Skip to main content

Nuclear Lamins and Oxidative Stress in Cell Proliferation and Longevity

  • Chapter
  • First Online:
Book cover Cancer Biology and the Nuclear Envelope

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 773))

Abstract

In mammalian cells, the nuclear lamina is composed of a complex fibrillar network associated with the inner membrane of the nuclear envelope. The lamina provides mechanical support for the nucleus and functions as the major determinant of its size and shape. At its innermost aspect it associates with peripheral components of chromatin and thereby contributes to the organization of interphase chromosomes. The A- and B-type lamins are the major structural components of the lamina, and numerous mutations in the A-type lamin gene have been shown to cause many types of human diseases collectively known as the laminopathies. These mutations have also been shown to cause a disruption in the normal interactions between the A and B lamin networks. The impact of these mutations on nuclear functions is related to the roles of lamins in regulating various essential processes including DNA synthesis and damage repair, transcription and the regulation of genes involved in the response to oxidative stress. The major cause of oxidative stress is the production of reactive oxygen species (ROS), which is critically important for cell proliferation and longevity. Moderate increases in ROS act to initiate signaling pathways involved in cell proliferation and differentiation, whereas excessive increases in ROS cause oxidative stress, which in turn induces cell death and/or senescence. In this review, we cover current findings about the role of lamins in regulating cell proliferation and longevity through oxidative stress responses and ROS signaling pathways. We also speculate on the involvement of lamins in tumor cell proliferation through the control of ROS metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADLD:

Autosomal dominant leukodystrophy

DDR:

DNA damage response

HDFs:

Human diploid fibroblasts

HGPS:

Hutchison-Gilford progeria syndrome

iPSCs:

Inducible pluripotent stem cells

LA:

Lamin A

LB1:

Lamin B1

LB2:

Lamin B2

LC:

Lamin C

MSC:

Mesenchymal stem cells

MEFs:

Mouse embryonic fibroblasts

NE:

Nuclear envelope

ROS:

Reactive oxygen species

VSMCs:

Vascular smooth muscle cells

References

  1. Adam SA, Goldman RD (2011) Insights into the differences between the A- and B-type nuclear lamins. Adv Enzyme Regul. doi:10.1016/j.advenzreg.2011.11.001

    Google Scholar 

  2. Eckersley-Maslin MA, Bergmann JH, Lazar Z, Spector DL (2013) Lamin A/C is expressed in pluripotent mouse embryonic stem cells. Nucleus 4(1):53–60. doi:10.4161/nucl.23384

    Article  PubMed Central  PubMed  Google Scholar 

  3. Stuurman N, Heins S, Aebi U (1998) Nuclear lamins: their structure, assembly, and interactions. J Struct Biol 122(1–2):42–66

    Article  PubMed  CAS  Google Scholar 

  4. Herrmann H, Foisner R (2003) Intermediate filaments: novel assembly models and exciting new functions for nuclear lamins. Cell Mol Life Sci 60(8):1607–1612. doi:10.1007/s00018-003-3004-0

    Article  PubMed  CAS  Google Scholar 

  5. Aebi U, Cohn J, Buhle L, Gerace L (1986) The nuclear lamina is a meshwork of intermediate-type filaments. Nature 323(6088):560–564

    Article  PubMed  CAS  Google Scholar 

  6. Schermelleh L, Carlton PM, Haase S, Shao L, Winoto L, Kner P, Burke B, Cardoso MC, Agard DA, Gustafsson MG, Leonhardt H, Sedat JW (2008) Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy. Science 320(5881):1332–1336

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  7. Shimi T, Pfleghaar K, Kojima S, Pack C, Solovei I, Goldman AE, Adam SA, Shumaker DK, Kinjo M, Cremer T, Goldman RD (2008) The A- and B-type nuclear lamin networks: microdomains involved in chromatin organization and transcription. Genes Dev 22(24):3409–3421, doi:22/24/3409 [pii]10.1101/gad.1735208

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  8. Moir RD, Spann TP, Herrmann H, Goldman RD (2000) Disruption of nuclear lamin organization blocks the elongation phase of DNA replication. J Cell Biol 149(6):1179–1192

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  9. Spann TP, Goldman AE, Wang C, Huang S, Goldman RD (2002) Alteration of nuclear lamin organization inhibits RNA polymerase II-dependent transcription. J Cell Biol 156(4):603–608

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  10. Shumaker DK, Solimando L, Sengupta K, Shimi T, Adam SA, Grunwald A, Strelkov SV, Aebi U, Cardoso MC, Goldman RD (2008) The highly conserved nuclear lamin Ig-fold binds to PCNA: its role in DNA replication. J Cell Biol 181(2):269–280

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  11. Guelen L, Pagie L, Brasset E, Meuleman W, Faza MB, Talhout W, Eussen BH, de Klein A, Wessels L, de Laat W, van Steensel B (2008) Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions. Nature 453(7197):948–951, doi:nature06947 [pii]10.1038/nature06947

    Article  PubMed  CAS  Google Scholar 

  12. Reddy KL, Zullo JM, Bertolino E, Singh H (2008) Transcriptional repression mediated by repositioning of genes to the nuclear lamina. Nature 452(7184):243–7

    Article  PubMed  CAS  Google Scholar 

  13. Zullo JM, Demarco IA, Pique-Regi R, Gaffney DJ, Epstein CB, Spooner CJ, Luperchio TR, Bernstein BE, Pritchard JK, Reddy KL, Singh H (2012) DNA sequence-dependent compartmentalization and silencing of chromatin at the nuclear lamina. Cell 149(7):1474–1487. doi:10.1016/j.cell.2012.04.035

    Article  PubMed  CAS  Google Scholar 

  14. Weinberg F, Hamanaka R, Wheaton WW, Weinberg S, Joseph J, Lopez M, Kalyanaraman B, Mutlu GM, Budinger GR, Chandel NS (2010) Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity. Proc Natl Acad Sci U S A 107(19):8788–8793, doi:1003428107 [pii]10.1073/pnas.1003428107

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  15. Bell EL, Klimova TA, Eisenbart J, Schumacker PT, Chandel NS (2007) Mitochondrial reactive oxygen species trigger hypoxia-inducible factor-dependent extension of the replicative life span during hypoxia. Mol Cell Biol 27(16):5737–5745, doi:MCB.02265-06 [pii]10.1128/MCB.02265-06

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  16. Tormos KV, Anso E, Hamanaka RB, Eisenbart J, Joseph J, Kalyanaraman B, Chandel NS (2011) Mitochondrial complex III ROS regulate adipocyte differentiation. Cell Metab 14(4):537–544. doi:10.1016/j.cmet.2011.08.007

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  17. Uttara B, Singh AV, Zamboni P, Mahajan RT (2009) Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options. Curr Neuropharmacol 7(1):65–74. doi:10.2174/157015909787602823

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  18. Rahman-Roblick R, Roblick UJ, Hellman U, Conrotto P, Liu T, Becker S, Hirschberg D, Jornvall H, Auer G, Wiman KG (2007) p53 targets identified by protein expression profiling. Proc Natl Acad Sci U S A 104(13):5401–5406. doi:10.1073/pnas.0700794104

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  19. Eriksson M, Brown WT, Gordon LB, Glynn MW, Singer J, Scott L, Erdos MR, Robbins CM, Moses TY, Berglund P, Dutra A, Pak E, Durkin S, Csoka AB, Boehnke M, Glover TW, Collins FS (2003) Recurrent de novo point mutations in lamin A cause Hutchinson-Gilford progeria syndrome. Nature 423(6937):293–298

    Article  PubMed  CAS  Google Scholar 

  20. Scaffidi P, Misteli T (2006) Lamin A-dependent nuclear defects in human aging. Science 312(5776):1059–1063

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  21. Cao K, Blair CD, Faddah DA, Kieckhaefer JE, Olive M, Erdos MR, Nabel EG, Collins FS (2011) Progerin and telomere dysfunction collaborate to trigger cellular senescence in normal human fibroblasts. J Clin Invest 121(7):2833–2844. doi:10.1172/JCI43578

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  22. Shimi T, Butin-Israeli V, Adam SA, Hamanaka RB, Goldman AE, Lucas CA, Shumaker DK, Kosak ST, Chandel NS, Goldman RD (2011) The role of nuclear lamin B1 in cell proliferation and senescence. Genes Dev 25(24):2579–2593. doi:10.1101/gad.179515.111

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  23. Freund A, Laberge RM, Demaria M, Campisi J (2012) Lamin B1 loss is a senescence-associated biomarker. Mol Biol Cell 23(11):2066–2075. doi:10.1091/mbc.E11-10-0884

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  24. Dreesen O, Chojnowski A, Ong PF, Zhao TY, Common JE, Lunny D, Lane EB, Lee SJ, Vardy LA, Stewart CL, Colman A (2013) Lamin B1 fluctuations have differential effects on cellular proliferation and senescence. J Cell Biol 200(5):605–617. doi:10.1083/jcb.201206121

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  25. Scaffidi P, Misteli T (2005) Reversal of the cellular phenotype in the premature aging disease Hutchinson-Gilford progeria syndrome. Nat Med 11(4):440–445

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  26. Kandert S, Luke Y, Kleinhenz T, Neumann S, Lu W, Jaeger VM, Munck M, Wehnert M, Muller CR, Zhou Z, Noegel AA, Dabauvalle MC, Karakesisoglou I (2007) Nesprin-2 giant safeguards nuclear envelope architecture in LMNA S143F progeria cells. Hum Mol Genet 16(23):2944–2959, doi:ddm255 [pii]10.1093/hmg/ddm255

    Article  PubMed  CAS  Google Scholar 

  27. Taimen P, Pfleghaar K, Shimi T, Moller D, Ben-Harush K, Erdos MR, Adam SA, Herrmann H, Medalia O, Collins FS, Goldman AE, Goldman RD (2009) A progeria mutation reveals functions for lamin A in nuclear assembly, architecture, and chromosome organization. Proc Natl Acad Sci U S A 106(49):20788–20793, doi:0911895106 [pii]10.1073/pnas.0911895106

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  28. Hallstrom TC, Mori S, Nevins JR (2008) An E2F1-dependent gene expression program that determines the balance between proliferation and cell death. Cancer Cell 13(1):11–22, doi:S1535-6108(07)00370-4 [pii]10.1016/j.ccr.2007.11.031

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  29. Barascu A, Le Chalony C, Pennarun G, Genet D, Imam N, Lopez B, Bertrand P (2012) Oxidative stress induces an ATM-independent senescence pathway through p38 MAPK-mediated lamin B1 accumulation. EMBO J 31(5):1080–1094. doi:10.1038/emboj.2011.492

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  30. Zoncu R, Efeyan A, Sabatini DM (2011) mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol 12(1):21–35. doi:10.1038/nrm3025

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  31. Cao K, Graziotto JJ, Blair CD, Mazzulli JR, Erdos MR, Krainc D, Collins FS (2011) Rapamycin reverses cellular phenotypes and enhances mutant protein clearance in Hutchinson-Gilford progeria syndrome cells. Sci Transl Med 3(89):89ra58, doi:10.1126/scitranslmed.3002346

    Article  PubMed  CAS  Google Scholar 

  32. Cenni V, Capanni C, Columbaro M, Ortolani M, D’Apice MR, Novelli G, Fini M, Marmiroli S, Scarano E, Maraldi NM, Squarzoni S, Prencipe S, Lattanzi G (2011) Autophagic degradation of farnesylated prelamin A as a therapeutic approach to lamin-linked progeria. Eur J Histochem 55(4):e36. doi:10.4081/ejh.2011.e36

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  33. Laplante M, Sabatini DM (2012) mTOR signaling in growth control and disease. Cell 149(2):274–293. doi:10.1016/j.cell.2012.03.017

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  34. Chiarini A, Whitfield JF, Pacchiana R, Armato U, Dal Pra I (2008) Photoexcited calphostin C selectively destroys nuclear lamin B1 in neoplastic human and rat cells—a novel mechanism of action of a photodynamic tumor therapy agent. Biochim Biophys Acta 1783(9):1642–1653. doi:10.1016/j.bbamcr.2008.03.014

    Article  PubMed  CAS  Google Scholar 

  35. Lazebnik YA, Takahashi A, Moir RD, Goldman RD, Poirier GG, Kaufmann SH, Earnshaw WC (1995) Studies of the lamin proteinase reveal multiple parallel biochemical pathways during apoptotic execution. Proc Natl Acad Sci U S A 92(20):9042–9046

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  36. Orth K, Chinnaiyan AM, Garg M, Froelich CJ, Dixit VM (1996) The CED-3/ICE-like protease Mch2 is activated during apoptosis and cleaves the death substrate lamin A. J Biol Chem 271(28):16443–16446

    Article  PubMed  CAS  Google Scholar 

  37. Takahashi A, Alnemri ES, Lazebnik YA, Fernandes-Alnemri T, Litwack G, Moir RD, Goldman RD, Poirier GG, Kaufmann SH, Earnshaw WC (1996) Cleavage of lamin A by Mch2 alpha but not CPP32: multiple interleukin 1 beta-converting enzyme-related proteases with distinct substrate recognition properties are active in apoptosis. Proc Natl Acad Sci U S A 93(16):8395–8400

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  38. Slee EA, Adrain C, Martin SJ (2001) Executioner caspase-3, -6, and -7 perform distinct, non-redundant roles during the demolition phase of apoptosis. J Biol Chem 276(10):7320–7326

    Article  PubMed  CAS  Google Scholar 

  39. Rao L, Perez D, White E (1996) Lamin proteolysis facilitates nuclear events during apoptosis. J Cell Biol 135(6 Pt 1):1441–1455

    Article  PubMed  CAS  Google Scholar 

  40. Zhang D, Beresford PJ, Greenberg AH, Lieberman J (2001) Granzymes A and B directly cleave lamins and disrupt the nuclear lamina during granule-mediated cytolysis. Proc Natl Acad Sci U S A 98(10):5746–5751

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  41. Chandra J, Samali A, Orrenius S (2000) Triggering and modulation of apoptosis by oxidative stress. Free Radic Biol Med 29(3–4):323–333

    Article  PubMed  CAS  Google Scholar 

  42. Simon DN, Wilson KL (2013) Partners and post-translational modifications of nuclear lamins. Chromosoma 122(1–2):13–31. doi:10.1007/s00412-013-0399-8

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  43. Pekovic V, Gibbs-Seymour I, Markiewicz E, Alzoghaibi F, Benham AM, Edwards R, Wenhert M, von Zglinicki T, Hutchison CJ (2011) Conserved cysteine residues in the mammalian lamin A tail are essential for cellular responses to ROS generation. Aging Cell 10(6):1067–1079. doi:10.1111/j.1474-9726.2011.00750.x

    Article  PubMed  CAS  Google Scholar 

  44. Eaton P, Jones ME, McGregor E, Dunn MJ, Leeds N, Byers HL, Leung KY, Ward MA, Pratt JR, Shattock MJ (2003) Reversible cysteine-targeted oxidation of proteins during renal oxidative stress. J Am Soc Nephrol 14(8 Suppl 3):S290–296

    Article  PubMed  CAS  Google Scholar 

  45. Dessev GN, Iovcheva-Dessev C, Goldman RD (1990) Lamin dimers. Presence in the nuclear lamina of surf clam oocytes and release during nuclear envelope breakdown. J Biol Chem 265(21):12636–12641

    PubMed  CAS  Google Scholar 

  46. Heald R, McKeon F (1990) Mutations of phosphorylation sites in lamin A that prevent nuclear lamina disassembly in mitosis. Cell 61(4):579–589

    Article  PubMed  CAS  Google Scholar 

  47. Mall M, Walter T, Gorjanacz M, Davidson IF, Nga Ly-Hartig TB, Ellenberg J, Mattaj IW (2012) Mitotic lamin disassembly is triggered by lipid-mediated signaling. J Cell Biol 198(6):981–990. doi:10.1083/jcb.201205103

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  48. Peter M, Nakagawa J, Doree M, Labbe JC, Nigg EA (1990) In vitro disassembly of the nuclear lamina and M phase-specific phosphorylation of lamins by cdc2 kinase. Cell 61(4):591–602

    Article  PubMed  CAS  Google Scholar 

  49. Nakamura M, Yamada M, Ohsawa T, Morisawa H, Nishine T, Nishimura O, Toda T (2006) Phosphoproteomic profiling of human SH-SY5Y neuroblastoma cells during response to 6-hydroxydopamine-induced oxidative stress. Biochim Biophys Acta 1763(9):977–989

    Google Scholar 

  50. Finkel T, Holbrook NJ (2000) Oxidants, oxidative stress and the biology of ageing. Nature 408(6809):239–247. doi:10.1038/35041687

    Article  PubMed  CAS  Google Scholar 

  51. Lewis TS, Hunt JB, Aveline LD, Jonscher KR, Louie DF, Yeh JM, Nahreini TS, Resing KA, Ahn NG (2000) Identification of novel MAP kinase pathway signaling targets by functional proteomics and mass spectrometry. Mol Cell 6(6):1343–1354

    Article  PubMed  CAS  Google Scholar 

  52. Kosako H, Yamaguchi N, Aranami C, Ushiyama M, Kose S, Imamoto N, Taniguchi H, Nishida E, Hattori S (2009) Phosphoproteomics reveals new ERK MAP kinase targets and links ERK to nucleoporin-mediated nuclear transport. Nat Struct Mol Biol 16(10):1026–1035. doi:10.1038/nsmb.1656

    Article  PubMed  CAS  Google Scholar 

  53. Ragnauth CD, Warren DT, Liu Y, McNair R, Tajsic T, Figg N, Shroff R, Skepper J, Shanahan CM (2010) Prelamin A acts to accelerate smooth muscle cell senescence and is a novel biomarker of human vascular aging. Circulation 121(20):2200–2210. doi:10.1161/CIRCULATIONAHA.109.902056

    Article  PubMed  CAS  Google Scholar 

  54. Singla A, Griggs NW, Kwan R, Snider NT, Maitra D, Ernst SA, Herrmann H, Omary MB (2013) Lamin aggregation is an early sensor of porphyria-induced liver injury. J Cell Sci. doi:10.1242/jcs.123026

    PubMed  Google Scholar 

  55. McClintock D, Gordon LB, Djabali K (2006) Hutchinson-Gilford progeria mutant lamin A primarily targets human vascular cells as detected by an anti-Lamin A G608G antibody. Proc Natl Acad Sci U S A 103(7):2154–2159

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  56. Mounkes LC, Kozlov S, Hernandez L, Sullivan T, Stewart CL (2003) A progeroid syndrome in mice is caused by defects in A-type lamins. Nature 423(6937):298–301. doi:10.1038/nature01631

    Article  PubMed  CAS  Google Scholar 

  57. Osorio FG, Navarro CL, Cadinanos J, Lopez-Mejia IC, Quiros PM, Bartoli C, Rivera J, Tazi J, Guzman G, Varela I, Depetris D, de Carlos F, Cobo J, Andres V, De Sandre-Giovannoli A, Freije JM, Levy N, Lopez-Otin C (2011) Splicing-directed therapy in a new mouse model of human accelerated aging. Sci Transl Med 3(106):106ra107, doi:10.1126/scitranslmed.3002847

    Article  PubMed  Google Scholar 

  58. Moulson CL, Go G, Gardner JM, van der Wal AC, Smitt JH, van Hagen JM, Miner JH (2005) Homozygous and compound heterozygous mutations in ZMPSTE24 cause the laminopathy restrictive dermopathy. J Invest Dermatol 125(5):913–919. doi:10.1111/j.0022-202X.2005.23846.x

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  59. Pendas AM, Zhou Z, Cadinanos J, Freije JM, Wang J, Hultenby K, Astudillo A, Wernerson A, Rodriguez F, Tryggvason K, Lopez-Otin C (2002) Defective prelamin A processing and muscular and adipocyte alterations in Zmpste24 metalloproteinase-deficient mice. Nat Genet 31(1):94–99

    PubMed  CAS  Google Scholar 

  60. Moiseeva O, Bourdeau V, Vernier M, Dabauvalle MC, Ferbeyre G (2011) Retinoblastoma-independent regulation of cell proliferation and senescence by the p53-p21 axis in lamin A/C-depleted cells. Aging Cell 10(5):789–797. doi:10.1111/j.1474-9726.2011.00719.x

    Article  PubMed  CAS  Google Scholar 

  61. Sullivan T, Escalante-Alcalde D, Bhatt H, Anver M, Bhat N, Nagashima K, Stewart CL, Burke B (1999) Loss of A-type lamin expression compromises nuclear envelope integrity leading to muscular dystrophy. J Cell Biol 147(5):913–920

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  62. Gonzalez-Suarez I, Redwood AB, Perkins SM, Vermolen B, Lichtensztejin D, Grotsky DA, Morgado-Palacin L, Gapud EJ, Sleckman BP, Sullivan T, Sage J, Stewart CL, Mai S, Gonzalo S (2009) Novel roles for A-type lamins in telomere biology and the DNA damage response pathway. EMBO J 28(16):2414–2427. doi:10.1038/emboj.2009.196

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  63. Gonzalez-Suarez I, Redwood AB, Gonzalo S (2009) Loss of A-type lamins and genomic instability. Cell Cycle 8(23):3860–3865

    Article  PubMed  CAS  Google Scholar 

  64. Liu B, Wang J, Chan KM, Tjia WM, Deng W, Guan X, Huang JD, Li KM, Chau PY, Chen DJ, Pei D, Pendas AM, Cadinanos J, Lopez-Otin C, Tse HF, Hutchison C, Chen J, Cao Y, Cheah KS, Tryggvason K, Zhou Z (2005) Genomic instability in laminopathy-based premature aging. Nat Med 11(7):780–785. doi:10.1038/nm1266

    Article  PubMed  CAS  Google Scholar 

  65. Liu GH, Barkho BZ, Ruiz S, Diep D, Qu J, Yang SL, Panopoulos AD, Suzuki K, Kurian L, Walsh C, Thompson J, Boue S, Fung HL, Sancho-Martinez I, Zhang K, Yates J 3rd, Izpisua Belmonte JC (2011) Recapitulation of premature ageing with iPSCs from Hutchinson-Gilford progeria syndrome. Nature 472(7342):221–225. doi:10.1038/nature09879

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  66. Kudlow BA, Stanfel MN, Burtner CR, Johnston ED, Kennedy BK (2008) Suppression of proliferative defects associated with processing-defective lamin A mutants by hTERT or inactivation of p53. Mol Biol Cell 19(12):5238–5248. doi:10.1091/mbc.E08-05-0492

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  67. Varela I, Cadinanos J, Pendas AM, Gutierrez-Fernandez A, Folgueras AR, Sanchez LM, Zhou Z, Rodriguez FJ, Stewart CL, Vega JA, Tryggvason K, Freije JM, Lopez-Otin C (2005) Accelerated ageing in mice deficient in Zmpste24 protease is linked to p53 signalling activation. Nature 437(7058):564–568. doi:10.1038/nature04019

    Article  PubMed  CAS  Google Scholar 

  68. Vergnes L, Peterfy M, Bergo MO, Young SG, Reue K (2004) Lamin B1 is required for mouse development and nuclear integrity. Proc Natl Acad Sci U S A 101(28):10428–10433

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  69. Kim Y, Sharov AA, McDole K, Cheng M, Hao H, Fan CM, Gaiano N, Ko MS, Zheng Y (2011) Mouse B-type lamins are required for proper organogenesis but not by embryonic stem cells. Science 334(6063):1706–1710. doi:10.1126/science.1211222

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  70. Coffinier C, Chang SY, Nobumori C, Tu Y, Farber EA, Toth JI, Fong LG, Young SG (2010) Abnormal development of the cerebral cortex and cerebellum in the setting of lamin B2 deficiency. Proc Natl Acad Sci U S A 107(11):5076–5081. doi:10.1073/pnas.0908790107

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  71. De Castro SC, Malhas A, Leung KY, Gustavsson P, Vaux DJ, Copp AJ, Greene ND (2012) Lamin b1 polymorphism influences morphology of the nuclear envelope, cell cycle progression, and risk of neural tube defects in mice. PLoS Genet 8(11):e1003059. doi:10.1371/journal.pgen.1003059

    Article  PubMed Central  PubMed  Google Scholar 

  72. Yang SH, Chang SY, Yin L, Tu Y, Hu Y, Yoshinaga Y, de Jong PJ, Fong LG, Young SG (2011) An absence of both lamin B1 and lamin B2 in keratinocytes has no effect on cell proliferation or the development of skin and hair. Hum Mol Genet 20(18):3537–3544, doi:ddr266 [pii]10.1093/hmg/ddr266

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  73. Richards SA, Muter J, Ritchie P, Lattanzi G, Hutchison CJ (2011) The accumulation of un-repairable DNA damage in laminopathy progeria fibroblasts is caused by ROS generation and is prevented by treatment with N-acetyl cysteine. Hum Mol Genet 20(20):3997–4004. doi:10.1093/hmg/ddr327

    Article  PubMed  CAS  Google Scholar 

  74. Mateos J, De la Fuente A, Lesende-Rodriguez I, Fernandez-Pernas P, Arufe MC, Blanco FJ (2013) Lamin A deregulation in human mesenchymal stem cells promotes an impairment in their chondrogenic potential and imbalance in their response to oxidative stress. Stem Cell Res 11(3):1137–1148. doi:10.1016/j.scr.2013.07.004

    Article  PubMed  CAS  Google Scholar 

  75. Zhang J, Lian Q, Zhu G, Zhou F, Sui L, Tan C, Mutalif RA, Navasankari R, Zhang Y, Tse HF, Stewart CL, Colman A (2011) A human iPSC model of Hutchinson Gilford Progeria reveals vascular smooth muscle and mesenchymal stem cell defects. Cell Stem Cell 8(1):31–45. doi:10.1016/j.stem.2010.12.002

    Article  PubMed  CAS  Google Scholar 

  76. Caron M, Auclair M, Donadille B, Bereziat V, Guerci B, Laville M, Narbonne H, Bodemer C, Lascols O, Capeau J, Vigouroux C (2007) Human lipodystrophies linked to mutations in A-type lamins and to HIV protease inhibitor therapy are both associated with prelamin A accumulation, oxidative stress and premature cellular senescence. Cell Death Differ 14(10):1759–1767. doi:10.1038/sj.cdd.4402197

    Article  PubMed  CAS  Google Scholar 

  77. Bereziat V, Cervera P, Le Dour C, Verpont MC, Dumont S, Vantyghem MC, Capeau J, Vigouroux C, Lipodystrophy Study G (2011) LMNA mutations induce a non-inflammatory fibrosis and a brown fat-like dystrophy of enlarged cervical adipose tissue. Am J Pathol 179(5):2443–2453. doi:10.1016/j.ajpath.2011.07.049

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  78. Verstraeten VL, Caputo S, van Steensel MA, Duband-Goulet I, Zinn-Justin S, Kamps M, Kuijpers HJ, Ostlund C, Worman HJ, Briede JJ, Le Dour C, Marcelis CL, van Geel M, Steijlen PM, van den Wijngaard A, Ramaekers FC, Broers JL (2009) The R439C mutation in LMNA causes lamin oligomerization and susceptibility to oxidative stress. J Cell Mol Med 13(5):959–971. doi:10.1111/j.1582-4934.2009.00690.x

    Article  PubMed  CAS  Google Scholar 

  79. Le Dour C, Schneebeli S, Bakiri F, Darcel F, Jacquemont ML, Maubert MA, Auclair M, Jeziorowska D, Reznik Y, Bereziat V, Capeau J, Lascols O, Vigouroux C (2011) A homozygous mutation of prelamin-A preventing its farnesylation and maturation leads to a severe lipodystrophic phenotype: new insights into the pathogenicity of nonfarnesylated prelamin-A. J Clin Endocrinol Metab 96(5):E856–862. doi:10.1210/jc.2010-2234

    Article  PubMed  Google Scholar 

  80. Peinado JR, Quiros PM, Pulido MR, Marino G, Martinez-Chantar ML, Vazquez-Martinez R, Freije JM, Lopez-Otin C, Malagon MM (2011) Proteomic profiling of adipose tissue from Zmpste24−/− mice, a model of lipodystrophy and premature aging, reveals major changes in mitochondrial function and vimentin processing. Mol Cell Proteomics 10(11):M111.008094. doi:10.1074/mcp.M111.008094

    Article  PubMed Central  PubMed  Google Scholar 

  81. Malhas AN, Lee CF, Vaux DJ (2009) Lamin B1 controls oxidative stress responses via Oct-1. J Cell Biol 184(1):45–55

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  82. Columbaro M, Mattioli E, Maraldi NM, Ortolani M, Gasparini L, D’Apice MR, Postorivo D, Nardone AM, Avnet S, Cortelli P, Liguori R, Lattanzi G (2013) Oct-1 recruitment to the nuclear envelope in adult-onset autosomal dominant leukodystrophy. Biochim Biophys Acta 1832(3):411–420. doi:10.1016/j.bbadis.2012.12.006

    Article  PubMed  CAS  Google Scholar 

  83. Yoon BC, Jung H, Dwivedy A, O’Hare CM, Zivraj KH, Holt CE (2012) Local translation of extranuclear lamin B promotes axon maintenance. Cell 148(4):752–764. doi:10.1016/j.cell.2011.11.064

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  84. Liu B, Ghosh S, Yang X, Zheng H, Liu X, Wang Z, Jin G, Zheng B, Kennedy BK, Suh Y, Kaeberlein M, Tryggvason K, Zhou Z (2012) Resveratrol rescues SIRT1-dependent adult stem cell decline and alleviates progeroid features in laminopathy-based progeria. Cell Metab 16(6):738–750. doi:10.1016/j.cmet.2012.11.007

    Article  PubMed  CAS  Google Scholar 

  85. Brunet A, Sweeney LB, Sturgill JF, Chua KF, Greer PL, Lin Y, Tran H, Ross SE, Mostoslavsky R, Cohen HY, Hu LS, Cheng HL, Jedrychowski MP, Gygi SP, Sinclair DA, Alt FW, Greenberg ME (2004) Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science 303(5666):2011–2015. doi:10.1126/science.1094637

    Article  PubMed  CAS  Google Scholar 

  86. Osorio FG, Barcena C, Soria-Valles C, Ramsay AJ, de Carlos F, Cobo J, Fueyo A, Freije JM, Lopez-Otin C (2012) Nuclear lamina defects cause ATM-dependent NF-kappaB activation and link accelerated aging to a systemic inflammatory response. Genes Dev 26(20):2311–2324. doi:10.1101/gad.197954.112

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  87. Morgan MJ, Liu ZG (2011) Crosstalk of reactive oxygen species and NF-kappaB signaling. Cell Res 21(1):103–115. doi:10.1038/cr.2010.178

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  88. Reiling JH, Hafen E (2004) The hypoxia-induced paralogs Scylla and Charybdis inhibit growth by down-regulating S6K activity upstream of TSC in Drosophila. Genes Dev 18(23):2879–2892. doi:10.1101/gad.322704

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  89. Brugarolas J, Lei K, Hurley RL, Manning BD, Reiling JH, Hafen E, Witters LA, Ellisen LW, Kaelin WG Jr (2004) Regulation of mTOR function in response to hypoxia by REDD1 and the TSC1/TSC2 tumor suppressor complex. Genes Dev 18(23):2893–2904. doi:10.1101/gad.1256804

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  90. Ramos FJ, Chen SC, Garelick MG, Dai DF, Liao CY, Schreiber KH, MacKay VL, An EH, Strong R, Ladiges WC, Rabinovitch PS, Kaeberlein M, Kennedy BK (2012) Rapamycin reverses elevated mTORC1 signaling in lamin A/C-deficient mice, rescues cardiac and skeletal muscle function, and extends survival. Sci Transl Med 4(144):144ra103. doi:10.1126/scitranslmed.3003802

    Article  PubMed Central  PubMed  Google Scholar 

  91. Trachootham D, Alexandre J, Huang P (2009) Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat Rev Drug Discov 8(7):579–591. doi:10.1038/nrd2803

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert D. Goldman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Shimi, T., Goldman, R.D. (2014). Nuclear Lamins and Oxidative Stress in Cell Proliferation and Longevity. In: Schirmer, E., de las Heras, J. (eds) Cancer Biology and the Nuclear Envelope. Advances in Experimental Medicine and Biology, vol 773. Springer, New York, NY. https://doi.org/10.1007/978-1-4899-8032-8_19

Download citation

Publish with us

Policies and ethics