What Have We Learned from Helioseismology, What Have We Really Learned, and What Do We Aspire to Learn?

Abstract

Helioseismology has been widely acclaimed as having been a great success: it appears to have answered nearly all the questions that we originally asked, some with unexpectedly high precision. We have learned how the sound speed and matter density vary throughout almost all of the solar interior – something which not so very long ago was generally considered to be impossible – we have learned how the Sun rotates, and we have a beautiful picture, on a coffee cup, of the thermal stratification of a sunspot, and also an indication of the material flow around it. We have tried, with some success at times, to apply our findings to issues of broader relevance: the test of the General Theory of Relativity via planetary orbit precession (now almost forgotten because the issue has convincingly been closed, albeit no doubt temporarily) the solar neutrino problem, the manner of the transport of energy from the centre to the surface of the Sun, the mechanisms of angular-momentum redistribution, and the workings of the solar dynamo. The first two were of general interest to the broad scientific community beyond astronomy, and were, quite rightly, principally responsible for our acclaimed success; the others are still in a state of flux.

Keywords

Helioseismology, heliophysics Solar neutrinos General relativity Solar opacity Equation of state 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abraham, Z., Iben, I. Jr: 1971, More solar models and neutrino fluxes. Astrophys. J. 170, 157. doi: 10.1086/151197. ADSGoogle Scholar
  2. Allende Prieto, C., Lambert, D.L., Asplund, M.: 2001, The forbidden abundance of oxygen in the Sun. Astrophys. J. Lett. 556, L63 – L66. doi: 10.1086/322874. ADSGoogle Scholar
  3. Allende Prieto, C., Lambert, D.L., Asplund, M.: 2002, A reappraisal of the solar photospheric C/O ratio. Astrophys. J. Lett. 573, L137 – L140. doi: 10.1086/342095. ADSGoogle Scholar
  4. Amelin, Y., Krot, A.N., Hutcheon, I.D., Ulyanov, A.A.: 2002, Lead isotopic ages of chondrules and calcium-aluminium-rich inclusions. Science 297, 1678 – 1683. doi: 10.1126/science.1073950. ADSGoogle Scholar
  5. Ando, H., Osaki, Y.: 1975, Nonadiabatic nonradial oscillations – an application to the five-minute oscillation of the Sun. Publ. Astron. Soc. Japan 27, 581 – 603. ADSGoogle Scholar
  6. Antia, H.M., Basu, S.: 2004, Temporal variations in the solar radius? In: Danesy, D. (ed.) SOHO 14 Helio- and Asteroseismology: Towards a Golden Future SP-559, ESA, Noordwijk, 301. Google Scholar
  7. Antia, H.M., Basu, S.: 2006, Determining solar abundances using helioseismology. Astrophys. J. 644, 1292 – 1298. doi: 10.1086/503707. ADSGoogle Scholar
  8. Antia, H.M., Basu, S.: 2011, Are recent solar heavy element abundances consistent with helioseismology? J. Phys. Conf. Ser. 271, 012034. doi: 10.1088/1742-6596/271/1/012034. ADSGoogle Scholar
  9. Antia, H.M., Chitre, S.M., Gough, D.O.: 2008, Temporal variations in the Sun’s rotational kinetic energy. Astron. Astrophys. 477, 657 – 663. doi: 10.1051/0004-6361:20078209. ADSMATHGoogle Scholar
  10. Antia, H.M., Chitre, S.M., Gough, D.O.: 2012, On the magnetic field required for driving the observed angular-velocity variations in the solar convection zone. Mon. Not. R. Astron. Soc., in press. Google Scholar
  11. Asplund, M.: 2005, New light on stellar abundance analyses: Departures from LTE and homogeneity. Annu. Rev. Astron. Astrophys. 43, 481 – 530. doi: 10.1146/annurev.astro.42.053102.134001. ADSGoogle Scholar
  12. Asplund, M., Grevesse, N., Sauval, A.J.: 2005, The solar chemical composition. In: Barnes, T.G. III, Bash, F.N. (eds.) Cosmic Abundances as Records of Stellar Evolution and Nucleosynthesis CS-336, Astron. Soc. Pac., San Francisco, 25. Google Scholar
  13. Asplund, M., Nordlund, Å., Trampedach, R., Stein, R.F.: 2000, Line formation in solar granulation. II. The photospheric Fe abundance. Astron. Astrophys. 359, 743 – 754. ADSGoogle Scholar
  14. Asplund, M., Grevesse, N., Sauval, A.J., Allende Prieto, C., Kiselman, D.: 2004, Line formation in solar granulation. IV. [O I], O I and OH lines and the photospheric O abundance. Astron. Astrophys. 417, 751 – 768. doi: 10.1051/0004-6361:20034328. ADSGoogle Scholar
  15. Asplund, M., Grevesse, N., Sauval, A.J., Allende Prieto, C., Kiselman, D.: 2005a, Line formation in solar granulation. IV. [O I], O I and OH lines and the photospheric O abundance. Astron. Astrophys. 435, 339 – 340. doi: 10.1051/0004-6361:20034328e. ADSGoogle Scholar
  16. Asplund, M., Grevesse, N., Sauval, A.J., Allende Prieto, C., Blomme, R.: 2005b, Line formation in solar granulation. VI. [C I], C I, CH and C2 lines and the photospheric C abundance. Astron. Astrophys. 431, 693 – 705. doi: 10.1051/0004-6361:20041951. ADSGoogle Scholar
  17. Asplund, M., Grevesse, N., Sauval, A.J., Scott, P.: 2009, The chemical composition of the Sun. Annu. Rev. Astron. Astrophys. 47, 481 – 522. doi: 10.1146/annurev.astro.46.060407.145222. ADSGoogle Scholar
  18. Bahcall, J.N.: 2001, High-energy physics: neutrinos reveal split personalities. Nature 412, 29 – 31. ADSGoogle Scholar
  19. Bahcall, J.N., Basu, S., Pinsonneault, M.H.: 1998, How uncertain are solar neutrino predictions? Phys. Lett. B 433, 1 – 8. doi: 10.1016/S0370-2693(98)00657-1. ADSGoogle Scholar
  20. Bahcall, J.N., Pinsonneault, M.H.: 1992, Standard solar models, with and without helium diffusion, and the solar neutrino problem. Rev. Mod. Phys. 64, 885 – 926. doi: 10.1103/RevModPhys.64.885. ADSGoogle Scholar
  21. Bahcall, J.N., Pinsonneault, M.H., Basu, S.: 2001, Solar models: current epoch and time dependences, neutrinos, and helioseismological properties. Astrophys. J. 555, 990 – 1012. doi: 10.1086/321493. ADSGoogle Scholar
  22. Bahcall, J.N., Ulrich, R.K.: 1971, Solar neutrinos. III. Composition and magnetic-field effects and related inferences. Astrophys. J. 170, 593. doi: 10.1086/151245. ADSGoogle Scholar
  23. Bahcall, J.N., Ulrich, R.K.: 1988, Solar models, neutrino experiments, and helioseismology. Rev. Mod. Phys. 60, 297 – 372. doi: 10.1103/RevModPhys.60.297. ADSGoogle Scholar
  24. Bahcall, J.N., Basu, S., Pinsonneault, M.H., Serenelli, A.M.: 2005, Helioseismological implications of recent solar abundance determinations. Astrophys. J. 618, 1049 – 1056. doi: 10.1086/426070. ADSGoogle Scholar
  25. Balmforth, N.J., Gough, D.O.: 1990, Effluent stellar pulsation. Astrophys. J. 362, 256 – 266. doi: 10.1086/169262. ADSGoogle Scholar
  26. Basu, S.: 1998, Effects of errors in the solar radius on helioseismic inferences. Mon. Not. Roy. Astron. Soc. 298, 719 – 728. doi: 10.1046/j.1365-8711.1998.01690.x. ADSGoogle Scholar
  27. Basu, S., Antia, H.M.: 1995, Helium abundance in the solar envelope. Mon. Not. Roy. Astron. Soc. 276, 1402 – 1408. ADSGoogle Scholar
  28. Basu, S., Antia, H.M.: 1997, Seismic measurement of the depth of the solar convection zone. Mon. Not. Roy. Astron. Soc. 287, 189 – 198. ADSGoogle Scholar
  29. Basu, S., Antia, H.M.: 2003, Changes in solar dynamics from 1995 to 2002. Astrophys. J. 585, 553 – 565. doi: 10.1086/346020. ADSGoogle Scholar
  30. Basu, S., Antia, H.M.: 2004, Constraining solar abundances using helioseismology. Astrophys. J. Lett. 606, L85 – L88. doi: 10.1086/421110. ADSGoogle Scholar
  31. Basu, S., Antia, H.M.: 2008, Helioseismology and solar abundances. Phys. Rep. 457, 217 – 283. doi: 10.1016/j.physrep.2007.12.002. ADSGoogle Scholar
  32. Basu, S., Däppen, W., Nayfonov, A.: 1999, Helioseismic analysis of the hydrogen partition function in the solar interior. Astrophys. J. 518, 985 – 993. doi: 10.1086/307312. ADSGoogle Scholar
  33. Basu, S., Mandel, A.: 2004, Does solar structure vary with solar magnetic activity? Astrophys. J. Lett. 617, L155 – L158. doi: 10.1086/427435. ADSGoogle Scholar
  34. Basu, S., Christensen-Dalsgaard, J., Chaplin, W.J., Elsworth, Y., Isaak, G.R., New, R., Schou, J., Thompson, M.J., Tomczyk, S.: 1997, Solar internal sound speed as inferred from combined BiSON and LOWL oscillation frequencies. Mon. Not. Roy. Astron. Soc. 292, 243. ADSGoogle Scholar
  35. Basu, S., Chaplin, W.J., Elsworth, Y., New, R., Serenelli, A.M., Verner, G.A.: 2007, Solar abundances and helioseismology: fine-structure spacings and separation ratios of low-degree p-modes. Astrophys. J. 655, 660 – 671. doi: 10.1086/509820. ADSGoogle Scholar
  36. Basu, S., Broomhall, A.-M., Chaplin, W.J., Elsworth, Y., Fletcher, S., New, R.: 2010, Differences between the current solar minimum and earlier minima. In: Cranmer, S.R., Hoeksema, J.T., Kohl, J.L. (eds.) SOHO-23: Understanding a Peculiar Solar Minimum CS-428, Astron. Soc. Pac., San Francisco, 37. Google Scholar
  37. Baturin, V.A., Däppen, W., Gough, D.O., Vorontsov, S.V.: 2000, Seismology of the solar envelope: sound-speed gradient in the convection zone and its diagnosis of the equation of state. Mon. Not. Roy. Astron. Soc. 316, 71 – 83. doi: 10.1046/j.1365-8711.2000.03459.x. ADSGoogle Scholar
  38. Bonanno, A., Schlattl, H., Paternò, L.: 2002, The age of the Sun and the relativistic corrections in the EOS. Astron. Astrophys. 390, 1115 – 1118. doi: 10.1051/0004-6361:20020749. ADSGoogle Scholar
  39. Bouvier, A., Wadhwa, M.: 2010, The age of the Solar System redefined by the oldest Pb–Pb age of a meteoritic inclusion. Nat. Geosci. 3, 637 – 641. doi: 10.1038/ngeo941. ADSGoogle Scholar
  40. Brans, C., Dicke, R.H.: 1961, Mach’s principle and a relativistic theory of gravitation. Phys. Rev. 124, 925 – 935. doi: 10.1103/PhysRev.124.925. MathSciNetADSMATHGoogle Scholar
  41. Bretherton, F.P., Spiegel, A.E.: 1968, The effect of the convection zone on solar spin-down. Astrophys. J. Lett. 153, L77. doi: 10.1086/180224. ADSGoogle Scholar
  42. Brown, T.M., Christensen-Dalsgaard, J., Dziembowski, W.A., Goode, P., Gough, D.O., Morrow, C.A.: 1989, Inferring the Sun’s internal angular velocity from observed p-mode frequency splittings. Astrophys. J. 343, 526 – 546. doi: 10.1086/167727. ADSGoogle Scholar
  43. Byington, B.M., Brummell, N.H., Stone, J., Gough, D.O.: 2012, Stoked nondynamos: sustaining field in magnetically non-closed systems. Phys. Fluids. in preparation. Google Scholar
  44. Caffau, E., Maiorca, E., Bonifacio, P., Faraggiana, R., Steffen, M., Ludwig, H.-G., Kamp, I., Busso, M.: 2009, The solar photospheric nitrogen abundance. Analysis of atomic transitions with 3D and 1D model atmospheres. Astron. Astrophys. 498, 877 – 884. doi: 10.1051/0004-6361/200810859. ADSGoogle Scholar
  45. Caffau, E., Ludwig, H.-G., Steffen, M., Freytag, B., Bonifacio, P.: 2011, Solar chemical abundances determined with a CO5BOLD 3D model atmosphere. Solar Phys. 268, 255 – 269. doi: 10.1007/s11207-010-9541-4. ADSGoogle Scholar
  46. Chaplin, W.J., Elsworth, Y., Howe, R., Isaak, G.R., McLeod, C.P., Miller, B.A., van der Raay, H.B., Wheeler, S.J., New, R.: 1996, BiSON performance. Solar Phys. 168, 1 – 18. doi: 10.1007/BF00145821. ADSGoogle Scholar
  47. Chaplin, W.J., Christensen-Dalsgaard, J., Elsworth, Y., Howe, R., Isaak, G.R., Larsen, R.M., New, R., Schou, J., Thompson, M.J., Tomczyk, S.,: 1999, Rotation of the solar core from BiSON and LOWL frequency observations. Mon. Not. Roy. Astron. Soc. 308, 405 – 414. ADSGoogle Scholar
  48. Chaplin, W.J., Serenelli, A.M., Basu, S., Elsworth, Y., New, R., Verner, G.A.: 2007, Solar heavy-element abundance: constraints from frequency separation ratios of low-degree p-modes. Astrophys. J. 670, 872 – 884. doi: 10.1086/522578. ADSGoogle Scholar
  49. Christensen-Dalsgaard, J.: 1992, Solar models with enhanced energy transport in the core. Astrophys. J. 385, 354 – 362. doi: 10.1086/170944. ADSGoogle Scholar
  50. Christensen-Dalsgaard, J., Gough, D.O.: 1976, Towards a heliological inverse problem. Nature 259, 89 – 92. doi: 10.1038/259089a0. ADSGoogle Scholar
  51. Christensen-Dalsgaard, J., Gough, D.O.: 1980, Implications of the whole-disk Doppler observations of the Sun. In: Hill, H.A., Dziembowski, W.A. (eds.) Nonradial and Nonlinear Stellar Pulsation, Lecture Notes in Phys. 125, Springer, Berlin, 184 – 190. doi: 10.1007/3-540-09994-8_18. Google Scholar
  52. Christensen-Dalsgaard, J., Gough, D.O.: 1981, Comparison of observed solar whole-disk oscillation frequencies with the predictions of a sequence of solar models. Astron. Astrophys. 104, 173 – 176. ADSGoogle Scholar
  53. Christensen-Dalsgaard, J., Houdek, G.: 2010, Prospects for asteroseismology. Astrophys. Space Sci. 328, 51 – 66. doi: 10.1007/s10509-009-0227-z. ADSMATHGoogle Scholar
  54. Christensen-Dalsgaard, J., Gough, D.O., Morgan, J.G.: 1979a, Dirty solar models. Astron. Astrophys. 73, 121 – 128. ADSGoogle Scholar
  55. Christensen-Dalsgaard, J., Gough, D.O., Morgan, J.G.: 1979b, Erratum: “Dirty solar models” [Astron. Astrophys. 79, 260]. Astron. Astrophys. 79, 121 – 128. ADSGoogle Scholar
  56. Christensen-Dalsgaard, J., Gough, D.O., Thompson, M.J.: 1989, Differential asymptotic sound-speed inversions. Mon. Not. Roy. Astron. Soc. 238, 481 – 502. ADSGoogle Scholar
  57. Christensen-Dalsgaard, J., Gough, D.O., Thompson, M.J.: 1991, The depth of the solar convection zone. Astrophys. J. 378, 413 – 437. doi: 10.1086/170441. ADSGoogle Scholar
  58. Christensen-Dalsgaard, J., Proffitt, C.R., Thompson, M.J.: 1993, Effects of diffusion on solar models and their oscillation frequencies. Astrophys. J. Lett. 403, L75 – L78. doi: 10.1086/186725. ADSGoogle Scholar
  59. Christensen-Dalsgaard, J., Duvall, T.L. Jr, Gough, D.O., Harvey, J.W., Rhodes, E.J. Jr: 1985, Speed of sound in the solar interior. Nature 315, 378 – 382. doi: 10.1038/315378a0. ADSGoogle Scholar
  60. Christensen-Dalsgaard, J., Däppen, W., Ajukov, S.V., Anderson, E.R., Antia, H.M., Basu, S., Baturin, V.A., Berthomieu, G., Chaboyer, B., Chitre, S.M., Cox, A.N., Demarque, P., Donatowicz, J., Dziembowski, W.A., Gabriel, M., Gough, D.O., Guenther, D.B., Guzik, J.A., Harvey, J.W., Hill, F., Houdek, G., Iglesias, C.A., Kosovichev, A.G., Leibacher, J.W., Morel, P., Proffitt, C.R., Provost, J., Reiter, J., Rhodes, E.J. Jr, Rogers, F.J., Roxburgh, I.W., Thompson, M.J., Ulrich, R.K.: 1996, The current state of solar modeling. Science 272, 1286 – 1292. doi: 10.1126/science.272.5266.1286. ADSGoogle Scholar
  61. Christensen-Dalsgaard, J., Di Mauro, M.P., Houdek, G., Pijpers, F.: 2009, On the opacity change required to compensate for the revised solar composition. Astron. Astrophys. 494, 205 – 208. doi: 10.1051/0004-6361:200810170. ADSGoogle Scholar
  62. Christensen-Dalsgaard, J., Monteiro, M.J.P.F.G., Rempel, M., Thompson, M.J.: 2011, A more realistic representation of overshoot at the base of the solar convective envelope as seen by helioseismology. Mon. Not. Roy. Astron. Soc. 414, 1158 – 1174. doi: 10.1111/j.1365-2966.2011.18460.x. ADSGoogle Scholar
  63. Claverie, A., Isaak, G.R., McLeod, C.P., van der Raay, H.B., Roca-Cortes, T.: 1980, The latest results of the velocity spectroscopy of the Sun. In: Hill, H.A., Dziembowski, W.A. (eds.) Nonradial and Nonlinear Stellar Pulsation, Lecture Notes in Phys. 125, Springer, Berlin, 181. doi: 10.1007/3-540-09994-8_17. Google Scholar
  64. Cox, A.N., Morgan, S.M., Rogers, F.J., Iglesias, C.A.: 1992, An opacity mechanism for the pulsations of OB stars. Astrophys. J. 393, 272 – 277. doi: 10.1086/171504. ADSGoogle Scholar
  65. Däppen, W.: 1998, Microphysics: equation of state. Space Sci. Rev. 85, 49 – 60. doi: 10.1023/A:1005176317912. ADSGoogle Scholar
  66. Däppen, W.: 2004, Equations of state for solar and stellar modeling. In: Celebonovic, V., Gough, D., Däppen, W. (eds.) Equation-of-State and Phase-Transition in Models of Ordinary Astrophysical Matter CS-731, AIP, New York, 3 – 17. doi: 10.1063/1.1828391. Google Scholar
  67. Däppen, W.: 2007, Seismic abundance determination in the Sun and in stars. In: Stancliffe, R.J., Houdek, G., Martin, R.G., Tout, C.A. (eds.) Unsolved Problems in Stellar Physics: A Conference in Honour of Douglas Gough CS-948, AIP, New York, 179 – 190. doi: 10.1063/1.2818968. Google Scholar
  68. Däppen, W., Gough, D.O.: 1984, On the determination of the helium abundance of the solar convection zone. In: Liège Internat. Astrophys. Coll. 25, Université de Liège, 264 – 268. Google Scholar
  69. Däppen, W., Gilliland, R.L., Christensen-Dalsgaard, J.: 1986, Weakly interacting massive particles, solar neutrinos, and solar oscillations. Nature 321, 229 – 231. doi: 10.1038/321229a0. ADSGoogle Scholar
  70. Däppen, W., Gough, D.O., Thompson, M.J.: 1988, Further progress on the helium abundance determination. In: Rolfe, E.J. (ed.) Seismology of the Sun and Sun-Like Stars SP-286, ESA, Noordwijk, 505 – 510. Google Scholar
  71. Däppen, W., Gough, D.O., Kosovichev, A.G., Thompson, M.J.: 1991, A new inversion for the hydrostatic stratification of the Sun. In: Gough, D., Toomre, J. (eds.) Challenges to Theories of the Structure of Moderate-Mass Stars, Lecture Notes in Phys. 388, Springer, Berlin, 111. doi: 10.1007/3-540-54420-8_57. Google Scholar
  72. Deubner, F.-L.: 1975, Observations of low wavenumber nonradial eigenmodes of the Sun. Astron. Astrophys. 44, 371 – 375. ADSGoogle Scholar
  73. Di Mauro, M.P., Christensen-Dalsgaard, J., Rabello-Soares, M.C., Basu, S.: 2002, Inferences on the solar envelope with high-degree modes. Astron. Astrophys. 384, 666 – 677. doi: 10.1051/0004-6361:20020020. ADSGoogle Scholar
  74. Dicke, R.H.: 1967, The solar spin-down problem. Astrophys. J. Lett. 149, L121. doi: 10.1086/180072. ADSGoogle Scholar
  75. Dicke, R.H.: 1970, The solar oblateness and the gravitational quadrupole moment. Astrophys. J. 159, 1. doi: 10.1086/150286. ADSGoogle Scholar
  76. Dicke, R.H., Goldenberg, H.M.: 1967, Solar oblateness and general relativity. Phys. Rev. Lett. 18, 313 – 316. doi: 10.1103/PhysRevLett.18.313. ADSGoogle Scholar
  77. Dicke, R.H., Goldenberg, H.M.: 1974, The oblateness of the Sun. Astrophys. J. Suppl. Ser. 27, 131. doi: 10.1086/190292. ADSGoogle Scholar
  78. Doğan, G., Bonanno, A., Christensen-Dalsgaard, J.: 2010, Near-surface effects and solar-age determination. arXiv:1004.2215.
  79. Drake, J.J., Testa, P.: 2005, The ‘solar model problem’ solved by the abundance of neon in nearby stars. Nature 436, 525 – 528. doi: 10.1038/nature03803. ADSGoogle Scholar
  80. Duvall, T.L. Jr., Harvey, J.W.: 1983, Observations of solar oscillations of low and intermediate degree. Nature 302, 24 – 27. doi: 10.1038/302024a0. ADSGoogle Scholar
  81. Duvall, T.L. Jr., Dziembowski, W.A., Goode, P.R., Gough, D.O., Harvey, J.W., Leibacher, J.W.: 1984, Internal rotation of the Sun. Nature 310, 22 – 25. doi: 10.1038/310022a0. ADSGoogle Scholar
  82. Dziembowski, W.A., Goode, P.R.: 2004, Helioseismic probing of solar variability: the formalism and simple assessments. Astrophys. J. 600, 464 – 479. doi: 10.1086/379708. ADSGoogle Scholar
  83. Dziembowski, W.A., Goode, P.R.: 2005, Sources of oscillation frequency increase with rising solar activity. Astrophys. J. 625, 548 – 555. doi: 10.1086/429712. ADSGoogle Scholar
  84. Dziembowski, W.A., Moskalik, P., Pamyatnykh, A.A.: 1993, The opacity mechanism in b-type stars – part two – excitation of high-order G-modes in main sequence stars. Mon. Not. Roy. Astron. Soc. 265, 588. ADSGoogle Scholar
  85. Dziembowski, W.A., Moskalik, P., Pamyatnykh, A.A.: 1994, G-mode instability in the main sequence B-type stars. In: Balona, L.A., Henrichs, H.F., Le Contel, J.M. (eds.) Pulsation; Rotation; and Mass Loss in Early-Type Stars, IAU Symp. 162, Kluwer, Dordrecht, 69. Google Scholar
  86. Dziembowski, W.A., Pamyatnykh, A.A.: 1993, The opacity mechanism in B-type stars. I – Unstable modes in Beta Cephei star models. Mon. Not. Roy. Astron. Soc. 262, 204 – 212. ADSGoogle Scholar
  87. Dziembowski, W.A., Pamyatnykh, A.A., Sienkiewicz, R.: 1990, Solar model from helioseismology and the neutrino flux problem. Mon. Not. Roy. Astron. Soc. 244, 542 – 550. ADSGoogle Scholar
  88. Dziembowski, W.A., Fiorentini, G., Ricci, B., Sienkiewicz, R.: 1999, Helioseismology and the solar age. Astron. Astrophys. 343, 990 – 996. ADSGoogle Scholar
  89. Elliott, J.R.: 1995, Opacity determination in the solar radiative interior. Mon. Not. Roy. Astron. Soc. 277, 1567. ADSGoogle Scholar
  90. Elliott, J.R., Gough, D.O., Sekii, T.: 1998, Helioseismic determination of the solar tachocline thickness. In: Korzennik, S. (ed.) Structure and Dynamics of the Interior of the Sun and Sun-like Stars SP-418, ESA, Noordwijk, 763. Google Scholar
  91. Elsworth, Y., Howe, R., Isaak, G.R., McLeod, C.P., Miller, B.A., New, R., Wheeler, S.J., Gough, D.O.: 1995, Slow rotation of the Sun’s interior. Nature 376, 669 – 672. ADSGoogle Scholar
  92. Emilio, M., Bush, R.I., Kuhn, J., Scherrer, P.: 2007, A changing solar shape. Astrophys. J. Lett. 660, L161 – L163. doi: 10.1086/518212. ADSGoogle Scholar
  93. Faulkner, J., Gough, D.O., Vahia, M.N.: 1986, Weakly interacting massive particles and solar oscillations. Nature 321, 226 – 229. doi: 10.1038/321226a0. ADSGoogle Scholar
  94. Fivian, M.D., Hudson, H.S., Lin, R.P., Zahid, H.J.: 2008, A large excess in apparent solar oblateness due to surface magnetism. Science 322, 560 – 562. doi: 10.1126/science.1160863. ADSGoogle Scholar
  95. Fossat, E., Grec, G., Pomerantz, M.: 1981, Solar pulsations observed from the geographic South Pole – Initial results. Solar Phys. 74, 59 – 63. doi: 10.1007/BF00151274. ADSGoogle Scholar
  96. Foukal, P., Fröhlich, C., Spruit, H., Wigley, T.M.L.: 2006, Variations in solar luminosity and their effect on the Earth’s climate. Nature 443, 161 – 166. doi: 10.1038/nature05072. ADSGoogle Scholar
  97. Fröhlich, C.: 2011, Total solar irradiance: what have we learned from the last three cycles and the recent minimum? Space Sci. Rev. doi: 10.1007/s11214-011-9780-1. Google Scholar
  98. Gilliland, R.L., Faulkner, J., Press, W.H., Spergel, D.N.: 1986, Solar models with energy transport by weakly interacting particles. Astrophys. J. 306, 703 – 709. doi: 10.1086/164380. ADSGoogle Scholar
  99. Gizon, L., Schunker, H., Baldner, C.S., Basu, S., Birch, A.C., Bogart, R.S., Braun, D.C., Cameron, R., Duvall, T.L., Hanasoge, S.M., Jackiewicz, J., Roth, M., Stahn, T., Thompson, M.J., Zharkov, S.: 2009, Helioseismology of sunspots: a case study of NOAA region 9787. Space Sci. Rev. 144, 249 – 273. doi: 10.1007/s11214-008-9466-5. ADSGoogle Scholar
  100. Goode, P.R., Didkovsky, L.V., Libbrecht, K.G., Woodard, M.F.: 2002, Evolution of the Sun’s near-surface asphericities over the activity cycle. Adv. Space Res. 29, 1889 – 1898. doi: 10.1016/S0273-1177(02)00240-5. ADSGoogle Scholar
  101. Gough, D., Hindman, B.W.: 2010, Helioseismic detection of deep meridional flow. Astrophys. J. 714, 960 – 970. doi: 10.1088/0004-637X/714/1/960. ADSGoogle Scholar
  102. Gough, D.O.: 1977, Random remarks on solar hydrodynamics. In: Bonnet, R.M., Delache, P. (eds.) The Energy Balance and Hydrodynamics of the Solar Chromosphere and Corona, IAU Colloq. 36, G. de Bussac, Clermont-Ferrand, 3 – 36. Google Scholar
  103. Gough, D.O.: 1978, The relevance of solar oscillations to theories of the rotation of the Sun. In: Belvedere, G., Paternò, L. (eds.) Proc. EPS Workshop on Solar Rotation, Catania Univ., 87 – 103. Google Scholar
  104. Gough, D.O.: 1981, A new measure of the solar rotation. Mon. Not. Roy. Astron. Soc. 196, 731 – 745. ADSGoogle Scholar
  105. Gough, D.O.: 1982a, A review of the theory of solar oscillations and its implications concerning the internal structure of the Sun. In: Cox, J.P., Hansen, C.J. (eds.) Pulsations in Classical and Cataclysmic Variable Stars, JILA, Boulder, 117. Google Scholar
  106. Gough, D.O.: 1982b, Inferences from solar oscillations. Ir. Astron. J. 15, 118 – 119. Google Scholar
  107. Gough, D.O.: 1983a, Our first inferences from helioseismology. Phys. Bull. 34, 502 – 507. ADSGoogle Scholar
  108. Gough, D.O.: 1983b, Solar structure: a bridge in a gap in solar oscillations. Nature 302, 18. doi: 10.1038/302018a0. ADSGoogle Scholar
  109. Gough, D.O.: 1983c, The protosolar helium abundance. In: Shaver, P.A., Kunth, D., Kjar, K. (eds.) Workshop on the Primordial Helium (A83-50030 24-90), ESO, Garching, 117 – 136. Google Scholar
  110. Gough, D.O.: 1984a, Helioseismology. Observatory 104, 118 – 119. Google Scholar
  111. Gough, D.O.: 1984b, Towards a solar model. Mem. Soc. Astron. Ital. 55, 13. ADSGoogle Scholar
  112. Gough, D.O.: 1986, EBK quantization of stellar waves. In: Osaki, Y. (ed.) Hydrodynamic and Magnetodynamic Problems in the Sun and Stars, Univ. Tokyo, 117 – 143. Google Scholar
  113. Gough, D.O.: 1990, The internal structure of late-type main-sequence stars. In: Gustafsson, B., Nissen, P.E. (eds.) Astrophysics: Recent Progress and Future Possibilities (A91-15054 03-90), Kongelige Danske Videnskabernes Selskab, Copenhagen, 13 – 50. Google Scholar
  114. Gough, D.O.: 1995, Prospects for asteroseismic inference. In: Ulrich, R.K., Rhodes, E.J. Jr., Däppen, W. (eds.) GONG 1994: Helio- and Astro-Seismology from the Earth and Space CS-76, Astron. Soc. Pac., San Francisco, 551. Google Scholar
  115. Gough, D.O.: 2004, The power of helioseismology to address issues of fundamental physics. In: Celebonović, V., Gough, D., Däppen, W. (eds.) Equation-of-State and Phase-Transition in Models of Ordinary Astrophysical Matter CS-731, AIP, New York, 119 – 138. doi: 10.1063/1.1828398. Google Scholar
  116. Gough, D.O.: 2006, Helioseismological determination of the state of the solar interior. In: Lacoste, H., Ouwehand, L. (eds.) SOHO-17: 10 Years of SOHO and Beyond SP-617, ESA, Noordwijk, 1 – 17. Google Scholar
  117. Gough, D.O.: 2012a, Heliophysics gleaned from seismology. In: Shibahashi, H., Takata, M. (eds.) Progress in Solar/Stellar Physics with Helio- and Asteroseismology; Proc. 65th Fujihara Seminar, Astron. Soc. Pac., San Francisco, in press. Google Scholar
  118. Gough, D.O.: 2012b, Pattern formation in rapidly oscillating peculiar A stars. Geophys. Astrophys. Fluid Dyn. 106, 429 – 449. ADSGoogle Scholar
  119. Gough, D.O.: 2012c, How oblate is the Sun? Science. in press Google Scholar
  120. Gough, D.O., Kosovichev, A.G.: 1988, An attempt to understand the Stanford p-mode data. In: Rolfe, E.J. (ed.) Seismology of the Sun and Sun-Like Stars SP-286, ESA, Noordwijk, 195 – 201. Google Scholar
  121. Gough, D.O., Kosovichev, A.G.: 1990, Using helioseismic data to probe the hydrogen abundance in the solar core. In: Berthomieu, G., Cribier, M. (eds.) Inside the Sun, IAU Colloq. 121, Kluwer, Dordrecht, 327. Astrophys. Space Sci. Lib. 159. Google Scholar
  122. Gough, D.O., McIntyre, M.E.: 1998, Inevitability of a magnetic field in the Sun’s radiative interior. Nature 394, 755 – 757. doi: 10.1038/29472. ADSGoogle Scholar
  123. Gough, D.O., Scherrer, P.H.: 2002, The solar interior. In: Bleeker, J.A., Geiss, J., Huber, M.C.E. (eds.) The Century of Space Science I. Kluwer, Dordrecht, 1035. Google Scholar
  124. Gough, D.O., Sekii, T., Stark, P.B.: 1996, Inferring spatial variation of solar properties from helioseismic data. Astrophys. J. 459, 779. doi: 10.1086/176942. ADSGoogle Scholar
  125. Gough, D.O., Kosovichev, A.G., Toomre, J., Anderson, E., Antia, H.M., Basu, S., Chaboyer, B., Chitre, S.M., Christensen-Dalsgaard, J., Dziembowski, W.A., Eff-Darwich, A., Elliott, J.R., Giles, P.M., Goode, P.R., Guzik, J.A., Harvey, J.W., Hill, F., Leibacher, J.W., Monteiro, M.J.P.F.G., Richard, O., Sekii, T., Shibahashi, H., Takata, M., Thompson, M.J., Vauclair, S., Vorontsov, S.V.: 1996, The seismic structure of the Sun. Science 272, 1296 – 1300. doi: 10.1126/science.272.5266.1296. ADSGoogle Scholar
  126. Grec, G., Fossat, E., Pomerantz, M.: 1980, Solar oscillations – Full disk observations from the geographic South Pole. Nature 288, 541 – 544. doi: 10.1038/288541a0. ADSGoogle Scholar
  127. Grevesse, N., Noels, A.: 1993, Cosmic abundances of the elements. In: Prantzos, N., Vangioni-Flam, E., Casse, M. (eds.) Origin and Evolution of the Elements, Cambridge Univ. Press, Cambridge, 15 – 25. Google Scholar
  128. Grevesse, N., Sauval, A.J.: 1998, Standard solar composition. Space Sci. Rev. 85, 161 – 174. doi: 10.1023/A:1005161325181. ADSGoogle Scholar
  129. Grevesse, N., Asplund, M., Sauval, A.J., Scott, P.: 2011, The new solar composition and the solar metallicity. In: Miralles, M.P., Sánchez Almeida, J. (eds.) The Sun, the Solar Wind, and the Heliosphere, Springer, Berlin, 51. Google Scholar
  130. Guzik, J.A., Watson, L.S., Cox, A.N.: 2005, Can enhanced diffusion improve helioseismic agreement for solar models with revised abundances? Astrophys. J. 627, 1049 – 1056. doi: 10.1086/430438. ADSGoogle Scholar
  131. Guzik, J.A., Watson, L.S., Cox, A.N.: 2006, Implications of revised solar abundances for helioseismology Mem. Soc. Astron. Ital. 77, 389. ADSGoogle Scholar
  132. Hampel, W., Heusser, G., Kiko, J., Kirsten, T., Laubenstein, M., Pernicka, E., Rau, W., Rönn, U., Schlosser, C., Wojcik, M., Zakharov, Y., v. Ammon, R., Ebert, K.H., Fritsch, T., Heidt, D., Henrich, E., Stieglitz, L., Weirich, F., Balata, M., Sann, M., Hartmann, F.X., Bellotti, E., Cattadori, C., Cremonesi, O., Ferrari, N., Fiorini, E., Zanotti, L., Altmann, M., v. Feilitzsch, F., Mößbauer, R., Berthomieu, G., Schatzman, E., Carmi, I., Dostrovsky, I., Bacci, C., Belli, P., Bernabei, R., D’Angelo, S., Paoluzi, L., Bevilacqua, A., Cribier, M., Gosset, L., Rich, J., Spiro, M., Tao, C., Vignaud, D., Boger, J., Hahn, R.L., Rowley, J.K., Stoenner, R.W., Weneser, J.: 1996, GALLEX solar neutrino observations: Results for GALLEX III. Phys. Lett. B 388, 384 – 396. doi: 10.1016/S0370-2693(96)01121-5. ADSGoogle Scholar
  133. Hindman, B.W., Haber, D.A., Toomre, J.: 2009, Subsurface circulations within active regions. Astrophys. J. 698, 1749 – 1760. doi: 10.1088/0004-637X/698/2/1749. ADSGoogle Scholar
  134. Houdek, G., Gough, D.O.: 2007, An asteroseismic signature of helium ionisation. Mon. Not. Roy. Astron. Soc. 375, 861 – 880. doi: 10.1111/j.1365-2966.2006.11325.x. ADSGoogle Scholar
  135. Houdek, G., Gough, D.O.: 2011, On the seismic age and heavy-element abundance of the Sun. Mon. Not. Roy. Astron. Soc. 418, 1217 – 1230. doi: 10.1111/j.1365-2966.2011.19572.x. ADSGoogle Scholar
  136. Howard, L.N., Moore, D.W., Spiegel, E.A.: 1967, Nature 214, 1297. ADSGoogle Scholar
  137. Howe, R., Thompson, M.J.: 1996, On the use of the error correlation function in helioseismic inversions. Mon. Not. Roy. Astron. Soc. 281, 1385. ADSGoogle Scholar
  138. Howe, R., Komm, R., Hill, F., Ulrich, R., Haber, D.A., Hindman, B.W., Schou, J., Thompson, M.J.: 2006a, Large-scale zonal flows near the solar surface. Solar Phys. 235, 1 – 15. doi: 10.1007/s11207-006-0117-2. ADSGoogle Scholar
  139. Howe, R., Rempel, M., Christensen-Dalsgaard, J., Hill, F., Komm, R., Larsen, R.M., Schou, J., Thompson, M.J.: 2006b, Solar convection zone dynamics: how sensitive are inversions to subtle dynamo features? Astrophys. J. 649, 1155 – 1168. doi: 10.1086/506931. ADSGoogle Scholar
  140. Iglesias, C.A., Rogers, F.J.: 1991, Opacities for the solar radiative interior. Astrophys. J. 371, 408 – 417. doi: 10.1086/169902. ADSGoogle Scholar
  141. Iglesias, C.A., Rogers, F.J.: 1996, Updated opal opacities. Astrophys. J. 464, 943. doi: 10.1086/177381. ADSGoogle Scholar
  142. Iglesias, C.A., Rogers, F.J., Wilson, B.G.: 1990, Opacities for classical Cepheid models. Astrophys. J. 360, 221 – 226. doi: 10.1086/169110. ADSGoogle Scholar
  143. Ilonidis, S., Zhao, J., Kosovichev, A.: 2011, Detection of emerging sunspot regions in the solar interior. Science 333, 993. doi: 10.1126/science.1206253. ADSGoogle Scholar
  144. Jacobsen, B., Yin, Q.-Z., Moynier, F., Amelin, Y., Krot, A.N., Nagashima, K., Hutcheon, I.D., Palme, H.: 2008, 26Al 26Mg and 207Pb 206Pb systematics of Allende CAIs: canonical solar initial 26Al/27Al ratio reinstated. Earth Planet. Sci. Lett. 272, 353 – 364. doi: 10.1016/j.epsl.2008.05.003. ADSGoogle Scholar
  145. Jacobsen, B., Yin, Q.-Z., Moynier, F., Amelin, Y., Krot, A.N., Nagashima, K., Hutcheon, I.D., Palme, H.: 2009, Erratum to “26Al 26Mg and 207Pb 206Pb systematics of Allende CAIs: Canonical solar initial 26Al/27Al ratio reinstated” [Earth Planet Sci. Lett. 272 (2008) 353 – 364]. Earth Planet. Sci. Lett. 277, 549. doi: 10.1016/j.epsl.2008.12.001. ADSGoogle Scholar
  146. Kiriakidis, M., El Eid, M.F., Glatzel, W.: 1992, Heavy element opacities and the pulsations of Beta Cepheid stars. Mon. Not. Roy. Astron. Soc. 255, 1P – 5P. ADSGoogle Scholar
  147. Kitiashvili, I.N., Kosovichev, A.G., Wray, A.A., Mansour, N.N.: 2009, Traveling waves of magnetoconvection and the origin of the Evershed effect in sunspots. Astrophys. J. Lett. 700, L178 – L181. doi: 10.1088/0004-637X/700/2/L178. ADSGoogle Scholar
  148. Kitiashvili, I.N., Bellot Rubio, L.R., Kosovichev, A.G., Mansour, N.N., Sainz Dalda, A., Wray, A.A.: 2010, Explanation of the sea-serpent magnetic structure of sunspot penumbrae. Astrophys. J. Lett. 716, L181 – L184. doi: 10.1088/2041-8205/716/2/L181. ADSGoogle Scholar
  149. Komm, R., Howe, R., Hill, F.: 2006, Helioseismic sensing of the solar cycle. Adv. Space Res. 38, 845 – 855. doi: 10.1016/j.asr.2005.07.034. ADSGoogle Scholar
  150. Kopp, G., Lean, J.L.: 2011, A new, lower value of total solar irradiance: evidence and climate significance. Geophys. Res. Lett. 38, 1706. doi: 10.1029/2010GL045777. ADSGoogle Scholar
  151. Korzennik, S.G., Ulrich, R.K.: 1989, Seismic analysis of the solar interior. I – Can opacity changes improve the theoretical frequencies? Astrophys. J. 339, 1144 – 1155. doi: 10.1086/167369. ADSGoogle Scholar
  152. Kosovichev, A.G.: 2009, Photospheric and subphotospheric dynamics of emerging magnetic flux. Space Sci. Rev. 144, 175 – 195. doi: 10.1007/s11214-009-9487-8. ADSGoogle Scholar
  153. Kosovichev, A.G., Duvall, T.L. Jr: 2011, Investigation of a sunspot complex by helioseismology. In: Choudhary, D.P., Strassmeier, K.G. (eds.) The Physics of Sun and Star Spots, IAU Symp. 273, Cambridge Univ. Press, Cambridge, 320 – 324. doi: 10.1017/S1743921311015456. Google Scholar
  154. Kosovichev, A.G., Christensen-Dalsgaard, J., Däppen, W., Dziembowski, W.A., Gough, D.O., Thompson, M.J.: 1992, Sources of uncertainty in direct seismological measurements of the solar helium abundance. Mon. Not. Roy. Astron. Soc. 259, 536 – 558. ADSGoogle Scholar
  155. Kuhn, J.R., Bush, R., Emilio, M., Scholl, I.F.: 2012, The precise solar shape and its variability. Science. doi: 10.1126/science.1223231. Google Scholar
  156. Lefebvre, S., Kosovichev, A.G.: 2005, Changes in the subsurface stratification of the Sun with the 11-year activity cycle. Astrophys. J. Lett. 633, L149 – L152. doi: 10.1086/498305. ADSGoogle Scholar
  157. Lefebvre, S., Kosovichev, A.G., Rozelot, J.P.: 2007, Helioseismic test of nonhomologous solar radius changes with the 11 year activity cycle. Astrophys. J. Lett. 658, L135 – L138. doi: 10.1086/515394. ADSGoogle Scholar
  158. Lodders, K., Palme, H., Gail, H.-P.: 2009, Abundances of the elements in the solar system. In: Trümper, J.E. (ed.) Landolt-Börnstein – Group VI Astron. Astrophys. Numerical Data and Functional Relationships in Science and Technology Volume, Springer, Berlin, 44. doi: 10.1007/978-3-540-88055-4_34. Google Scholar
  159. Lopes, I.P., Gough, D.O.: 2001, Seismology of stellar envelopes: probing the outer layers of a star through the scattering of acoustic waves. Mon. Not. Roy. Astron. Soc. 322, 473 – 485. doi: 10.1046/j.1365-8711.2001.03940.x. ADSGoogle Scholar
  160. Moskalik, P., Buchler, J.R., Marom, A.: 1992, Toward a resolution of the bump and beat Cepheid mass discrepancies. Astrophys. J. 385, 685 – 693. doi: 10.1086/170975. ADSGoogle Scholar
  161. Moskalik, P., Dziembowski, W.A.: 1992, New opacities and the origin of the Beta Cephei pulsation. Astron. Astrophys. 256, L5 – L8. ADSGoogle Scholar
  162. Mussack, K., Däppen, W.: 2010, Dynamic screening in solar and stellar nuclear reactions. Astrophys. Space Sci. 328, 153 – 156. doi: 10.1007/s10509-009-0245-x. ADSGoogle Scholar
  163. Mussack, K., Däppen, W.: 2011, Dynamic screening correction for solar p–p reaction rates. Astrophys. J. 729, 96. doi: 10.1088/0004-637X/729/2/96. ADSGoogle Scholar
  164. Mussack, K., Gough, D.O.: 2009, Measuring solar abundances with seismology. In: Dikpati, M., Arentoft, T., González Hernández, I., Lindsey, C., Hill, F. (eds.) Solar-Stellar Dynamos as Revealed by Helio- and Asteroseismology: GONG 2008/SOHO 21 CS-416, Astron. Soc. Pac., San Francisco, 203. Google Scholar
  165. Pijpers, F.P.: 1998, Helioseismic determination of the solar gravitational quadrupole moment. Mon. Not. Roy. Astron. Soc. 297, L76 – L80. doi: 10.1046/j.1365-8711.1998.01801.x. ADSGoogle Scholar
  166. Ramsey, A.S.: 1937, Dynamics Part II, Cambridge Univ. Press, Cambridge. Google Scholar
  167. Richard, O., Dziembowski, W.A., Sienkiewicz, R., Goode, P.R.: 1998, Precise determination of the solar helium abundance by helioseismology. In: Korzennik, S. (ed.) Structure and Dynamics of the Interior of the Sun and Sun-Like Stars SP-418, ESA, Noordwijk, 517. Google Scholar
  168. Rogers, F.J., Nayfonov, A.: 2002, Updated and expanded OPAL equation-of-state tables: implications for helioseismology. Astrophys. J. 576, 1064 – 1074. doi: 10.1086/341894. ADSGoogle Scholar
  169. Saio, H.: 1992, Opacity in the solar radiative interior inferred from 5-min oscillations. Mon. Not. Roy. Astron. Soc. 258, 491 – 496. ADSGoogle Scholar
  170. Salpeter, E.E.: 1954, Electron screening and thermonuclear reactions. Aust. J. Phys. 7, 373. ADSMATHGoogle Scholar
  171. Schou, J., Woodard, M.F., Birch, A.C.: 2009, Large-scale flows from eigenfunction fitting. Bull. Am. Astron. Soc. 40, 07.05. Google Scholar
  172. Schou, J., Antia, H.M., Basu, S., Bogart, R.S., Bush, R.I., Chitre, S.M., Christensen-Dalsgaard, J., di Mauro, M.P., Dziembowski, W.A., Eff-Darwich, A., Gough, D.O., Haber, D.A., Hoeksema, J.T., Howe, R., Korzennik, S.G., Kosovichev, A.G., Larsen, R.M., Pijpers, F.P., Scherrer, P.H., Sekii, T., Tarbell, T.D., Title, A.M., Thompson, M.J., Toomre, J.: 1998, Helioseismic studies of differential rotation in the solar envelope by the solar oscillations investigation using the Michelson Doppler Imager. Astrophys. J. 505, 390 – 417. doi: 10.1086/306146. ADSGoogle Scholar
  173. Simon, N.R.: 1982, A plea for reexamining heavy element opacities in stars. Astrophys. J. Lett. 260, L87 – L90. doi: 10.1086/183876. ADSGoogle Scholar
  174. Spergel, D.N., Press, W.H.: 1985, Effect of hypothetical, weakly interacting, massive particles on energy transport in the solar interior. Astrophys. J. 294, 663 – 673. doi: 10.1086/163336. ADSGoogle Scholar
  175. Spiegel, E.A., Zahn, J.-P.: 1992, The solar tachocline. Astron. Astrophys. 265, 106 – 114. ADSGoogle Scholar
  176. Steigman, G.: 2007, Primordial nucleosynthesis in the precision cosmology era. Annu. Rev. Nucl. Part. Sci. 57, 463 – 491. doi: 10.1146/annurev.nucl.56.080805.140437. ADSGoogle Scholar
  177. Stein, R.F., Nordlund, A.: 1998, Simulations of solar granulation. I. General properties. Astrophys. J. 499, 914. doi: 10.1086/305678. ADSGoogle Scholar
  178. Takata, M., Gough, D.O.: 2001, The influence of uncertainties in the Sun’s radius on inversions for the solar structure. In: Wilson, A., Pallé, P.L. (eds.) SOHO 10/GONG 2000 Workshop: Helio- and Asteroseismology at the Dawn of the Millennium SP-464, ESA, Noordwijk, 543 – 546. Google Scholar
  179. Takata, M., Gough, D.O.: 2003, The seismic radius of the Sun, and structure inversions. In: Sawaya-Lacoste, H. (ed.) GONG+ 2002. Local and Global Helioseismology: The Present and Future SP-517, ESA, Noordwijk, 397 – 400. Google Scholar
  180. Tassoul, M.: 1980, Asymptotic approximations for stellar nonradial pulsations. Astrophys. J. Suppl. Ser. 43, 469 – 490. doi: 10.1086/190678. ADSGoogle Scholar
  181. Taylor, S.F., Varsik, J.R., Woodard, M.F., Libbrecht, K.G.: 1998, Spatial dependence of solar-cycle changes in the Sun’s luminosity. Solar Phys. 178, 1 – 12. ADSGoogle Scholar
  182. Tomczyk, S., Schou, J., Thompson, M.J.: 1995, Measurement of the rotation rate in the deep solar interior. Astrophys. J. Lett. 448, L57. doi: 10.1086/309598. ADSGoogle Scholar
  183. Tomczyk, S., Streander, K., Card, G., Elmore, D., Hull, H., Cacciani, A.: 1995, An instrument to observe low-degree solar oscillations. Solar Phys. 159, 1 – 21. doi: 10.1007/BF00733027. ADSGoogle Scholar
  184. Tripathy, S.C., Christensen-Dalsgaard, J.: 1998, Opacity effects on the solar interior. I. Solar structure. Astron. Astrophys. 337, 579 – 590. ADSGoogle Scholar
  185. Tripathy, S.C., Basu, S., Christensen-Dalsgaard, J.: 1998, Helioseismic determination of opacity corrections. In: Provost, J., Schmider, F.-X. (eds.) Sounding Solar and Stellar Interiors, IAU Symp. 181, Poster volume, Université de Nice, Côte d’Azur, 129 – 130. Google Scholar
  186. Turck-Chièze, S., Däppen, W., Fossat, E., Provost, J., Schatzman, E., Vignaud, D.: 1993, The solar interior. Phys. Rep. 230, 57 – 235. doi: 10.1016/0370-1573(93)90020-E. ADSGoogle Scholar
  187. Ulrich, R.K., Rhodes, E.J. Jr.: 1977, The sensitivity of nonradial P mode eigenfrequencies to solar envelope structure. Astrophys. J. 218, 521 – 529. doi: 10.1086/155705. ADSGoogle Scholar
  188. Vandakurov, Y.V.: 1967, The frequency distribution of stellar oscillations Astron. Ž. 44, 786. ADSGoogle Scholar
  189. Verner, G.A., Chaplin, W.J., Elsworth, Y.: 2006, BiSON data show change in solar structure with magnetic activity. Astrophys. J. Lett. 640, L95 – L98. doi: 10.1086/503101. ADSGoogle Scholar
  190. Vorontsov, S.V., Baturin, V.A., Pamyatnykh, A.A.: 1992, Seismology of the solar envelope – towards the calibration of the equation of state. Mon. Not. Roy. Astron. Soc. 257, 32 – 46. ADSGoogle Scholar
  191. Vorontsov, S.V., Christensen-Dalsgaard, J., Schou, J., Strakhov, V.N., Thompson, M.J.: 2002, Helioseismic measurement of solar torsional oscillations. Science 296, 101 – 103. doi: 10.1126/science.1069190. ADSGoogle Scholar
  192. Weiss, N.O., Thomas, J.H., Brummell, N.H., Tobias, S.M.: 2004, The origin of penumbral structure in sunspots: downward pumping of magnetic flux. Astrophys. J. 600, 1073 – 1090. doi: 10.1086/380091. ADSGoogle Scholar
  193. Willson, R.C., Hudson, H.S.: 1988, Solar luminosity variations in solar cycle 21. Nature 332, 810 – 812. doi: 10.1038/332810a0. ADSGoogle Scholar
  194. Zhao, J., Kosovichev, A.G.: 2003, Helioseismic observation of the structure and dynamics of a rotating sunspot beneath the solar surface. Astrophys. J. 591, 446 – 453. doi: 10.1086/375343. ADSGoogle Scholar
  195. Zhao, J., Kosovichev, A.G., Duvall, T.L. Jr.: 2001, Investigation of mass flows beneath a sunspot by time-distance helioseismology. Astrophys. J. 557, 384 – 388. doi: 10.1086/321491. ADSGoogle Scholar
  196. Zhao, J., Kosovichev, A.G., Sekii, T.: 2010, High-resolution helioseismic imaging of subsurface structures and flows of a solar active region observed by Hinode. Astrophys. J. 708, 304 – 313. doi: 10.1088/0004-637X/708/1/304. ADSGoogle Scholar
  197. Zhao, J., Couvidat, S., Bogart, R.S., Parchevsky, K.V., Birch, A.C., Duvall, T.L., Beck, J.G., Kosovichev, A.G., Scherrer, P.H.: 2011, Time-distance helioseismology data-analysis pipeline for Helioseismic and Magnetic Imager onboard Solar Dynamics Observatory (SDO/HMI) and its initial results. Solar Phys. 275, 375 – 390. doi: 10.1007/s11207-011-9757-y. ADSGoogle Scholar
  198. Zweibel, E.G., Gough, D.O.: 1995, Is there a seismic signature of the Sun’s magnetic field? In: Hoeksema, J.T., Domingo, V., Fleck, B., Battrick, B. (eds.) Helioseismology SP-376, ESA, Noordwijk, 73. Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Institute of AstronomyCambridgeUK
  2. 2.Department of Applied Mathematics and Theoretical PhysicsCentre for Mathematical SciencesCambridgeUK
  3. 3.Physics DepartmentStanford UniversityStanfordUSA

Personalised recommendations