide synthase and arginase pathways. Metabolism 51:1269–1273

    CAS  PubMed  Google Scholar 

  100. Yu Y, Thorpe SR, Jenkins AJ et al (2006) Advanced glycation end-products and methionine sulphoxide in skin collagen of patients with type 1 diabetes. Diabetologia 49:2488–2498

    CAS  PubMed  Google Scholar 

  101. Wear-Maggitti K, Lee J, Conejero A et al (2004) Use of topical sRAGE in diabetic wounds increased neovascularization and granulation tissue formation. Ann Plast Surg 52:519–522

    PubMed  Google Scholar 

  102. Meerwaldt R, Links TP, Graaff R et al (2005) Increased accumulation of skin advanced glycation end-products precedes and correlates with clinical manifestation of diabetic neuropathy. Diabetologia 48:1637–1644

    CAS  PubMed  Google Scholar 

  103. Schmidt AM, Shi DY, Shi FY et al (2001) The multiligand receptor RAGE as a progression factor amplifying immune and inflammatory responses. J Clin Invest 108:949–955

    CAS  PubMed Central  PubMed  Google Scholar 

  104. Schmidt AM, Yan SD, Wautier JL et al (1994) Activation of receptor for advanced glycation end products: implications for induction of oxidant stress and cellular dysfunction in the pathogenesis of vascular lesions. Arterioscler Thromb 10:1521–1528

    Google Scholar 

  105. Owen WF, Hou FF, Ro S et al (1998) Beta 2-microglobulin modified with advanced glycation end products modulates collagen synthesis by human fibroblasts. Kidney Int 53:1365–1373

    CAS  PubMed  Google Scholar 

  106. Cibrian D, Guillen I, Freyre F et al (2005) Methylglyoxal administration induces diabetes-like microvascular changes and perturbs the healing process of cutaneous wounds. Clin Sci 109:83–95

    PubMed  Google Scholar 

  107. Ilnytska O, Lyzogubov VV, Stevens MJ et al (2006) PARP inhibition alleviates experimental diabetic sensory neuropathy. Diabetes 55:1686–1694

    CAS  PubMed Central  PubMed  Google Scholar 

  108. Moncada S, Gryglewski RJ, Bunting S et al (1976) A lipid peroxide inhibits the enzyme in blood vessel microsomes that generates from prostaglandin endoperoxides the substance (prostaglandin X) which prevents platelet aggregation. Prostaglandins 12:715–737

    CAS  PubMed  Google Scholar 

  109. Kellogg AP, Wiggin T, Larkin D et al (2007) Protective effects of cyclooxygenase-2 gene inactivation against peripheral nerve dysfunction and intraepidermal nerve fibers loss in long term experimental. Diabetes 56:2997–3005

    CAS  PubMed  Google Scholar 

  110. Ward KK, Low PA, Schmelzer JD et al (1989) Prostacyclin and noradrenaline in peripheral nerve of chronic experimental diabetes in rats. Brain 112:197–208

    PubMed  Google Scholar 

  111. Tur E, Yosipovitch G, Bar-On Y (1991) Skin reactive hyperemia in diabetic patients: a study by laser Doppler flowmetry. Diabetes Care 14:958–962

    CAS  PubMed  Google Scholar 

  112. Bornmyr S, Svensson H, Lilja B et al (1997) Cutaneous vasomotor responses in young type I diabetic patients. J Diabetes Complicat 11:21–26

    CAS  PubMed  Google Scholar 

  113. Rayman G, Williams SA, Spencer PD et al (1986) Impaired microvascular response to minor skin trauma in type 1 diabetes. Br Med J (Clin Res Ed) 292:1295–1298

    CAS  Google Scholar 

  114. Vinik AI, Holland MT, Le Beau JM et al (1992) Diabetic neuropathies. Diabetes Care 12:1926–1975

    Google Scholar 

  115. Feldman EL, Stevens MJ, Russell JW (2003) Diabetic peripheral and autonomic neuropathy. In: Sperling MA (ed) Contemporary endocrinology: type I diabetes: etiology and treatment. Humana, Totowa, pp 437–461

    Google Scholar 

  116. Anand P, Terenghi G, Warner G et al (1996) The role of endogenous nerve growth factor in human diabetic neuropathy. Nat Med 2:703–707

    CAS  PubMed  Google Scholar 

  117. Fromy B, Abraham P, Bouvet C et al (2002) Early decrease of skin blood flow in response to locally applied pressure in diabetic subjects. Diabetes 51:1214–1217

    CAS  PubMed  Google Scholar 

  118. Fromy B, Merzeau S, Abraham P et al (2000) Mechanisms of the cutaneous vasodilator response to local external pressure application in rats: involvement of CGRP, neurokinins, prostaglandins and NO. Br J Pharmacol 131:1161–1171

    CAS  PubMed  Google Scholar 

  119. Sigaudo-Roussel D, Demiot C, Fromy B et al (2004) Early endothelial dysfunction severely impairs skin blood flow response to local pressure application in streptozotocin-induced diabetic mice. Diabetes 53:1564–1569

    CAS  PubMed  Google Scholar 

  120. Habuchi O, Miyachi T, Kaigawa S et al (1991) Effects of glutathione depletion on the synthesis of proteoglycan and collagen in cultured chondrocytes. Biochim Biophys Acta 1093:153–161

    CAS  PubMed  Google Scholar 

  121. Young MJ, Marshall A, Adams JE et al (1995) Osteopenia, neurological dysfunction, and the development of Charcot neuroarthropathy. Diabetes Care 18:34–38

    CAS  PubMed  Google Scholar 

  122. Stevens MJ, Edmonds ME, Foster AVM et al (1992) Selective neuropathy and preserved vascular responses in the diabetic Charcot foot. Diabetologia 35:148–154

    CAS  PubMed  Google Scholar 

  123. Shapiro SA, Stansberry KB, Hill MA et al (1998) Normal blood flow response and vasomotion in the diabetic Charcot foot. J Diabet Comp 12:147–153

    CAS  Google Scholar 

  124. Witzke KA, Vinik AI, Grant LM et al (2011) Loss of RAGE defense: a cause of Charcot neuroarthropathy? Diabetes Care 34:1617–1621

    CAS  PubMed  Google Scholar 

  125. Mabilleau G, Petrova NL, Edmonds ME et al (2008) Increased osteoclastic activity in acute Charcot’s osteoarthropathy: the role of receptor activator of nuclear factor-kappaB ligand. Diabetologia 51:1035–1040

    CAS  PubMed Central  PubMed  Google Scholar 

  126. Tahrani A, Zeng W, Shakher J et al (2012) Cutaneous structural and functional correlates of foot complications in high risk subjects. Diabetes Care 35:1913

    PubMed  Google Scholar 

  127. Varani J, Perone P, Merfert MG et al (2002) All-trans retinoic acid improves structure and function of diabetic rat skin in organ culture. Diabetes 51:3510–3516

    CAS  PubMed  Google Scholar 

  128. Zeng W, Tahrani A, Shakher J et al (2011) Effect of a synthetic retinoid on matrix metalloproteinases, procollagen expression and antioxidant defence enzymes in cultured human dermal fibroblasts exposed to high glucose. J Diab Comp 25:398–404

    Google Scholar 

  129. Ciaccio M, Valenza M, Tesoriere L et al (1993) Vitamin A inhibits doxorubicin-induced membrane lipid peroxidation in rat tissues in vivo. Arch Biochem Biophys 302:103–108

    CAS  PubMed  Google Scholar 

  130. Palacios A, Piergiacomi VA, Catala A (1996) Vitamin A supplementation inhibits chemiluminescence and lipid peroxidation in isolated rat liver microsomes and mitochondria. Mol Cell Biochem 154(1):77–82

    CAS  PubMed  Google Scholar 

  131. Jackson B, Morgan K, Werrbach-Perez et al (1991) Antioxidant effect of retinoic acid on PC 12 rat pheochromocytoma cells. Int J Dev Neurosci 9

    Google Scholar 

  132. Ahlemeyer B, Bauerbach E, Plath M et al (2001) Retinoic acid reduces apoptosis and oxidative stress by preservation of SOD protein level. Free Radic Biol Med 30:1067–1077

    CAS  PubMed  Google Scholar 

  133. Ahlemeyer B, Krieglstein J (2000) Inhibition of glutathione depletion by retinoic acid and tocopherol protects cultured neurons from staurosporine-induced oxidative stress and apoptosis. Neurochem Int 36:1–5

    CAS  PubMed  Google Scholar 

  134. Kitamura M, Ishikawa Y, Moreno-Manzano V et al (2002) Intervention by retinoic acid in oxidative stress-induced apoptosis. Nephrol Dial Transplant 17(Suppl 9):84–87

    CAS  PubMed  Google Scholar 

  135. Chai D, Wang B, Shen L et al (2008) RXR agonists inhibit high-glucose-induced oxidative stress by repressing PKC activity in human endothelial cells. Free Radic Biol Med 44:1334–1347

    CAS  PubMed  Google Scholar 

  136. Guleria RA, Pan J, DiPete D et al (2006) Hyperglycemia inhibits retinoic acid-induced activation of Rac1, prevents differentiation of cortical neurons, and causes oxidative stress in a rat model of diabetic pregnancy. Diabetes 55:3334

    Google Scholar 

  137. Yoo HY, Chang MS, Rho HM (1999) Induction of Cu/Zn superoxide dismutase gene through the peroxisome proliferator-responsive element by arachidonic acid. Gene 234:87–91

    CAS  PubMed  Google Scholar 

  138. Dal-Pizzol F, Klamt F, Benfato MS et al (2001) Retinol supplementation induces oxidative stress and modulates antioxidant enzyme activities in rat sertoli cells. Free Radic Res 34:395–404

    CAS  PubMed  Google Scholar 

  139. Murata M, Kawanishi S (2000) Oxidative DNA damage by vitamin A and its derivative via superoxide generation. J Biol Chem 275:2003–2008

    CAS  PubMed  Google Scholar 

  140. Gimeno A, Zaragoza R, Vivo-Ses I et al (2004) Retinol at concentrations greater than the physiological limit induces oxidative stress and apoptosis in human dermal fibroblasts. Exp Dermatol 13:45–54

    CAS  PubMed  Google Scholar 

  141. Packer L, Witt EH, Tritschler HJ (1995) Alpha-lipoic acid as a biological antioxidant. Free Radic Biol Med 19:227–250

    CAS  PubMed  Google Scholar 

  142. Stevens MJ, Obrosova I, Cao X et al (2000) Effects of DL–lipoic acid on peripheral nerve conduction, blood flow, energy metabolism, and oxidative stress in experimental diabetic neuropathy. Diabetes 1006–1015

    Google Scholar 

  143. Ziegler D, Hanefeld M, Ruhnau KJ et al (1995) Treatment of symptomatic diabetic peripheral neuropathy with the anti-oxidant α-lipoic acid—a 3-week multicentre randomized controlled trial (ALADIN study). Diabetologia 38:1425–1433

    CAS  PubMed  Google Scholar 

  144. Ziegler D, Hanefeld M, Ruhnau KJ et al (1999) Treatment of symptomatic diabetic polyneuropathy with the antioxidant alpha-lipoic acid: A 7-month multicenter randomized controlled trial (aladin iii study). Aladin iii study group. Alpha-lipoic acid in diabetic neuropathy. Diabetes Care 22:1296–1301

    CAS  PubMed  Google Scholar 

  145. Ziegler D, Ametov A, Barinov A et al (2006) Oral treatment with alpha-lipoic acid improves symptomatic diabetic polyneuropathy: the SYDNEY 2 trial. Diabetes Care 29:2365–2370

    CAS  PubMed  Google Scholar 

  146. Schmidt AM (1996) Receptor-mediated endothelial cell dysfunction in diabetic vasculopathy. J Clin Invest 97:238–243

    PubMed Central  PubMed  Google Scholar 

  147. hang W-J, Frei B (2001) α-Lipoic acid inhibits TNF-α-induced NF-kB activation and adhesion molecule expression in human endothelial cells. FASEB J 15:2423–2432

    Google Scholar 

  148. Demiot C, Fromy B, Saumet JL et al (2006) Preservation of pressure-induced cutaneous vasodilation by limiting oxidative stress in short-term diabetic mice. Cardiovasc Res 69:245–252

    CAS  PubMed  Google Scholar 

  149. Haak E, Usadel KH, Kusterer K et al (2000) Effects of alpha-lipoic acid on the microcirculation in patients with peripheral diabetic neuropathy. Exp Clin Endocrinol Diabetes 108:168–174

    CAS  PubMed  Google Scholar 

  150. Schleicher ED, Wagner E, Nerlich AG (1997) Increased accumulation of the glycoxidation product N(epsilon)-(carboxymethyl)lysine in human tissues in diabetes and aging. J Clin Invest 99:457–468

    CAS  PubMed Central  PubMed  Google Scholar 

  151. Li F, Abatan OI, Kim H et al (2006) Taurine reverses neurological and neurovascular deficits in Zucker diabetic fatty rats. Neurobiol Dis 22:669–676

    CAS  PubMed  Google Scholar 

  152. Lateef H, Aslam MN, Stevens MJ et al (2005) Pretreatment of diabetic rats with lipoic acid improves healing of subsequently-induced abrasion wounds. Arch Dermatol Res 297:75–83

    CAS  PubMed  Google Scholar 

  153. Luo J-D, Wang Y-Y, Fu W-L et al (2004) Gene therapy of endothelial nitric oxide synthase and manganese superoxide dismutase restores delayed wound healing in type 1 diabetic mice. Circulation 110:2484–2493

    CAS  PubMed  Google Scholar 

  154. Goova MT, Li J, Kislinger T et al (2001) Blockade of receptor for advanced glycation end-products restores effective wound healing in diabetic mice. Am J Pathol 159:513–525

    CAS  PubMed  Google Scholar 

  155. Galeano M, Torre V, Deodato B et al (2001) Raxofelast, a hydrophilic vitamin E-like antioxidant, stimulates wound healing in genetically diabetic mice. Surgery 129:467–477

    CAS  PubMed  Google Scholar 

  156. Stevens MJ, Hosaka Y, Masterson JA et al (1999) Downregulation of the human taurine transporter by glucose in cultured retinal pigment epithelial cells. Am J Physiol 277:E760–E771

    CAS  PubMed  Google Scholar 

  157. Li F, Obrosova IG, Abatan O et al (2005) Taurine replacement attenuates hyperalgesia and abnormal calcium signaling in sensory neurons of streptozotocin-diabetic rats. Am J Physiol 2995(288):E29–E36

    Google Scholar 

  158. Davidson N, Southwick CA (1971) Amino acids and presynaptic inhibition in the rat cuneate nucleus. J Physiol 219:689–708

    CAS  PubMed  Google Scholar 

  159. Obrosova IG, Fathallah L, Stevens MJ (2001) Taurine counteracts oxidative stress and nerve growth factor deficits in early experimental diabetic neuropathy. Exp Neurol 172:211–219

    CAS  PubMed  Google Scholar 

  160. Aruoma OI, Halliwell B, Hoey BM et al (1988) The antioxidant action of taurine, hypotaurine and their metabolic precursors. Biochem J 256:251–255

    CAS  PubMed  Google Scholar 

  161. Obrosova IG, Stevens MJ (1999) Effect of dietary taurine supplementation on GSH and NAD(P)-redox status, lipid peroxidation and energy metabolism in diabetic precataractous lens. Invest Opthalmol Vis Sci 40:680–688

    CAS  Google Scholar 

  162. Trachtman H, Futterweit S, Prenner J et al (1994) Antioxidants reverse the antiproliferative effect of high glucose and advanced glycosylation end products in cultured rat mesangial cells. Biochem Biophys Res Commun 199:346–352

    CAS  PubMed  Google Scholar 

  163. Janeke G, Siefken W, Carstensen S et al (2003) Role of taurine accumulation in keratinocyte hydration. J Invest Dermatol 121:354–361

    CAS  PubMed  Google Scholar 

  164. Lobo MV, Alonso FJ, Latorre A et al (2001) Taurine levels and localisation in the stratified squamous epithelia. Histochem Cell Biol 115:341–347

    CAS  PubMed  Google Scholar 

  165. Degim Z, Çelebi N, Sayan H et al (2002) An investigation on skin wound healing in mice with a taurine–chitosan gel formulation. Amino Acids 22:187–198

    CAS  PubMed  Google Scholar 

  166. Asquith T, Zeng W, Eggo M et al (2009) Oxidative stress and dysregulation of the human taurine transporter in high glucose exposed Schwann cells: implications for the pathogenesis of diabetic neuropathy. Am J Physiol Endocrinol Metab 297:E620–E628

    Google Scholar 

  167. Grafe F, Wohlrab W, Neubert RH et al (2004) Functional characterization of sodium- and chloride-dependent taurine transport in human keratinocytes. Eur J Pharm Biopharm 57:337–341

    CAS  PubMed  Google Scholar 

  168. Young CN, Koepke JI, Terlecky LJ et al (2008) Reactive oxygen species in tumor necrosis factor-alpha-activated primary human keratinocytes: implications for psoriasis and inflammatory skin disease. J Invest Dermatol 128:2606–2614

    CAS  PubMed  Google Scholar 

  169. Nandhini TA, Thirunavukkarasu V, Ravichandran MK et al (2005) Taurine prevents fructose-diet induced collagen abnormalities in rat skin. J Diab Comp 19:305–311

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin J. Stevens .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Stevens, M.J., Shakher, J. (2014). Oxidative Stress and Complications of the Diabetic Foot. In: Obrosova, I., Stevens, M., Yorek, M. (eds) Studies in Diabetes. Oxidative Stress in Applied Basic Research and Clinical Practice. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4899-8035-9_7

Download citation

Publish with us

Policies and ethics