Skip to main content

Cerebrovascular Disease in Type 1 Diabetes: Role of Oxidative Stress

  • Chapter
  • First Online:
Studies in Diabetes

Abstract

Type 1 diabetes mellitus (T1D) is characterized by an elevation of blood glucose (hyperglycemia), a decrease in circulating levels of insulin, and the development of macro- and microvascular abnormalities. Hyperglycemia appears to be the primary determinant of the structural, functional, and biochemical abnormalities observed in large and small blood vessels of various organ systems during T1D. Hyperglycemia activates various cellular pathways/networks that undoubtedly produce/contribute to endothelial/vascular dysfunction via an increase in oxidative stress. Given that the structural, functional, and biochemical integrity of the brain depend upon the critical coupling between neural activity and cerebral blood flow (neurovascular coupling), alterations in this coupling by T1D could contribute to dysfunction of the blood–brain barrier and/or responses of large and small cerebral blood vessels in response to various stimuli. These abnormalities could then contribute to the pathogenesis of cognitive dysfunction and/or ischemic stroke observed in patients suffering with T1D. The purpose of this chapter is to discuss the role of oxidative stress in impaired cerebrovascular function during T1D. We will discuss critical pathways that produce oxidants and the potential role of these oxidants in the pathogenesis of cerebrovascular dysfunction and perhaps ischemic stroke during T1D. We suggest that a greater understanding regarding the nature of oxidants and antioxidants, and their sources, could lead to new and targeted therapeutic approaches for the treatment of cognitive dysfunction and stroke observed in diabetic subjects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alexander JS, Elrod JW (2002) Extracellular matrix, junctional integrity and matrix metalloproteinase interactions in endothelial permeability regulation. J Anat 200:561–574

    CAS  PubMed  Google Scholar 

  2. Alp NJ, Channon KM (2004) Regulation of endothelial nitric oxide synthase by tetrahydrobiopterin in vascular disease. Arterioscler Thromb Vasc Biol 24:413–420

    CAS  PubMed  Google Scholar 

  3. Alp NJ, Mussa S, Khoo J, Cai S, Guzik T, Jefferson A, Goh N, Rockett KA, Channon KM (2003) Tetrahydrobiopterin-dependent preservation of nitric oxide-mediated endothelial function in diabetes by targeted transgenic GTP-cyclohydrolase I overexpression. J Clin Invest 112:725–735

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Arrick DM, Mayhan WG (2010) Inhibition of endothelin-1 receptors improves impaired nitric oxide synthase-dependent dilation of cerebral arterioles in type-1 diabetic rats. Microcirculation 17:439–446

    CAS  PubMed Central  PubMed  Google Scholar 

  5. Arrick DM, Sharpe GM, Sun H, Mayhan WG (2007) Diabetes-induced cerebrovascular dysfunction: role of poly(ADP-ribose) polymerase. Microvasc Res 73:1–6

    CAS  PubMed  Google Scholar 

  6. Arrick DM, Sharpe GM, Sun H, Mayhan WG (2008) Losartan improves impaired nitric oxide synthase-dependent dilatation of cerebral arterioles in type 1 diabetic rats. Brain Res 1209:128–135

    CAS  PubMed Central  PubMed  Google Scholar 

  7. Arrick DM, Sun H, Patel KP, Mayhan WG (2011) Chronic resveratrol treatment restores vascular responsiveness of cerebral arterioles in type 1 diabetic rats. Am J Physiol Heart Circ Physiol 301:H696–H703

    CAS  PubMed  Google Scholar 

  8. Asaba K, Tojo A, Onozato ML, Goto A, Quinn MT, Fujita T, Wilcox CS (2005) Effects of NADPH oxidase inhibitor in diabetic nephropathy. Kidney Int 67:1890–1898

    CAS  PubMed  Google Scholar 

  9. Awazu M, Parker RE, Harvie BR, Ichikawa I, Kon V (1991) Down-regulation of endothelin-1 receptors by protein kinase C in streptozotocin diabetic rats. J Cardiovasc Pharmacol 17:S500–S502

    CAS  PubMed  Google Scholar 

  10. Ayer RE, Zhang JH (2008) Oxidative stress in subarachnoid haemorrhage: significance in acute brain injury and vasospasm. Acta Neurochir Suppl 104:33–41

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Bagi Z, Koller A (2003) Lack of nitric oxide mediation of flow-dependent arteriolar dilation in type 1 diabetes is restored by sepiapterin. J Vasc Res 40:47–57

    CAS  PubMed  Google Scholar 

  12. Beckman JS, Koppenol WH (1996) Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and the ugly. Am J Physiol 271:C1424–C1437

    CAS  PubMed  Google Scholar 

  13. Bedard K, Krause KH (2007) The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 87:245–313

    CAS  PubMed  Google Scholar 

  14. Besson VC, Zsengeller Z, Plotkine M, Szabo C, Marchand-Verrecchia C (2005) Beneficial effects of PJ34 and INO-1001, two novel water-soluble poly(ADP-ribose) polymerase inhibitors, on the consequences of traumatic brain injury in rat. Brain Res 1041:149–156

    CAS  PubMed  Google Scholar 

  15. Bitar MS, Wahid S, Mustafa S, Al-Saleh E, Dhaunsi GS, Al-Mulla F (2005) Nitric oxide dynamics and endothelial dysfunction in type II model of genetic diabetes. Eur J Pharmacol 511:53–64

    CAS  PubMed  Google Scholar 

  16. Bouloumie A, Bauersachs J, Linz W, Scholkens BA, Wiemer G, Fleming I, Busse R (1997) Endothelial dysfunction coincides with an enhanced nitric oxide synthase expression and superoxide anion production. Hypertension 30:934–941

    CAS  PubMed  Google Scholar 

  17. Brandes RP, Kreuzer J (2005) Vascular NADPH oxidases: molecular mechanisms of activation. Cardiovasc Res 65:16–27

    CAS  PubMed  Google Scholar 

  18. Brownlee M (2001) Biochemistry and molecular cell biology of diabetic complications. Nature 414:813–820

    CAS  PubMed  Google Scholar 

  19. Brownlee M (2005) The pathobiology of diabetic complications: a unifying mechanism. Diabetes 54:1615–1625

    CAS  PubMed  Google Scholar 

  20. Brunmair B, Staniek K, Gras F, Scharf N, Althaym A, Clara R, Roden M, Gnaiger E, Nohl H, Waldhausl W, Furnsinn C (2004) Thiazolidinediones, like metformin, inhibit respiratory complex I: a common mechanism contributing to their antidiabetic actions? Diabetes 53:1052–1059

    CAS  PubMed  Google Scholar 

  21. Burkey JL, Campanale KM, O’Bannon DD, Cramer JW, Farid NA (2002) Disposition of LY333531, a selective protein kinase C beta inhibitor, in the Fischer 344 rat and beagle dog. Xenobiotica 32:1045–1052

    CAS  PubMed  Google Scholar 

  22. Cappelli-Bigazzi M, Battaglia C, Pannain S, Chiariello M, Ambrosio G (1997) Role of oxidative metabolism on endothelium-dependent vascular relaxation of isolated vessels. J Mol Cell Cardiol 29:871–879

    CAS  PubMed  Google Scholar 

  23. Channon KM (2004) Tetrahydrobiopterin: regulator of endothelial nitric oxide synthase in vascular disease. Trends Cardiovasc Med 14:323–327

    CAS  PubMed  Google Scholar 

  24. Cheetham C, Collis J, O’Driscoll G, Stanton K, Taylor R, Green D (2000) Losartan, an angiotensin type 1 receptor antagonist, improves endothelial function in non-insulin-dependent diabetes. J Am Coll Cardiol 36:1461–1466

    CAS  PubMed  Google Scholar 

  25. Chen Q, Vazquez EJ, Moghaddas S, Hoppel CL, Lesnefsky EJ (2003) Production of reactive oxygen species by mitochondria: central role of complex III. J Biol Chem 278:36027–36031

    CAS  PubMed  Google Scholar 

  26. Chiarugi A (2005) Poly(ADP-ribosyl)ation and stroke. Pharmacol Res 52:15–24

    CAS  PubMed  Google Scholar 

  27. Chiarugi A (2002) Poly(ADP-ribose) polymerase: killer or conspirator? The ‘suicide hypothesis’ revisited. Trends Pharmacol Sci 23:122–129

    CAS  PubMed  Google Scholar 

  28. Chiu J, Xu BY, Chen S, Feng B, Chakrabarti S (2008) Oxidative stress-induced, poly(ADP-ribose) polymerase-dependent upregulation of ET-1 expression in chronic diabetic complications. Can J Physiol Pharmacol 86:365–372

    CAS  PubMed  Google Scholar 

  29. Chrissobolis S, Miller AA, Drummond GR, Kemp-Harper BK, Sobey CG (2011) Oxidative stress and endothelial dysfunction in cerebrovascular disease. Front Biosci 16:1733–1745

    CAS  Google Scholar 

  30. Chrissobolis S, Faraci FM (2008) The role of oxidative stress and NADPH oxidase in cerebrovascular disease. Cell 14:495–502

    CAS  Google Scholar 

  31. Cosentino F, Eto M, De Paolis P, van der Loo B, Bachschmid M, Ullrich V, Kouroedov A, Delli Gatti C, Joch H, Volpe M, Luscher TF (2003) High glucose causes upregulation of cyclooxygenase-2 and alters prostanoid profile in human endothelial cells: role of protein kinase C and reactive oxygen species. Circulation 107:1017–1023

    CAS  PubMed  Google Scholar 

  32. Cosentino F, Hishikawa K, Katusic ZS, Luscher TF (1997) High glucose increases nitric oxide synthase expression and superoxide generation in human aortic endothelial cells. Circulation 96:25–28

    CAS  PubMed  Google Scholar 

  33. Dayal S, Arning E, Bottiglieri T, Boger RH, Sigmund CD, Faraci FM, Lentz SR (2004) Cerebral vascular dysfunction mediated by superoxide in hyperhomocysteinemic mice. Stroke 35:1957–1962

    CAS  PubMed  Google Scholar 

  34. Dhar A, Dhar I, Desai KM, Wu L (2010) Methylglyoxal scavengers attenuate endothelial dysfunction induced by methylglyoxal and high concentrations of glucose. Br J Pharmacol 16:1843–1856

    Google Scholar 

  35. Didion SP, Faraci FM (2003) Angiotensin II produces superoxide-mediated impairment of endothelial function in cerebral arterioles. Stroke 34:2038–2042

    CAS  PubMed  Google Scholar 

  36. Didion SP, Ryan MJ, Baumbach GL, Sigmund CD, Faraci FM (2002) Superoxide contributes to vascular dysfunction in mice that express human renin and angiotensinogen. Am J Physiol Heart Circ Physiol 283:H1569–H1576

    CAS  PubMed  Google Scholar 

  37. Didion SP, Hathaway CA, Faraci FM (2001) Superoxide levels and function of cerebral blood vessels after inhibition of CuZn-SOD. Am J Physiol 281:H1697–H1703

    CAS  Google Scholar 

  38. Didion SP, Sigmund CD, Faraci FM (2000) Impaired endothelial function in transgenic mice expressing both human renin and human angiotensinogen. Stroke 31:760–765

    CAS  PubMed  Google Scholar 

  39. Dincer Y, Akcay T, Alademir Z, Ilkova H (2002) Effect of oxidative stress on glutathione pathway in red blood cells from patients with insulin-dependent diabetes mellitus. Metabolism 51:1360–1362

    CAS  PubMed  Google Scholar 

  40. Dong L, Xie MJ, Zhang P, Ji LL, Liu WC, Dong MQ, Gao F (2009) Rotenone partially reverses decreased BK Ca currents in cerebral artery smooth muscle cells from streptozotocin-induced diabetic mice. Clin Exp Pharmacol Physiol 36:e57–e64

    CAS  PubMed  Google Scholar 

  41. Du X, Matsumura T, Edelstein D, Rossetti L, Zsengeller Z, Szabo C, Brownlee M (2003) Inhibition of GAPDH activity by poly(ADP-ribose) polymerase activates three major pathways of hyperglycemic damage in endothelial cells. J Clin Invest 112:1049–1057

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Duntas L, Keck FS, Haug C, Hetzel W, Wolf CF, Rosenthal J, Pfeiffer EF (1992) Serum angiotensin-converting enzyme activity and active renin plasma concentrations in insulin-dependent diabetes mellitus. Diabetes Res Clin Pract 16:203–208

    CAS  PubMed  Google Scholar 

  43. Eliasson MJ, Sampei K, Mandir AS, Hurn PD, Traystman RJ, Bao J, Pieper A, Wang ZQ, Dawson TM, Snyder SH, Dawson VL (1997) Poly(ADP-ribose) polymerase gene disruption renders mice resistant to cerebral ischemia. Nat Med 3:1089–1095

    CAS  PubMed  Google Scholar 

  44. Fang Q, Sun H, Mayhan WG (2003) Impairment of nitric oxide synthase-dependent dilatation of cerebral arterioles during infusion of nicotine. Am J Physiol Heart Circ Physiol 284:H528–H534

    CAS  PubMed  Google Scholar 

  45. Faraci FM (2011) Protecting against vascular disease in brain. Am J Physiol Heart Circ Physiol 300:H1566–H1582

    CAS  PubMed  Google Scholar 

  46. Fatehi-Hassanabad Z, Imen-Shahidi M, Fatehi M, Farrokhfall K, Parsaeei H (2006) The beneficial in vitro effects of lovastatin and chelerythrine on relaxatory response to acetylcholine in the perfused mesentric bed isolated from diabetic rats. Eur J Pharmacol 535:228–233

    CAS  PubMed  Google Scholar 

  47. Ferro T, Neumann P, Gertzberg N, Clements R, Johnson A (2000) Protein kinase C-a mediates endothelial barrier dysfunction induced by TNF-a. Am J Physiol 278:L1107–L1117

    CAS  Google Scholar 

  48. Fleegal-DeMotta MA, Doghu S, Banks WA (2009) Angiotensin II modulates BBB permeability via activation of the AT(1) receptor in brain endothelial cells. J Cereb Blood Flow Metab 29:640–647

    CAS  PubMed  Google Scholar 

  49. Forstermann U, Munzel T (2006) Endothelial nitric oxide synthase in vascular disease: from marvel to menace. Circulation 113:1708–1714

    PubMed  Google Scholar 

  50. Frey RS, Rahman A, Kefer JC, Minshall RD, Malik AB (2002) PKCzeta regulates TNF-alpha-induced activation of NADPH oxidase in endothelial cells. Circ Res 90:1012–1019

    CAS  PubMed  Google Scholar 

  51. Fukai T, Galis ZS, Meng XP, Parthasarathy S, Harrison DG (1998) Vascular expression of extracellular superoxide dismutase in atherosclerosis. J Clin Invest 101:2101–2111

    CAS  PubMed Central  PubMed  Google Scholar 

  52. Fukai T, Siegfried MR, Ushio-Fukai M, Cheng Y, Kojda G, Harrison DG (2000) Regulation of the vascular extracellular superoxide dismutase by nitric oxide and exercise training. J Clin Invest 105:1631–1639

    CAS  PubMed Central  PubMed  Google Scholar 

  53. Fukai T, Siegfried MR, Ushio-Fukai M, Griendling KK, Harrison DG (1999) Modulation of extracellular superoxide dismutase expression by angiotensin II and hypertension. Circ Res 85:23–28

    CAS  PubMed  Google Scholar 

  54. Fukui T, Ishizaka N, Rajagopalan S, Laursen JB, Capers Q, Taylor WR, Harrison DG, de Leon H, Wilcox JN, Griendling KK (1997) p22phox mRNA expression and NADPH oxidase activity are increased in aortas from hypertensive rats. Circ Res 80:45–51

    CAS  PubMed  Google Scholar 

  55. Ganz MB, Seftel A (2000) Glucose-induced changes in protein kinase C and nitric oxide are prevented by vitamin E. Am J Physiol 278:E146–E152

    CAS  Google Scholar 

  56. Gao X, Belmadani S, Picchi A, Xu X, Potter BJ, Tewar-Singh N, Capobianco S, Chilian WM, Zhang C (2007) Tumor necrosis factor-alpha induces endothelial dysfunction in Lepr(db) mice. Circulation 115:245–254

    CAS  PubMed  Google Scholar 

  57. Garcia Soriano F, Virag L, Jagtap P, Szabo E, Mabley JG, Liaudet L, Marton A, Hoyt DG, Murthy KG, Salzman AL, Southan GJ, Szabo C (2001) Diabetic endothelial dysfunction: the role of poly(ADP-ribose) polymerase activation. Nat Med 7(1):108–113

    CAS  PubMed  Google Scholar 

  58. Garcia Soriano F, Pacher P, Mabley J, Liaudet L, Szabo C (2001) Rapid reversal of the diabetic endothelial dysfunction by pharmacological inhibition of poly (ADP-ribose) polymerase. Circ Res 89:684–691

    Google Scholar 

  59. Garcia Soriano F, Virag L, Szabo C (2001) Diabetic endothelial dysfunction: role of reactive oxygen and nitrogen species production and poly(ADP-ribose) polymerase activation. J Mol Med 79:437–448

    Google Scholar 

  60. Geraldes P, King GL (2010) Activation of protein kinase C isoforms and its impact on diabetic complications. Circ Res 106:1319–1331

    CAS  PubMed Central  PubMed  Google Scholar 

  61. Gerzanich V, Ivanova S, Zhou H, Simard JM (2003) Mislocalization of eNOS and upregulation of cerebral vascular Ca2+ channel activity in angiotensin-hypertension. Hypertension 41:1124–1130

    CAS  PubMed  Google Scholar 

  62. Girouard H, Park L, Anrather J, Zhou P, Iadecola C (2006) Angiotensin II attenuates endothelium-dependent responses in the cerebral microcirculation through nox-2-derived radicals. Arterioscler Thromb Vasc Biol 26:826–832

    CAS  PubMed  Google Scholar 

  63. Goldfarb RD, Marton A, Szabo E, Virag L, Salzman AL, Glock D, Akhter I, McCarthy R, Parrillo JE, Szabo C (2002) Protective effect of a novel, potent inhibitor of poly(adenosine 5′-diphosphate-ribose) synthetase in a porcine model of severe bacterial sepsis. Crit Care Med 30:974–980

    CAS  PubMed  Google Scholar 

  64. Govers R, Rabelink TJ (2001) Cellular regulation of endothelial nitric oxide synthase. Am J Physiol 280:F193–F206

    CAS  Google Scholar 

  65. Griendling KK, Minieri CA, Ollerenshaw JD, Alexander RW (1994) Angiotensin II stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells. Circ Res 74:1141–1148

    CAS  PubMed  Google Scholar 

  66. Griendling KK, Sorescu D, Ushio-Fukai M (2000) NAD(P)H oxidase. Role in cardiovascular biology and disease. Circ Res 86:494–501

    CAS  PubMed  Google Scholar 

  67. Guillot FL, Audus KL (1991) Angiotensin peptide regulation of bovine brain microvessel endothelial cell monolayer permeability. J Cardiovasc Pharmacol 18:212–218

    CAS  PubMed  Google Scholar 

  68. Haddad M, Rhinn H, Bloquel C, Coqueran B, Szabo C, Plotkine M, Scherman D, Margaill I (2006) Anti-inflammatory effects of PJ34, a poly(ADP-ribose) polymerase inhibitor, in transient focal cerebral ischemia in mice. Br J Pharmacol 149:23–30

    CAS  PubMed  Google Scholar 

  69. Hamon CG, Cutler P, Blair JA (1989) Tetrahydrobiopterin metabolism in the streptozotocin induced diabetic state in rats. Clin Chim Acta 181:249–254

    CAS  PubMed  Google Scholar 

  70. He Z, King GL (2004) Protein kinase Cbeta isoform inhibitors: a new treatment for diabetic cardiovascular diseases. Circulation 110:7–9

    PubMed  Google Scholar 

  71. Heitzer T, Krohn K, Albers S, Meinertz T (2000) Tetrahydrobiopterin improves endothelium-dependent vasodilation by increasing nitric oxide activity in patients with Type II diabetes mellitus. Diabetologia 43:143–1438

    Google Scholar 

  72. Hempel A, Maasch C, Heintze U, Lindschau C, Dietz R, Luft FC, Haller H (1997) High glucose concentrations increase endothelial cell permeability via activation of protein kinase C alpha. Circ Res 81:363–371

    CAS  PubMed  Google Scholar 

  73. Heumuller S, Wind S, Barbosa-Sicard E, Schmidt HH, Busse R, Schroder K, Brandes RP (2008) Apocynin is not an inhibitor of vascular NADPH oxidases but an antioxidant. Hypertension 51:211–217

    PubMed  Google Scholar 

  74. Hodgkinson AD, Bartlett T, Oates PJ, Millward BA, Demaine AG (2003) The response of antioxidant genes to hyperglycemia is abnormal in patients with type 1 diabetes and diabetic nephropathy. Diabetes 52:846–851

    CAS  PubMed  Google Scholar 

  75. Huang WC, Juang SW, Liu IM, Chi TC, Cheng JT (1999) Changes of superoxide dismutase gene expression and activity in the brain of streptozotocin-induced diabetic rats. Neurosci Lett 275:25–28

    CAS  PubMed  Google Scholar 

  76. Ihlemann N, Rask-Madsen C, Perner A, Dominguez H, Hermann T, Kober L, Torp-Pedersen C (2003) Tetrahydrobiopterin restores endothelial dysfunction induced by an oral glucose challenge in healthy subjects. Am J Physiol Heart Circ Physiol 285:H875–H882

    CAS  PubMed  Google Scholar 

  77. Inoguchi T, Sonta T, Tsubouchi H, Etoh T, Kakimoto M, Sonoda N, Sato N, Sekiguchi N, Kobayashi K, Sumimoto H, Utsumi H, Nawata H (2003) Protein kinase C-dependent increase in reactive oxygen species (ROS) production in vascular tissues of diabetes: role of vascular NAD(P)H oxidase. J Am Soc Nephrol 14:S227–S232

    CAS  PubMed  Google Scholar 

  78. Kamata K, Kobayashi T (1996) Changes in superoxide dismutase mRNA expression by streptozotocin-induced diabetes. Br J Pharmacol 119:583–589

    CAS  PubMed  Google Scholar 

  79. Katakam PV, Snipes JA, Steed MM, Busija DW (2012) Insulin-induced generation of reactive oxygen species and uncoupling of nitric oxide synthase underlie the cerebrovascular insulin resistance in obese rats. J Cereb Blood Flow Metab 32:792–804

    CAS  PubMed  Google Scholar 

  80. Kauppinen TM, Suh SW, Berman AE, Hamby AM, Swanson RA (2009) Inhibition of poly(ADP-ribose) polymerase suppresses inflammation and promotes recovery after ischemic injury. J Cereb Blood Flow Metab 29:820–829

    CAS  PubMed  Google Scholar 

  81. Kazama K, Anrather J, Zhou P, Girouard H, Frys K, Milner TA, Iadecola C (2004) Angiotensin II impairs neurovascular coupling in neocortex through NADPH oxidase-derived radicals. Circ Res 95:1019–1026

    CAS  PubMed  Google Scholar 

  82. Kinoshita H, Katusic ZS (1996) Exogenous tetrahydrobiopterin causes endothelium-dependent contractions in isolated canine basilar artery. Am J Physiol 271:H738–H743

    CAS  PubMed  Google Scholar 

  83. Kinoshita H, Milstien S, Wambi C, Katusic ZS (1997) Inhibition of tetrahydrobiopterin biosynthesis impairs endothelium-dependent relaxations in canine basilar artery. Am J Physiol 273:H718–H724

    CAS  PubMed  Google Scholar 

  84. Kinoshita H, Tsutsui M, Milstien S, Katusic ZS (1997) Tetrahydrobiopterin, nitric oxide and regulation of cerebral arterial tone. Prog Neurobiol 52:295–302

    CAS  PubMed  Google Scholar 

  85. Kobayashi T, Kamata K (1999) Relationship among cholesterol, superoxide anion and endothelium-dependent relaxation in diabetic rats. Eur J Pharmacol 367:213–222

    CAS  PubMed  Google Scholar 

  86. Kohli R, Meininger CJ, Haynes TE, Yan W, Self JT, Wu G (2004) Dietary l-arginine supplementation enhances endothelial nitric oxide synthesis in streptozotocin-induced diabetic rats. J Nutr 134:600–608

    CAS  PubMed  Google Scholar 

  87. Kokoglu E, Belce A, Gumustas K, Altug T (1994) A possible relationship between superoxide dismutase and chronic complications of diabetes mellitus in the brain. Med Sci Res 22:781–782

    Google Scholar 

  88. Kontos HA, Wei EP, Ellis EF, Jenkins LW, Povlishock JT, Rowe GT, Hess ML (1985) Appearance of superoxide anion radical in cerebral extracellular space during increased prostaglandin synthesis in cats. Circ Res 57:142–151

    CAS  PubMed  Google Scholar 

  89. Kontos HA, Wei EP, Kukreja RC, Ellis EF, Hess ML (1990) Differences in endothelium-dependent cerebral dilation by bradykinin and acetylcholine. Am J Physiol 258:H1261–H1266

    CAS  PubMed  Google Scholar 

  90. Kontos HA, Wei EP, Povlishock JT, Christman CW (1984) Oxygen radicals mediate the cerebral arteriolar dilation from arachidonate and bradykinin in cats. Circ Res 55:295–303

    CAS  PubMed  Google Scholar 

  91. Kontos HA, Wei EP, Povlishock JT, Kukreja RC, Hess ML (1989) Inhibition by arachidonate of cerebral arteriolar dilation from acetylcholine. Am J Physiol 256:H665–H671

    CAS  PubMed  Google Scholar 

  92. Lacza Z, Puskar M, Kis B, Perciaccante JV, Miller AW, Busija DW (2002) Hydrogen peroxide acts as an EDHF in the piglet pial vasculature in response to bradykinin. Am J Physiol Heart Circ Physiol 283:H406–H411

    CAS  PubMed  Google Scholar 

  93. Landmesser U, Cai H, Dikalov S, McCann L, Hwang J, Jo H, Holland SM, Harrison DG (2002) Role of p47(phox) in vascular oxidative stress and hypertension caused by angiotensin II. Hypertension 40:511–515

    CAS  PubMed  Google Scholar 

  94. Le Page C, Sanceau J, Drapier JC, Wietzerbin J (1998) Inhibitors of ADP-ribosylation impair inducible nitric oxide synthase gene transcription through inhibition of NF kappa B activation. Biochem Biophys Res Commun 243:451–457

    PubMed  Google Scholar 

  95. Lee TS, Saltsman KA, Ohashi H, King GL (1989) Activation of protein kinase C by elevation of glucose concentration: proposal for a mechanism in the development of diabetic vascular complications. Proc Natl Acad Sci 86:5141–5145

    CAS  PubMed  Google Scholar 

  96. Lenzser G, Kis B, Snipes JA, Gaspar T, Sandor P, Komjati K, Szabo C, Busija DW (2007) Contribution of poly(ADP-ribose) polymerase to postischemic blood-brain barrier damage in rats. J Cereb Blood Flow Metab 27:1318–1326

    CAS  PubMed  Google Scholar 

  97. Lieberman J, Sastre A (1980) Serum angiotensin-converting enzyme: elevations in diabetes mellitus. Ann Intern Med 93:825–826

    CAS  PubMed  Google Scholar 

  98. Liu Y, Zhao H, Li H, Kalyanaraman B, Nicolosi AC, Gutterman DD (2003) Mitochondrial sources of H2O2 generation play a key role in flow-mediated dilation in human coronary resistance arteries. Circ Res 93:573–580

    CAS  PubMed  Google Scholar 

  99. Lonn E, Bosch J, Yusuf S, Sheridan P, Pogue J, Arnold JM, Ross C, Arnold A, Sleight P, Probstfield J, Dagenais GR (2005) Effects of long-term vitamin E supplementation on cardiovascular events and cancer: a randomized controlled trial. JAMA 293:1338–1347

    PubMed  Google Scholar 

  100. Loot AE, Schreiber JG, Fisslthaler B, Fleming I (2009) Angiotensin II impairs endothelial function via tyrosine phosphorylation of the endothelial nitric oxide synthase. J Exp Med 206:2889–2896

    CAS  PubMed Central  PubMed  Google Scholar 

  101. Magnuson DK, Maier RV, Pohlman TH (1989) Protein kinase C: a potential pathway of endothelial cell activation by endotoxin, tumor necrosis factor, and interleukin-1. Surgery 106:216–223

    CAS  PubMed  Google Scholar 

  102. Manabe K, Shirahase H, Usui H, Kurahashi K, Fujiwara M (1989) Endothelium-dependent contractions induced by angiotensin I and angiotensin II in canine cerebral artery. J Pharmacol Exp Ther 251:317–320

    CAS  PubMed  Google Scholar 

  103. Martin S (1997) Soluble adhesion molecules in type 1 diabetes mellitus. Horm Metab Res 29:639–642

    CAS  PubMed  Google Scholar 

  104. Matoba T, Shimokawa H, Nakashima M, Hirakawa Y, Mukai Y, Hirano K, Kanaide H, Takeshita A (2000) Hydrogen peroxide is an endothelium-derived hyperpolarizing factor in mice. J Clin Invest 106:1521–1530

    CAS  PubMed Central  PubMed  Google Scholar 

  105. Mayhan WG, Arrick DM, Sharpe GM, Patel KP, Sun H (2006) Inhibition of NAD(P)H oxidase alleviates impaired NOS-dependent responses of pial arterioles in type 1 diabetes mellitus. Microcirculation 13:567–575

    CAS  PubMed  Google Scholar 

  106. Mayhan WG, Patel KP (1995) Acute effects of glucose on reactivity of the cerebral microcirculation: role of activation of protein kinase C. Am J Physiol 269:H1297–H1302

    CAS  PubMed  Google Scholar 

  107. Mayhan WG, Sharpe GM (2001) Generation of superoxide anion impairs histamine-induced increases in macromolecular efflux. Microvasc Res 61:275–281

    CAS  PubMed  Google Scholar 

  108. Mayhan WG, Simmons LK, Sharpe GM (1991) Mechanism of impaired responses of cerebral arterioles during diabetes mellitus. Am J Physiol 260:H319–H326

    CAS  PubMed  Google Scholar 

  109. McCullough LD, Zeng Z, Blizzard KK, Debchoudhury I, Hurn PD (2005) Ischemic nitric oxide and poly (ADP-ribose) polymerase-1 in cerebral ischemia: male toxicity, female protection. J Cereb Blood Flow Metab 25:502–512

    CAS  PubMed  Google Scholar 

  110. Minchenko AG, Stevens MJ, White L, Abatan OI, Komjati K, Pacher P, Szabo C, Obrosova IG (2003) Diabetes-induced overexpression of endothelin-1 and endothelin receptors in the rat renal cortex is mediated via poly(ADP-ribose) polymerase activation. FASEB J 17:1514–1516

    CAS  PubMed  Google Scholar 

  111. Modrick ML, Didion SP, Lynch CM, Dayal S, Lentz SR, Faraci FM (2009) Role of hydrogen peroxide and the impact of glutathione peroxidase-1 in regulation of cerebral vascular tone. J Cereb Blood Flow Metab 29:1130–1137

    CAS  PubMed Central  PubMed  Google Scholar 

  112. Modrick ML, Didion SP, Sigmund CD, Faraci FM (2009) Role of oxidative stress and AT1 receptors in cerebral vascular dysfunction with aging. Am J Physiol Heart Circ Physiol 296:H1914–H1919

    CAS  PubMed  Google Scholar 

  113. Munzel T, Gori T, Bruno RM, Taddei S (2010) Is oxidative stress a therapeutic target in cardiovascular disease? Eur Heart J 31:2741–2748

    PubMed  Google Scholar 

  114. Nangle MR, Cotter MA, Cameron NE (2003) Protein kinase Cbeta inhibition and aorta and corpus cavernosum function in streptozotocin-diabetic mice. Eur J Pharmacol 475:99–106

    CAS  PubMed  Google Scholar 

  115. Nishikawa T, Edelstein D, Du XL, Yamagishi S, Matsumura T, Kaneda Y, Yorek MA, Beebe D, Oates PJ, Hammes HP, Giardino I, Brownlee M (2000) Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature 404:787–790

    CAS  PubMed  Google Scholar 

  116. O’Driscoll G, Green D, Rankin J, Stanton K, Taylor R (1997) Improvement in endothelial function by angiotensin converting enzyme inhibition to insulin-dependent diabetes mellitus. J Clin Invest 100:678–684

    PubMed Central  PubMed  Google Scholar 

  117. Okada S, Shikata K, Matsuda M, Ogawa D, Usui H, Kido Y, Nagase R, Wada J, Shikata Y, Makino H (2003) Intercellular adhesion molecule-1-deficient mice are resistant against renal injury after induction of diabetes. Diabetes 52:2586–2593

    CAS  PubMed  Google Scholar 

  118. Ozkaya YG, Agar A, Yargicoglu P, Hacioglu G, Bilmen-Sarikcioglu S, Ozen I, Aliciguzel Y (2002) The effect of exercise on brain antioxidant status of diabetic rats. Diabetes Metab 28:377–384

    CAS  PubMed  Google Scholar 

  119. Pacher P, Liaudet L, Garcia Soriano F, Mabley JG, Szabo E, Szabo C (2002) The role of poly(ADP-ribose) polymerase activation in the development of myocardial and endothelial dysfunction in diabetes. Diabetes 51:514–521

    CAS  PubMed  Google Scholar 

  120. Pannirselvam M, Simon V, Verma S, Anderson T, Triggle CR (2003) Chronic oral supplementation with sepiapterin prevents endothelial dysfunction and oxidative stress in small mesenteric arteries from diabetic (db/db) mice. Br J Pharmacol 140:701–706

    CAS  PubMed  Google Scholar 

  121. Pannirselvam M, Verma S, Anderson TJ, Triggle CR (2002) Cellular basis of endothelial dysfunction in small mesenteric arteries from spontaneously diabetic (db/db –/–) mice: role of decreased tetrahydrobiopterin bioavailability. Br J Pharmacol 136:255–263

    CAS  PubMed  Google Scholar 

  122. Park JY, Takahara N, Gabriele A, Chou E, Naruse K, Suzuma K, Yamauchi T, Ha SW, Meier M, Rhodes CJ, King GL (2000) Induction of endothelin-1 expression by glucose: an effect of protein kinase C activation. Diabetes 49:1239–1248

    CAS  PubMed  Google Scholar 

  123. Pelligrino DA, Koenig HM, Wang Q, Albrecht RF (1994) Protein kinase C suppresses receptor-mediated pial arteriolar relaxation in the diabetic rat. Neuroreport 5:417–420

    CAS  PubMed  Google Scholar 

  124. Picchi A, Gao X, Belmadani S, Potter BJ, Focardi M, Chilian WM, Zhang C (2006) Tumor necrosis factor-alpha induces endothelial dysfunction in the prediabetic metabolic syndrome. Circ Res 99:69–77

    CAS  PubMed  Google Scholar 

  125. Pieper AA, Brat DJ, Krug DK, Watkins CC, Gupta A, Blackshaw S, Verma A, Wang ZQ, Snyder SH (1999) Poly(ADP-ribose) polymerase-deficient mice are protected from streptozotocin-induced diabetes. Proc Natl Acad Sci USA 96:3059–3064

    CAS  PubMed  Google Scholar 

  126. Pieper AA, Verma A, Zhang J, Snyder SH (1999) Poly (ADP-ribose) polymerase, nitric oxide and cell death. Trends Pharmacol Sci 20:171–181

    CAS  PubMed  Google Scholar 

  127. Pieper GM, Gross GJ (1988) Oxygen free radicals abolish endothelium dependent relaxation in diabetic rat aorta. Am J Physiol 255:H825–H833

    CAS  PubMed  Google Scholar 

  128. Pieper GM, Haq RU (1997) Activation of nuclear factor-κB in cultured endothelial cells by increased glucose concentration: prevention by calphostin C. J Cardiovasc Pharmacol 30:528–532

    CAS  PubMed  Google Scholar 

  129. Pieper GM, Langenstroer P, Siebeneich W (1997) Diabetic-induced endothelial dysfunction in rat aorta: role of hydroxyl radicals. Cardiovasc Res 34:145–156

    CAS  PubMed  Google Scholar 

  130. Pollock DM (2005) Endothelin, angiotensin, and oxidative stress in hypertension. Hypertension 45:477–480

    CAS  PubMed  Google Scholar 

  131. Potenza MA, Gagliardi S, Nacci C, Carratu’ MR, Montagnani M (2009) Endothelial dysfunction in diabetes: from mechanisms to therapeutic targets. Curr Med Chem 16:94–112

    CAS  PubMed  Google Scholar 

  132. Rajagopalan S, Kurz S, Munzel T, Tarpey M, Freeman BA, Griendling KK, Harrison DG (1996) Angiotensin II-mediated hypertension in the rat increases vascular superoxide production via membrane NADH/NADPH oxidase activation: contribution to alterations in vascular tone. J Clin Invest 97:1916–1923

    CAS  PubMed Central  PubMed  Google Scholar 

  133. Reeves EP, Dekker LV, Forbes LV, Wientjes FB, Grogan A, Pappin DJ, Segal AW (1999) Direct interaction between p47phox and protein kinase C: evidence for targeting of protein kinase C by p47phox in neutrophils. Biochem J 344:859–866

    CAS  PubMed  Google Scholar 

  134. Ribau JCO, Hadcock SJ, Teoh K, DeReske M, Richardson M (1999) Endothelial adhesion molecule expression is enhanced in the aorta and internal mammary artery of diabetic patients. J Surg Res 85:225–233

    CAS  PubMed  Google Scholar 

  135. Rolo AP, Palmeira CM (2006) Diabetes and mitochondrial function: role of hyperglycemia and oxidative stress. Toxicol Appl Pharmacol 212:167–178

    CAS  PubMed  Google Scholar 

  136. Rosenblum WI (1997) Tetrahydrobiopterin, a cofactor for nitric oxide synthase, produces endothelium-dependent dilation of mouse pial arterioles. Stroke 28:186–189

    CAS  PubMed  Google Scholar 

  137. Ryan MJ, Didion SP, Mathur S, Faraci FM, Sigmund CD (2004) Angiotensin II-induced vascular dysfunction is mediated by the AT1A receptor in mice. Hypertension 43:1074–1079

    CAS  PubMed  Google Scholar 

  138. Schernthaner G, Schwarzer C, Kuzmits R, Muller MM, Klemen U, Freyler H (1984) Increased angiotensin-converting enzyme activities in diabetes mellitus: analysis of diabetes type, state of metabolic control and occurrence of diabetes vascular disease. J Clin Pathol 37:307–312

    CAS  PubMed  Google Scholar 

  139. Schulze PC, Yoshioka J, Takahashi T, He Z, King GL, Lee RT (2004) Hyperglycemia promotes oxidative stress through inhibition of thioredoxin function by thioredoxin-interacting protein. J Biol Chem 279:30369–30374

    CAS  PubMed  Google Scholar 

  140. Sharma A, Bernatchez PN, de Haan JB (2012) Targeting endothelial dysfunction in vascular complications associated with diabetes. Int J Vasc Med 2012:750126

    PubMed Central  PubMed  Google Scholar 

  141. Sheetz MJ, King GL (2002) Molecular understanding of hyperglycemia’s adverse effects for diabetic complications. JAMA 288:2579–2588

    CAS  PubMed  Google Scholar 

  142. Siflinger-Birnboim A, Johnson A (2003) Protein kinase C modulates pulmonary endothelial permeability: a paradigm for acute lung injury. Am J Physiol Lung Cell Mol Physiol 284:L435–L451

    CAS  PubMed  Google Scholar 

  143. Stralin P, Karlsson K, Johansson BO, Marklund SL (1995) The interstitium of the human arterial wall contains very large amounts of extracellular superoxide dismutase. Arterioscler Thromb Vasc Biol 15:2032–2036

    CAS  PubMed  Google Scholar 

  144. Suh SW, Aoyama K, Chen Y, Garnier P, Matsumori Y, Gum E, Liu J, Swanson RA (2003) Hypoglycemic neuronal death and cognitive impairment are prevented by poly(ADP-ribose) polymerase inhibitors administered after hypoglycemia. J Neurosci 23:10681–10690

    CAS  PubMed  Google Scholar 

  145. Sun H, Mayhan WG (2005) Sex difference in nitric oxide synthase-dependent dilatation of cerebral arterioles during long-term alcohol consumption. Alcohol Clin Exp Res 29:430–436

    CAS  PubMed  Google Scholar 

  146. Sun H, Patel KP, Mayhan WG (2001) Tetrahydrobiopterin, a cofactor for NOS, improves endothelial dysfunction during chronic alcohol consumption. Am J Physiol Heart Circ Physiol 281:H1863–H1869

    CAS  PubMed  Google Scholar 

  147. Szabo C (2005) Cardioprotective effects of poly(ADP-ribose) polymerase inhibition. Pharmacol Res 52:34–43

    CAS  PubMed  Google Scholar 

  148. Szabo C (2005) Roles of poly(ADP-ribose) polymerase activation in the pathogenesis of diabetes mellitus and its complications. Pharmacol Res 52:60–71

    CAS  PubMed  Google Scholar 

  149. Szabo C (2009) Role of nitrosative stress in the pathogenesis of diabetic vascular dysfunction. Br J Pharmacol 156:713–727

    CAS  PubMed  Google Scholar 

  150. Szabo C, Pacher P, Zsengeller Z, Vaslin A, Komjati K, Benko R, Chen M, Mabley JG, Kollai M (2004) Angiotensin II-mediated endothelial dysfunction: role of poly(ADP-ribose) polymerase activation. Mol Med 10:28–35

    CAS  PubMed Central  PubMed  Google Scholar 

  151. Szabo C, Dawson VL (1998) Role of poly(ADP-ribose) synthetase in inflammation and ischaemia-reperfusion. Trends Pharmacol Sci 19:287–298

    CAS  PubMed  Google Scholar 

  152. Tachi Y, Okuda Y, Bannai C, Bannai S, Shinohara M, Shimpuku H, Yamashita K, Ohura K (2001) Hyperglycemia in diabetic rats reduces the glutathione content in the aortic tissue. Life Sci 69:1039–1047

    CAS  PubMed  Google Scholar 

  153. Tang XN, Cairns B, Cairns N, Yenari MA (2008) Apocynin improves outcome in experimental stroke with a narrow dose range. Neuroscience 154:556–562

    CAS  PubMed Central  PubMed  Google Scholar 

  154. Tesfamariam B (1994) Free radicals in diabetic endothelial cell dysfunction. Free Radic Biol Med 16:383–391

    CAS  PubMed  Google Scholar 

  155. Tesfamariam B, Jakubowski JA, Cohen RA (1989) Contraction of diabetic rabbit aorta caused by endothelium-derived p GH2–TxA2. Am J Physiol 257:H1327–H1333

    CAS  PubMed  Google Scholar 

  156. Thomas SR, Witting PK, Drummond GR (2008) Redox control of endothelial function and dysfunction: molecular mechanisms and therapeutic opportunities. Antioxid Redox Signal 10:1713–1765

    CAS  PubMed  Google Scholar 

  157. Tian J, Wen Y, Yan L, Cheng H, Yang H, Wang J, Kozman H, Villarreal D, Liu K (2011) Vascular endothelial dysfunction in patients with newly diagnosed type 2 diabetes and effects of 2-year and 5-year multifactorial intervention. Echocardiography 28:1133–1140

    PubMed  Google Scholar 

  158. Tilton RG (2002) Diabetic vascular dysfunction: links to glucose-induced reductive stress and VEGF. Microsc Res Tech 57:390–407

    CAS  PubMed  Google Scholar 

  159. Timimi FK, Ting HH, Haley EA, Roddy MA, Ganz P, Creager MA (1998) Vitamin C improves endothelium-dependent vasodilation in patients with insulin-dependent diabetes mellitus. J Am Coll Cardiol 31:552–557

    CAS  PubMed  Google Scholar 

  160. Ting HH, Timimi FK, Boles KS, Creager SJ, Ganz P, Creager MA (1996) Vitamin C improves endothelium-dependent vasodilation in patients with non-insulin-dependent diabetes mellitus. J Clin Invest 97:22–28

    CAS  PubMed Central  PubMed  Google Scholar 

  161. Touyz RM (2008) Apocynin, NADPH oxidase, and vascular cells: a complex matter. Hypertension 51:172–174

    CAS  PubMed  Google Scholar 

  162. Touyz RM, Chen X, Tabet F, Yao G, He G, Quinn MT, Pagano PJ, Schiffrin EL (2002) Expression of a functionally active gp91phox-containing neutrophil-type NAD(P)H oxidase in smooth muscle cells from human resistance arteries: regulation by angiotensin II. Circ Res 90:1205–1213

    CAS  PubMed  Google Scholar 

  163. Trauernicht AK, Sun H, Patel KP, Mayhan WG (2003) Enalapril prevents impaired nitric oxide synthase-dependent dilatation of cerebral arterioles in diabetic rats. Stroke 34:2698–2703

    CAS  PubMed  Google Scholar 

  164. Tsutsui H, Kinugawa S, Matsushima S (2011) Oxidative stress and heart failure. Am J Physiol Heart Circ Physiol 301:H2181–H2190

    CAS  PubMed  Google Scholar 

  165. Ueno Y, Kizaki M, Nakagiri R, Kamiya T, Sumi H, Osawa T (2002) Dietary glutathione protects rats from diabetic nephropathy and neuropathy. J Nutr 132:897–900

    CAS  PubMed  Google Scholar 

  166. Vancurova I, Miskolci V, Davidson D (2001) NF-kappa B activation in tumor necrosis factor alpha-stimulated neutrophils is mediated by protein kinase Cdelta. Correlation to nuclear Ikappa Balpha. J Biol Chem 276:19746–19752

    CAS  PubMed  Google Scholar 

  167. Vanhoutte PM (2001) Endothelium-derived free radicals: for worse and for better. J Clin Invest 107:23–25

    CAS  PubMed Central  PubMed  Google Scholar 

  168. Vasquiz-Vivar J, Martasek P, Whitsett J, Joseph J, Kalyanaraman B (2002) The ratio between tetrahydrobiopterin and oxidized tetrahydrobiopterin analogues controls superoxide release from endothelial nitric oxide synthase: an EPR spin trapping study. Biochem J 362:733–739

    Google Scholar 

  169. Venugopal SK, Devaraj S, Yang T, Jialal I (2002) Alpha-tocopherol decreases superoxide anion release in human monocytes under hyperglycemic conditions via inhibition of protein kinase C-alpha. Diabetes 51:3049–3054

    CAS  PubMed  Google Scholar 

  170. Vetri F, Chavez R, Xu HL, Paisansathan C, Pelligrino DA (2013) Complex modulation of the expression of PKC isoforms in the rat brain during chronic type 1 diabetes mellitus. Brain Res 1490:202–209

    CAS  PubMed  Google Scholar 

  171. Vetri F, Xu H, Paisansathan C, Pelligrino DA (2012) Impairment of neurovascular coupling in type 1 diabetes mellitus in rats is linked to PKC modulation of BK(Ca) and Kir channels. Am J Physiol Heart Circ Physiol 302:H1274–H1284

    CAS  PubMed  Google Scholar 

  172. Virdis A, Ghiadoni L, Taddei S (2010) Human endothelial dysfunction: EDCFs. Pflugers Arch 459:1015–1023

    CAS  PubMed  Google Scholar 

  173. Wei EP, Ellison MD, Kontos HA, Povlishock JT (1986) O2 radicals in arachidonate induced increased blood-brain barrier permeability to proteins. Am J Physiol 251:H693–H699

    CAS  PubMed  Google Scholar 

  174. Wei EP, Kontos HA, Christman CW, DeWitt DS, Povlishock JT (1985) Superoxide generation and reversal of acetylcholine induced cerebral arteriolar dilation after acute hypertension. Circ Res 57:781–787

    CAS  PubMed  Google Scholar 

  175. Wolf G (2004) New insights into the pathophysiology of diabetic nephropathy: from haemodynamics to molecular pathology. Eur J Clin Invest 34:785–796

    CAS  PubMed  Google Scholar 

  176. Wolf BA, Williamson JR, Easom RA, Chang K, Sherman WR, Turk J (1991) Diacylglycerol accumulation and microvascular abnormalities induced by elevated glucose levels. J Clin Invest 87:31–38

    CAS  PubMed Central  PubMed  Google Scholar 

  177. Wong WT, Tian XY, Xu A, Ng CF, Lee HK, Chen ZY, Au CL, Yao X, Huang Y (2010) Angiotensin II type 1 receptor-dependent oxidative stress mediates endothelial dysfunction in type 2 diabetic mice. Antioxid Redox Signal 13:757–768

    CAS  PubMed  Google Scholar 

  178. Yakubu MA, Sofola OA, Igbo I, Oyekan AO (2004) Link between free radicals and protein kinase C in glucose-induced alteration of vascular dilation. Life Sci 75:2921–2932

    CAS  PubMed Central  PubMed  Google Scholar 

  179. Yoshida K, Yasujima M, Kohzuki M, Kanazawa M, Yoshinaga K, Abe K (1992) Endothelin-1 augments pressor response to angiotensin II infusion in rats. Hypertension 20:292–297

    CAS  PubMed  Google Scholar 

  180. Zhang L, Zalewski A, Liu Y, Mazurek T, Cowan S, Martin JL, Hofmann SM, Vlassara H, Shi Y (2003) Diabetes-induced oxidative stress and low-grade inflammation in porcine coronary arteries. Circulation 108:472–478

    CAS  PubMed  Google Scholar 

  181. Zingarelli B, Salzman AL, Szabo C (1998) Genetic disruption of poly (ADP-ribose) synthetase inhibits the expression of P-selectin and intercellular adhesion molecule-1 in myocardial ischemia/reperfusion injury. Circ Res 83:85–94

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William G. Mayhan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Arrick, D.M., Mayhan, W.G. (2014). Cerebrovascular Disease in Type 1 Diabetes: Role of Oxidative Stress. In: Obrosova, I., Stevens, M., Yorek, M. (eds) Studies in Diabetes. Oxidative Stress in Applied Basic Research and Clinical Practice. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4899-8035-9_2

Download citation

Publish with us

Policies and ethics