Skip to main content

Hydrogen Bond and Other Lewis Acid–Lewis Base Interactions—Mechanisms of Formation

  • Chapter
  • First Online:
Book cover Practical Aspects of Computational Chemistry IV
  • 1148 Accesses

Abstract

The hydrogen bond formation leads to numerous structural changes in interacting sub-systems. These changes are a consequence of a redistribution of electron charge density being a result of complexation. This is important that similar transformations are observed for other Lewis acid–Lewis base interactions. In general, for such interactions, including the hydrogen bond, an electron charge shift is observed from the Lewis base unit to the Lewis acid. This leads to further processes such as a change of polarizations of bonds, rehybridization of atoms, and numerous others. The transformations being the result of complexation are reflected in changes of geometrical, energetic and topological parameters. The results of ab initio calculations as well as of the Quantum Theory of ‘Atoms in Molecules’ (QTAIM) and Natural Bond Orbitals (NBO) approaches are presented here for selected types of Lewis acid–Lewis base interactions. Experimental X-ray and neutron diffraction measurements’ results on organic crystal structures are analyzed to support the ideas presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hobza P, Müller-Dethlefs K (2010) Non-covalent interactions, theory and experiment. Royal Society of Chemistry, Thomas Graham House, Science Park, Milton Road, Cambridge

    Google Scholar 

  2. Pauling L (1960) The nature of the chemical bond, 3rd edn. Cornell University Press, Ithaca, New York, p 8

    Google Scholar 

  3. International Union of Pure and Applied Chemistry, Compendium of Chemical Terminology, Gold Book, Version 2.3.3 2014-02-24, p 344, http://goldbook.iupac.org/C01384.html

  4. Warshel A (1991) Computer modeling of chemical reactions in enzymes and solution. Wiley, New York

    Google Scholar 

  5. Perrin CL, Nielson JB (1997) Annu Rev Phys Chem 48:511

    Article  CAS  Google Scholar 

  6. Nadal-Ferret M, Gelabert R, Moreno M, Lluch JM (2014) J Am Chem Soc 136:3542

    Article  CAS  Google Scholar 

  7. Sobczyk L, Grabowski SJ, Krygowski TM (2005) Chem Rev 105:3513

    Article  CAS  Google Scholar 

  8. Grabowski SJ (2011) Chem Rev 11:2597

    Article  Google Scholar 

  9. Morokuma K, Kitaura K (1980) Molecular interactions. In: Ratajczak H, Orville-Thomas WJ (eds) vol 1. Wiley, New York, pp 21–66

    Google Scholar 

  10. Sokalski WA, Roszak S, Pecul K (1988) Chem Phys Lett 153:153

    Article  CAS  Google Scholar 

  11. Sokalski WA, Roszak S (1991) J Mol Struct (THEOCHEM) 234:387

    Article  Google Scholar 

  12. Coulson CA (1952) Valence. Oxford University Press, Oxford

    Google Scholar 

  13. Pimentel GC, McClellan AL (1960) The hydrogen bond. W.H.Freeman and Company, San Francisco and London

    Google Scholar 

  14. Lewis GN (1923) Valence and the structure of atoms and molecules. Chemical Catalog, New York

    Google Scholar 

  15. Sundberg MR, Uggla R, Viñas C, Teixidor F, Paavola S, Kivekäs R (2007) Inorg Chem Commun 10:713

    Article  CAS  Google Scholar 

  16. Tschirschwitz S, Lönnecke P, Hey-Hawkins E (2007) Dalton Trans 1377

    Google Scholar 

  17. Murray JS, Lane P, Politzer P (2007) Int J Quant Chem 107:2286

    Article  CAS  Google Scholar 

  18. Bauer S, Tschirschwitz S, Lönnecke P, Franck R, Kirchner B, Clark ML, Hey-Hawkins E (2009) Eur J Inorg Chem:2776

    Google Scholar 

  19. Del Bene JE, Alkorta I, Sánchez-Sanz G, Elguero J (2011) J Phys Chem A 115:13724

    Article  Google Scholar 

  20. Scheiner S (2011) Chem Phys Lett 514:32

    Article  CAS  Google Scholar 

  21. Guan L, Mo Y (2014) J Phys Chem A 118:8911

    Article  CAS  Google Scholar 

  22. Rozas I, Alkorta I, Elguero J (1997) J Phys Chem A 101:4236

    Article  CAS  Google Scholar 

  23. Grabowski SJ, Sokalski WA, Leszczynski J (2006) Chem Phys Lett 422:334

    Article  CAS  Google Scholar 

  24. Sanz P, Mó P, Yañez M (2002) J Phys Chem A 106:4661

    Article  CAS  Google Scholar 

  25. Wang W, Ji B, Zhang Y (2009) J Phys Chem A 113:8132

    Article  Google Scholar 

  26. Alikhani E, Fuster F, Madebene B, Grabowski SJ (2014) Phys Chem Chem Phys 16:2430

    Article  CAS  Google Scholar 

  27. Lipkowski P, Grabowski SJ, Leszczynski J (2006) J Phys Chem A 110:10296

    Article  CAS  Google Scholar 

  28. Politzer P, Murray JS (2013) ChemPhysChem 14:278

    Article  CAS  Google Scholar 

  29. Jeffrey GA, Saenger W (1991) Hydrogen bonding in biological structures. Springer, Berlin

    Book  Google Scholar 

  30. Jeffrey GA (1997) An introduction to hydrogen bonding. Oxford University Press, New York

    Google Scholar 

  31. Desiraju GR, Steiner T (1999) The weak hydrogen bond in structural chemistry and biology. Oxford University Press Inc., New York

    Google Scholar 

  32. Scheiner S (1997) Hydrogen bonding: a theoretical perspective. Oxford University Press, New York

    Google Scholar 

  33. Grabowski SJ (ed) (2006) Hydrogen bonding—New insights, vol 3: Challenges and advances in computational chemistry and physics, Leszczynski J (ed). Springer

    Google Scholar 

  34. Nishio M, Hirota M, Umezawa Y (1998) The CH/π interaction, evidence, nature, and consequences. Wiley-VCH, New York

    Google Scholar 

  35. Szymczak JJ, Grabowski SJ, Roszak S, Leszczynski J (2004) Chem Phys Lett 393:81

    Article  CAS  Google Scholar 

  36. Grabowski SJ, Sokalski WA, Leszczynski J (2006) Chem Phys Lett 432:33

    Article  CAS  Google Scholar 

  37. Grabowski SJ (2007) J Phys Chem A 111:3387

    Article  CAS  Google Scholar 

  38. Grabowski SJ (2013) J Phys Org Chem 26:452

    Article  CAS  Google Scholar 

  39. Jucks KW, Miller RE (1987) J Chem Phys 87:5629

    Article  CAS  Google Scholar 

  40. Moore DT, Miller RE (2003) J Chem Phys 118:9629

    Article  CAS  Google Scholar 

  41. Moore DT, Miller RE (2003) J Phys Chem A 107:10805

    Article  CAS  Google Scholar 

  42. Moore DT, Miller RE (2004) J Phys Chem A 108:1930

    Article  CAS  Google Scholar 

  43. Bieske EJ, Nizkorodov SA, Bennett FR, Maier JP (1995) J Chem Phys 102:5152

    Article  CAS  Google Scholar 

  44. Custelcean R, Jackson JE (2001) Chem Rev 101:1963

    Article  CAS  Google Scholar 

  45. Murray JS, Lane P, Politzer P (2009) J Mol Model 15:723

    Article  CAS  Google Scholar 

  46. Politzer P, Murray JS, Clark T (2010) Phys Chem Chem Phys 12:7748

    Article  CAS  Google Scholar 

  47. Politzer P, Murray JS, Clark T (2013) Phys Chem Chem Phys 15:11178

    Article  CAS  Google Scholar 

  48. Bundhun A, Ramasami P, Murray JS, Politzer P (2013) J Mol Model 19:2739

    Article  CAS  Google Scholar 

  49. Mani D, Arunan E (2013) Phys Chem Chem Phys 15:14377

    Article  CAS  Google Scholar 

  50. Grabowski SJ (2014) Phys Chem Chem Phys 16:1824

    Article  CAS  Google Scholar 

  51. Bauzá A, Mooibroek TJ, Frontera A (2013) Angew Chem Int Ed 52:12317

    Article  Google Scholar 

  52. McDowell SAC (2014) Chem Phys Lett 598:1

    Article  CAS  Google Scholar 

  53. Li Q, Guo X, Yang X, Li W, Cheng J, Li H-B (2014) Phys Chem Chem Phys 16:11617

    Article  CAS  Google Scholar 

  54. Metrangolo P, Resnati G (2001) Chem Eur J 7:2511

    Article  CAS  Google Scholar 

  55. Cavallo G, Metrangolo P, Pilati T, Resnati G, Sansotera M, Terraneo G (2010) Chem Soc Rev 39:3772

    Article  CAS  Google Scholar 

  56. Wang L, Gao J, Bi F, Song B, Liu C (2014) J Phys Chem A 118:9140

    Article  CAS  Google Scholar 

  57. Metrangolo P, Resnati G (eds) (2008) Halogen bonding, fundamentals and applications. Springer, Berlin

    Google Scholar 

  58. Grabowski SJ (2014) Chem Phys Lett 605–606:131

    Article  Google Scholar 

  59. Wong R, Allen FH, Willett P (2010) J Appl Crystallogr 43:811

    Article  CAS  Google Scholar 

  60. Formigué M, Batail P (2004) Chem Rev 104:5379

    Article  Google Scholar 

  61. Murray JS, Riley KE, Politzer P, Clark T (2010) Aust J Chem 63:1598

    Article  CAS  Google Scholar 

  62. Lipkowski P, Grabowski SJ (2014) Chem Phys Lett 591:113

    Article  CAS  Google Scholar 

  63. Clark T (2013) WIREs Comput Mol Sci 3:13

    Article  CAS  Google Scholar 

  64. Tsirelson VG, Ozerov RP (1996) Electron density and bonding in crystals. Institute of Physics, Bristol

    Google Scholar 

  65. Coppens P (1997) X-Ray charge densities and chemical bonding. Oxford University Press, IUCr

    Google Scholar 

  66. http://www.ccdc.cam.ac.uk/Lists/ResourceFileList/2014_stats_entries.pdf

  67. Grabowski SJ (2014) ChemPhysChem 15:2985

    Article  CAS  Google Scholar 

  68. Weinhold F, Landis C (2005) Valency and bonding, a natural bond orbital Donor–Acceptor perspective. Cambridge University Press, Cambridge

    Google Scholar 

  69. Yañez M, Sanz P, Mó O, Alkorta I, Elguero J (2009) J Chem Theor Comput 5:2763

    Article  Google Scholar 

  70. Martín-Sómer A, Lamsabhi AM, Mó O, Yañez M (2012) Comput Theor Chem 998:74

    Article  Google Scholar 

  71. Mó O, Yañez M, Alkorta I, Elguero J (2012) J Chem Theor Comput 8:2293

    Article  Google Scholar 

  72. Albrecht L, Boyd RJ, Mó O, Yañez M (2012) Phys Chem Chem Phys 14:14540

    Article  CAS  Google Scholar 

  73. Kollman PA, Liebman JF, Allen LC (1970) J Am Chem Soc 92:1142

    Article  CAS  Google Scholar 

  74. Ammal SSC, Venuvanalingam P (1998) J Chem Soc, Faraday Trans 94:2669

    Article  Google Scholar 

  75. Ammal SSC, Venuvanalingam P (2000) J Phys Chem A 104:10859

    Article  CAS  Google Scholar 

  76. Arunan E, Desiraju GR, Klein RA, Sadlej J, Scheiner S, Alkorta I, Clary DC, Crabtree RH, Dannenberg JJ, Hobza P, Kjaergaard HG, Legon AC, Mennucci B, Nesbitt DJ (2011) Pure Appl Chem 83:1637

    CAS  Google Scholar 

  77. Taylor R, Kennard O (1982) J Am Chem Soc 104:5063

    Article  CAS  Google Scholar 

  78. Suttor DJ (1963) J Chem Soc 1105

    Google Scholar 

  79. Desiraju GR (2002) Acc Chem Res 35:565

    Article  CAS  Google Scholar 

  80. Pinchas S (1955) Anal Chem 27:2

    Article  CAS  Google Scholar 

  81. Schneider WG, Bernstein HJ (1956) Trans Faraday Soc 52:13

    Article  CAS  Google Scholar 

  82. Trudeau G, Dumas JM, Dupuis P, Guerin M, Sandorfy C (1980) Topics of Curr Chem 93:91

    Article  CAS  Google Scholar 

  83. Hobza P, Havlas Z (2000) Chem Rev 100:4253

    Article  CAS  Google Scholar 

  84. Alabugin IV, Manoharan M, Peabody S, Weinhold F (2003) J Am Chem Soc 125:5973

    Article  CAS  Google Scholar 

  85. Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899

    Article  CAS  Google Scholar 

  86. Weinhold F, Klein R (2012) Mol Phys 110:565

    Article  CAS  Google Scholar 

  87. Alkorta I, Elguero J, Grabowski SJ (2008) J Phys Chem A 112:2721

    Article  CAS  Google Scholar 

  88. Richardson TB, de Gala S, Crabtree RH (1995) J Am Chem Soc 117:12875

    Article  CAS  Google Scholar 

  89. Wessel J, Lee JC Jr, Peris E, Yap GPA, Fortin JB, Ricci JS, Sini G, Albinati A, Koetzle TF, Eisenstein O, Rheingold AL, Crabtree RH (1995) Angew Chem Int Ed Engl 34:2507

    Article  CAS  Google Scholar 

  90. Crabtree RH, Siegbahn PEM, Eisenstein O, Rheingold AL, Koetzle TFA (1996) Acc Chem Res 29:348

    Article  CAS  Google Scholar 

  91. Platts JA, Howard ST, Bracke BRF (1996) J Am Chem Soc 118:2726

    Article  CAS  Google Scholar 

  92. Bader RFW (1985) Acc Chem Res 18:9

    Article  CAS  Google Scholar 

  93. Bader RFW (1990) Atoms in molecules, a quantum theory. Oxford University Press, Oxford

    Google Scholar 

  94. Koch U, Popelier PLA (1995) J Phys Chem 99:9747

    Article  CAS  Google Scholar 

  95. Grabowski SJ (2013) Phys Chem Chem Phys 15:7249

    Article  CAS  Google Scholar 

  96. Glendening ED (2005) J Phys Chem A 109:11936

    Article  CAS  Google Scholar 

  97. Bent HA (1961) Chem Rev 61:275

    Article  CAS  Google Scholar 

  98. Grabowski SJ (2011) J Phys Chem A 115:12789

    Article  CAS  Google Scholar 

  99. Grabowski SJ (2011) J Phys Chem A 115:12340

    Article  CAS  Google Scholar 

  100. Grabowski SJ (2012) J Phys Chem A 116:1838

    Article  CAS  Google Scholar 

  101. Grabowski SJ (2013) J Mol Model 19:4713

    Article  CAS  Google Scholar 

  102. Alkorta I, Blanco F, Deyà PM, Elguero J, Estarellas C, Frontera A, Quiñonero D (2010) Theor Chem Acc 126:1

    Article  CAS  Google Scholar 

  103. Kar T, Scheiner S (2004) J Phys Chem A 108:9161

    Article  CAS  Google Scholar 

  104. Hunt SW, Higgins KJ, Craddock MB, Brauer CS, Leopold KR (2003) J Am Chem Soc 125:13850

    Article  CAS  Google Scholar 

  105. Grabowski SJ (2013) Theor Chem Acc 132:1347

    Article  Google Scholar 

Download references

Acknowledgments

Financial support comes from Eusko Jaurlaritza (IT588-13) and the Spanish Office for Scientific Research (CTQ2012-38496-C05-04). Technical and human support provided by Informatikako Zerbitzu Orokora—Servicio General de Informática de la Universidad del País Vasco (SGI/IZO-SGIker UPV/EHU), Ministerio de Ciencia e Innovación (MICINN), Gobierno Vasco Eusko Jaurlanitza (GV/EJ), European Social Fund (ESF) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sławomir J. Grabowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Grabowski, S.J. (2016). Hydrogen Bond and Other Lewis Acid–Lewis Base Interactions—Mechanisms of Formation. In: Leszczynski, J., Shukla, M. (eds) Practical Aspects of Computational Chemistry IV. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-7699-4_9

Download citation

Publish with us

Policies and ethics