Skip to main content

Connecting the Nucleus to the Cytoskeleton for Nuclear Positioning and Cell Migration

  • Chapter
  • First Online:
Cancer Biology and the Nuclear Envelope

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 773))

Abstract

The position of the nucleus in the cytoplasm is a highly regulated process and is required for multiple cellular and developmental processes. Defects on different nuclear positioning events are associated with several pathologies such as muscle and nervous system disorders. In this chapter we describe the current knowledge on the mechanism of nuclear positioning. We discuss how the nucleus connects to the cytoskeleton by nesprins and SUN proteins, how this connection is regulated by Samp1, and how this connection is required for proper nuclear positioning. Furthermore, we discuss how nesprins, SUN, and Samp1 form transmembrane actin-associated nuclear (TAN) lines, novel nuclear envelope structures involved in force transduction during nuclear movement. Finally, we describe the recent evidences suggesting a role for the connection between the nucleus and the cytoskeleton in cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CHIP:

Chromatin immunoprecipitation

EMT:

Epithelial–mesenchymal transition

INM:

Inner nuclear membrane

LINC:

LInker of Nucleoskeleton and Cytoskeleton

LPA:

Lysophosphatidic acid

MTOC:

Microtubule organizing center

MAS:

MTOC attachment site

MRCK:

Myotonic dystrophy kinase-related Cdc42 binding protein

N2G:

Nesprin-2 giant

refilin:

REgulator of FILamin proteIN

SPB:

Spindle pole body

TAN lines:

Transmembrane Actin-associated Nuclear lines

References

  1. Burke B, Roux KJ (2009) Nuclei take a position: managing nuclear location. Dev Cell 17:587–597. doi:10.1016/j.devcel.2009.10.018

    Article  PubMed  CAS  Google Scholar 

  2. Starr DA, Han M (2003) ANChors away: an actin based mechanism of nuclear positioning. J Cell Sci 116:211–216

    Article  PubMed  CAS  Google Scholar 

  3. Dauer WT, Worman HJ (2009) The nuclear envelope as a signaling node in development and disease. Dev Cell 17:626–638. doi:10.1016/j.devcel.2009.10.016

    Article  PubMed  CAS  Google Scholar 

  4. Guilak F, Tedrow JR, Burgkart R (2000) Viscoelastic properties of the cell nucleus. Biochem Biophys Res Commun 269:781–786. doi:10.1006/bbrc.2000.2360

    Article  PubMed  CAS  Google Scholar 

  5. Lammermann T, Bader BL, Monkley SJ, Worbs T, Wedlich-Soldner R, Hirsch K, Keller M, Forster R, Critchley DR, Fassler R, Sixt M (2008) Rapid leukocyte migration by integrin-independent flowing and squeezing. Nature 453:51–55. doi:10.1038/nature06887

    Article  PubMed  CAS  Google Scholar 

  6. Beadle C, Assanah MC, Monzo P, Vallee R, Rosenfeld SS, Canoll P (2008) The role of myosin II in glioma invasion of the brain. Mol Biol Cell 19:3357–3368. doi:10.1091/mbc.E08-03-0319

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  7. Morris NR (2003) Nuclear positioning: the means is at the ends. Curr Opin Cell Biol 15:54–59

    Article  PubMed  CAS  Google Scholar 

  8. Malone CJ, Fixsen WD, Horvitz HR, Han M (1999) UNC-84 localizes to the nuclear envelope and is required for nuclear migration and anchoring during C. elegans development. Development 126:3171–3181

    PubMed  CAS  Google Scholar 

  9. Reinsch S, Gönczy P (1998) Mechanisms of nuclear positioning. J Cell Sci 111:2283–2295

    PubMed  CAS  Google Scholar 

  10. Adames NR, Cooper JA (2000) Microtubule interactions with the cell cortex causing nuclear movements in Saccharomyces cerevisiae. J Cell Biol 149:863–874

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  11. Gibeaux R, Politi AZ, Nédélec F, Antony C, Knop M (2013) Spindle pole body-anchored Kar3 drives the nucleus along microtubules from another nucleus in preparation for nuclear fusion during yeast karyogamy. Genes Dev 27:335–349. doi:10.1101/gad.206318.112

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  12. Yu J, Starr DA, Wu X, Parkhurst SM, Zhuang Y, Xu T, Xu R, Han M (2006) The KASH domain protein MSP-300 plays an essential role in nuclear anchoring during Drosophila oogenesis. Dev Biol 289:336–345

    Article  PubMed  CAS  Google Scholar 

  13. Malone CJ, Misner L, Le Bot N, Tsai M-C, Campbell JM, Ahringer J, White JG (2003) The C. elegans hook protein, ZYG-12, mediates the essential attachment between the centrosome and nucleus. Cell 115:825–836. doi:10.1016/S0092-8674(03)00985-1

    Article  PubMed  CAS  Google Scholar 

  14. Reinsch S, Karsenti E (1997) Movement of nuclei along microtubules in Xenopus egg extracts. Curr Biol 7:211–214

    Article  PubMed  CAS  Google Scholar 

  15. Cadot B, Gache V, Vasyutina E, Falcone S, Birchmeier C, Gomes ER (2012) Nuclear movement during myotube formation is microtubule and dynein dependent and is regulated by Cdc42, Par6 and Par3. EMBO Rep 13:741–749. doi:10.1038/embor.2012.89

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  16. Troy A, Cadwallader AB, Fedorov Y, Tyner K, Tanaka KK, Olwin BB (2012) Coordination of satellite cell activation and self-renewal by Par-complex-dependent asymmetric activation of p38α/β MAPK. Cell Stem Cell 11:541–553. doi:10.1016/j.stem.2012.05.025

    Article  PubMed  CAS  Google Scholar 

  17. Crisp M, Liu Q, Roux K, Rattner JB, Shanahan C, Burke B, Stahl P, Hodzic D (2006) Coupling of the nucleus and cytoplasm: role of the LINC complex. J Cell Biol 172:41–53. doi:10.1083/jcb.200509124

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  18. Luxton GWG, Gomes ER, Folker ES, Vintinner E, Gundersen GG (2010) Linear arrays of nuclear envelope proteins harness retrograde actin flow for nuclear movement. Science 329:956–959. doi:10.1126/science.1189072

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  19. Luxton GWG, Gomes ER, Folker ES, Worman H, Gundersen GG (2011) TAN lines: a novel nuclear envelope structure involved in nuclear positioning. Nucleus 2:173–181. doi:10.4161/nucl.2.3.16243

    Article  PubMed Central  PubMed  Google Scholar 

  20. Ridley AJ, Schwartz MA, Burridge K, Firtel RA, Ginsberg MH, Borisy G, Parsons JT, Horwitz AR (2003) Cell migration: integrating signals from front to back. Science 302:1704–1709. doi:10.1126/science.1092053

    Article  PubMed  CAS  Google Scholar 

  21. Kupfer A, Louvard D, Singer SJ (1982) Polarization of the Golgi apparatus and the microtubule-organizing center in cultured fibroblasts at the edge of an experimental wound. Proc Natl Acad Sci U S A 79:2603–2607

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  22. Gundersen GG, Bulinski JC (1988) Selective stabilization of microtubules oriented toward the direction of cell migration. Proc Natl Acad Sci U S A 85:5946–5950

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  23. Nobes CD, Hall A (1999) Rho GTPases control polarity, protrusion, and adhesion during cell movement. J Cell Biol 144:1235–1244. doi:10.1083/jcb.144.6.1235

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  24. Bergmann JE, Kupfer A, Singer SJ (1983) Membrane insertion at the leading edge of motile fibroblasts. Proc Natl Acad Sci U S A 80:1367–1371

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  25. Schmoranzer J, Kreitzer G, Simon SM (2003) Migrating fibroblasts perform polarized, microtubule-dependent exocytosis towards the leading edge. J Cell Sci 116:4513–4519

    Article  PubMed  CAS  Google Scholar 

  26. Cook TA, Nagasaki T, Gundersen GG (1998) Rho guanosine triphosphatase mediates the selective stabilization of microtubules induced by lysophosphatidic acid. J Cell Biol 141:175–185. doi:10.1083/jcb.141.1.175

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  27. Gomes ER, Jani S, Gundersen GG (2005) Nuclear movement regulated by Cdc42, MRCK, myosin, and actin flow establishes MTOC polarization in migrating cells. Cell 121:451–463

    Article  PubMed  CAS  Google Scholar 

  28. Etienne-Manneville S, Hall A (2001) Integrin-mediated activation of Cdc42 controls cell polarity in migrating astrocytes through PKCzeta. Cell 106:489–498

    Article  PubMed  CAS  Google Scholar 

  29. Palazzo AF, Joseph HL, Chen YJ, Dujardin DL, Alberts AS, Pfister KK, Vallee RB, Gundersen GG (2001) Cdc42, dynein, and dynactin regulate MTOC reorientation independent of Rho-regulated microtubule stabilization. Curr Biol 11:1536–1541

    Article  PubMed  CAS  Google Scholar 

  30. Dujardin DL, Barnhart LE, Stehman SA, Gomes ER, Gundersen GG, Vallee RB (2003) A role for cytoplasmic dynein and LIS1 in directed cell movement. J Cell Biol 163:1205–1211. doi:10.1083/jcb.200310097

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  31. Schmoranzer J, Fawcett JP, Segura M, Tan S, Vallee RB, Pawson T, Gundersen GG (2009) Par3 and dynein associate to regulate local microtubule dynamics and centrosome orientation during migration. Curr Biol 19:1065–1074. doi:10.1016/j.cub.2009.05.065

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  32. Friedl P, Wolf K, Lammerding J (2011) Nuclear mechanics during cell migration. Curr Opin Cell Biol 23:55–64. doi:10.1016/j.ceb.2010.10.015

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  33. Folker ES, Östlund C, Luxton GWG, Worman HJ, Gundersen GG (2011) Lamin A variants that cause striated muscle disease are defective in anchoring transmembrane actin-associated nuclear lines for nuclear movement. Proc Natl Acad Sci U S A 108:131–136. doi:10.1073/pnas.1000824108

    Article  PubMed Central  PubMed  Google Scholar 

  34. Khatau SB, Hale CM, Stewart-Hutchinson PJ, Patel MS, Stewart CL, Searson PC, Hodzic D, Wirtz D (2009) A perinuclear actin cap regulates nuclear shape. Proc Natl Acad Sci U S A 106:19017–19022. doi:10.1073/pnas.0908686106

    Article  PubMed Central  PubMed  Google Scholar 

  35. Khatau SB, Bloom RJ, Bajpai S, Razafsky D, Zang S, Giri A, Wu P-H, Marchand J, Celedon A, Hale CM, Sun SX, Hodzic D, Wirtz D (2012) The distinct roles of the nucleus and nucleus-cytoskeleton connections in three-dimensional cell migration. Sci Rep. doi:10.1038/srep00488

    Google Scholar 

  36. Stewart-Hutchinson PJ, Hale CM, Wirtz D, Hodzic D (2008) Structural requirements for the assembly of LINC complexes and their function in cellular mechanical stiffness. Exp Cell Res 314:1892–1905. doi:10.1016/j.yexcr.2008.02.022

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  37. Gay O, Gilquin B, Nakamura F, Jenkins ZA, McCartney R, Krakow D, Deshiere A, Assard N, Hartwig JH, Robertson SP, Baudier J (2011) RefilinB (FAM101B) targets FilaminA to organize perinuclear actin networks and regulates nuclear shape. Proc Natl Acad Sci U S A 108:11464–11469. doi:10.1073/pnas.1104211108

    Article  PubMed Central  PubMed  Google Scholar 

  38. Schirmer EC, Florens L, Guan T, Yates JR, Gerace L (2003) Nuclear membrane proteins with potential disease links found by subtractive proteomics. Science 301:1380–1382

    Article  PubMed  CAS  Google Scholar 

  39. Buch C, Lindberg R, Figueroa R, Gudise S, Onischenko E, Hallberg E (2009) An integral protein of the inner nuclear membrane localizes to the mitotic spindle in mammalian cells. J Cell Sci 122:2100–2107. doi:10.1242/jcs.047373

    Article  PubMed  CAS  Google Scholar 

  40. Figueroa R, Gudise S, Larsson V, Hallberg E (2010) A transmembrane inner nuclear membrane protein in the mitotic spindle. Nucleus 1:249–253. doi:10.4161/nucl.1.3.11740

    Article  PubMed Central  PubMed  Google Scholar 

  41. Borrego-Pinto J, Jegou T, Osorio D, Aurade F, Gorjánácz M, Koch B, Mattaj I, Gomes ER (2012) Samp1 is a new component of the TAN lines and is required for nuclear movement. J Cell Sci 125:1099–1105

    Article  PubMed  CAS  Google Scholar 

  42. Gudise S, Figueroa RA, Lindberg R, Larsson V, Hallberg E (2011) Samp1 is functionally associated with the LINC complex and A-type lamina networks. J Cell Sci 124:2077–2085

    Article  PubMed  CAS  Google Scholar 

  43. Zheng Y (2010) A membranous spindle matrix orchestrates cell division. Nat Rev Mol Cell Biol 11:529–535. doi:10.1038/nrm2919

    Article  PubMed  CAS  Google Scholar 

  44. Roux KJ, Kim DI, Raida M, Burke B (2012) A promiscuous biotin ligase fusion protein identifies proximal and interacting proteins in mammalian cells. J Cell Biol 196:801–810. doi:10.1083/jcb.201112098

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  45. King MC, Drivas TG, Blobel G (2008) A network of nuclear envelope membrane proteins linking centromeres to microtubules. Cell 134:427–438. doi:10.1016/j.cell.2008.06.022

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  46. Hiraoka Y, Maekawa H, Asakawa H, Chikashige Y, Kojidani T, Osakada H, Matsuda A, Haraguchi T (2011) Inner nuclear membrane protein Ima1 is dispensable for intranuclear positioning of centromeres. Genes Cells 16:1000–1011. doi:10.1111/j.1365-2443.2011.01544.x

    Article  PubMed  CAS  Google Scholar 

  47. Marmé A, Zimmermann H, Moldenhauer G, Schorpp‐Kistner M, Müller C, Keberlein O, Giersch A, Kretschmer J, Seib B, Spiess E, Hunziker A, Merchán F, Möller P, Hahn U, Kurek R, Marmé F, Bastert G, Wallwiener D, Ponstingl H (2008) Loss of Drop1 expression already at early tumor stages in a wide range of human carcinomas. Int J Cancer 123:2048–2056. doi:10.1002/ijc.23763

    Article  PubMed  CAS  Google Scholar 

  48. Sjöblom T, Jones S, Wood LD, Parsons DW, Lin J, Barber TD, Mandelker D, Leary RJ, Ptak J, Silliman N, Szabo S, Buckhaults P, Farrell C, Meeh P, Markowitz SD, Willis J, Dawson D, Willson JKV, Gazdar AF, Hartigan J, Wu L, Liu C, Parmigiani G, Park BH, Bachman KE, Papadopoulos N, Vogelstein B, Kinzler KW, Velculescu VE (2006) The consensus coding sequences of human breast and colorectal cancers. Science 314:268–274. doi:10.1126/science.1133427

    Article  PubMed  CAS  Google Scholar 

  49. Doherty JA, Rossing MA, Cushing-Haugen KL, Chen C, Van Den Berg DJ, Wu AH, Pike MC, Ness RB, Moysich K, Chenevix-Trench G, Beesley J, Webb PM, Chang-Claude J, Wang-Gohrke S, Goodman MT, Lurie G, Thompson PJ, Carney ME, Hogdall E, Kjaer SK, Hogdall C, Goode EL, Cunningham JM, Fridley BL, Vierkant RA, Berchuck A, Moorman PG, Schildkraut JM, Palmieri RT, Cramer DW, Terry KL, Yang HP, Garcia-Closas M, Chanock S, Lissowska J, Song H, Pharoah PDP, Shah M, Perkins B, McGuire V, Whittemore AS, Di Cioccio RA, Gentry-Maharaj A, Menon U, Gayther SA, Ramus SJ, Ziogas A, Brewster W, Anton-Culver H, The Australian Ovarian Cancer Study Management Group, The Australian Cancer Study (Ovarian Cancer), Pearce CL, on behalf of the Ovarian Cancer Association Consortium (OCAC) (2010) ESR1/SYNE1 Polymorphism and invasive epithelial ovarian cancer risk: an ovarian cancer association consortium study. Cancer Epidemiol Biomarkers Prev 19:245–250. doi:10.1158/1055-9965.EPI-09-0729

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  50. Vallee RB, Tsai J-W (2006) The cellular roles of the lissencephaly gene LIS1, and what they tell us about brain development. Genes Dev 20:1384–1393. doi:10.1101/gad.1417206

    Article  PubMed  CAS  Google Scholar 

  51. Attali R, Warwar N, Israel A, Gurt I, McNally E, Puckelwartz M, Glick B, Nevo Y, Ben-Neriah Z, Melki J (2009) Mutation of SYNE-1, encoding an essential component of the nuclear lamina, is responsible for autosomal recessive arthrogryposis. Hum Mol Genet 18:3462–3469. doi:10.1093/hmg/ddp290

    Article  PubMed  CAS  Google Scholar 

  52. Gros-Louis F, Dupre N, Dion P, Fox MA, Laurent S, Verreault S, Sanes JR, Bouchard J-P, Rouleau GA (2007) Mutations in SYNE1 lead to a newly discovered form of autosomal recessive cerebellar ataxia. Nat Genet 39:80–85. doi:10.1038/ng1927

    Article  PubMed  CAS  Google Scholar 

  53. Zhang Q, Bethmann C, Worth N, Davies J, Wasner C, Feuer A, Ragnauth C, Yi Q, Mellad J, Warren D, Wheeler M, Ellis J, Skepper J, Vorgerd M, Schlotter-Weigel B, Weissberg P, Roberts R, Wehnert M, Shanahan C (2007) Nesprin-1 and -2 are involved in the pathogenesis of Emery-Dreifuss Muscular Dystrophy and are critical for nuclear envelope integrity. Hum Mol Genet. doi:10.1093/hmg/ddm238

    Google Scholar 

  54. Horn HF, Brownstein Z, Lenz DR, Shivatzki S, Dror AA, Dagan-Rosenfeld O, Friedman LM, Roux KJ, Kozlov S, Jeang K-T, Frydman M, Burke B, Stewart CL, Avraham KB (2013) The LINC complex is essential for hearing. J Clin Invest. doi:10.1172/JCI66911

    Google Scholar 

  55. Vander Heyden AB, Naismith TV, Snapp EL, Hodzic D, Hanson PI (2009) LULL1 Retargets TorsinA to the nuclear envelope revealing an activity that is impaired by the DYT1 dystonia mutation. Mol Biol Cell 20(11):2661–2672. doi:10.1091/mbc.E09-01-0094

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  56. Nery FC, Zeng J, Niland BP, Hewett J, Farley J, Irimia D, Li Y, Wiche G, Sonnenberg A, Breakefield XO (2008) TorsinA binds the KASH domain of nesprins and participates in linkage between nuclear envelope and cytoskeleton. J Cell Sci 121:3476–3486. doi:10.1242/jcs.029454

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  57. Metzger T, Gache V, Xu M, Cadot B, Folker ES, Richardson BE, Gomes ER, Baylies MK (2012) MAP and kinesin-dependent nuclear positioning is required for skeletal muscle function. Nature 484:120–124. doi:10.1038/nature10914

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  58. Jungbluth H, Wallgren-Pettersson C, Laporte J (2008) Centronuclear (myotubular) myopathy. Orphanet J Rare Dis 3:26. doi:10.1186/1750-1172-3-26

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Daniel S. Osorio or Edgar R. Gomes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Osorio, D.S., Gomes, E.R. (2014). Connecting the Nucleus to the Cytoskeleton for Nuclear Positioning and Cell Migration. In: Schirmer, E., de las Heras, J. (eds) Cancer Biology and the Nuclear Envelope. Advances in Experimental Medicine and Biology, vol 773. Springer, New York, NY. https://doi.org/10.1007/978-1-4899-8032-8_23

Download citation

Publish with us

Policies and ethics