Skip to main content

Computational Mechanochemistry

  • Chapter
  • First Online:
Practical Aspects of Computational Chemistry IV

Abstract

Mechanochemistry is a field with a long history, but only about a decade ago it was transferred from macroscopic milling-type experiments down to the molecular level. The Bochum group headed by Professor Dominik Marx established a general theoretical framework for describing such mechanical manipulation of covalent bonds in terms of force transformed potential energy surfaces. The original static approach has been there recently extended to dynamical simulations of mechanochemical reactions in solution in order to explore both solvation and thermal activation effects what is going to be discussed in this chapter. First of all the isotensional ab initio metadynamics yields force transformed free energy landscapes, which were used successfully to unravel the complex mechanochemistry of force-induced ring-opening of cyclopropanes in the gas phase. After that the step forward from isolated systems into solvated was made and by using a minimal molecular model, which is diethyl disulfide in water, we have most recently published an explanation of the biphasic, Janus-faced behavior of the reaction rate, the so-called “reactivity switch”, as a function of force that has been observed experimentally in stretched proteins. At the end the simulations on protein are shown, where the drastic topological changes of the free energy profiles along the S-S-C-C dihedral angle as the external forces increases are qualitatively similar to those observed for simple molecular model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lea Carey M (1892) Disruption of the silver haloid molecule by mechanical force. Philos Mag 34:46–50

    Google Scholar 

  2. Janshoff A, Neitzert M, Oberdörfer Y, Fuchs H (2000) Force spectroscopy of molecular systems-single molecule spectroscopy of polymers and biomolecules. Angew Chem Int Ed 39:3212–3237

    Article  CAS  Google Scholar 

  3. Samorì B (2000) Stretching single molecules along unbinding and unfolding pathways with the scanning force microscope. Chem Eur J 6:4249–4255

    Article  Google Scholar 

  4. Bustamante C, Chemla YR, Forde NR, Izhaky D (2004) Mechanical processes in biochemistry. Annu Rev Biochem 73:705–748

    Article  CAS  Google Scholar 

  5. Kaupp G (2009) Mechanochemistry: the varied applications of mechanical bond-breaking. CrystEngComm 11:388–403

    Article  CAS  Google Scholar 

  6. Friscic T (2010) New opportunities for materials synthesis using mechanochemistry. J Mater Chem 20:7599–7605

    Article  CAS  Google Scholar 

  7. Grandbois M, Beyer M, Rief M, Clausen-Schaumann H, Gaub HE (1999) How strong is a covalent bond? Science 283:1727–1730

    Article  CAS  Google Scholar 

  8. Binnig G, Quate CF, Gerber C (1986) Atomic force microscope. Phys Rev Lett 56:930–933

    Article  Google Scholar 

  9. Giessibl FJ (2003) Advances in atomic force microscopy. Rev Mod Phys 75:949–983

    Article  CAS  Google Scholar 

  10. Wiita AP, Ainavarapu SRK, Huang HH, Fernandez JM (2006) Force-dependent chemical kinetics of disulfide bond reduction observed with single-molecule techniques. Proc Natl Acad Sci USA 103:7222–7227

    Article  CAS  Google Scholar 

  11. Wiita AP et al (2007) Probing the chemistry of thioredoxin catalysis with force. Nature 450:124–127

    Article  CAS  Google Scholar 

  12. Ainavarapu SRK, Wiita AP, Dougan L, Uggerud E, Fernandez JM (2008) Single-molecule force spectroscopy measurements of bond elongation during a bimolecular reaction. J Am Chem Soc 130:6479–6487

    Article  CAS  Google Scholar 

  13. Garcia-Manyes S, Liang J, Szoszkiewicz R, Kuo TL, Fernandez JM (2009) Force-activated reactivity switch in a bimolecular chemical reaction. Nat Chem 1:236–242

    Article  CAS  Google Scholar 

  14. Moffitt JR, Chemla YR, Smith SB, Bustamante C (2008) Recent advances in optical tweezers. Annu Rev Biochem 77:205–228

    Article  CAS  Google Scholar 

  15. Cravotto G, Cintas P (2007) Forcing and controlling chemical reactions with ultrasound. Angew Chem Int Ed 46:5476–5478

    Article  CAS  Google Scholar 

  16. Beyer MK, Clausen-Schaumann H (2005) Mechanochemistry: the mechanical activation of covalent bonds. Chem Rev 105:2921–2948

    Article  CAS  Google Scholar 

  17. Caruso MM et al (2009) Mechanically-induced chemical changes in polymeric materials. Chem Rev 109:5755–5798

    Article  CAS  Google Scholar 

  18. Ribas-Arino J, Marx D (2012) Covalent mechanochemistry: theoretical concepts and computational tools with applications to molecular nanomechanics. Chem Rev 112:5412–5487

    Article  CAS  Google Scholar 

  19. Davis DA et al (2009) Force-induced activation of covalent bonds in mechanoresponsive polymeric materials. Nature 459:68–72

    Article  CAS  Google Scholar 

  20. Wietor J-L, Sijbesma R (2008) A self-healing elastomer 47:8161–8163

    CAS  Google Scholar 

  21. Lenhardt JM, Craig SL (2009) Force probes in a bottle. Nat Nanotech 4:284–285

    Article  CAS  Google Scholar 

  22. Hutter J et al CPMD Program Package

    Google Scholar 

  23. Dopieralski P, Ribas-Arino J, Marx D (2011) Force-transformed free energy surfaces and trajectory shooting simulations reveal the mechano-stereochemistry of cyclopropane ring-opening reactions. Angew Chem Int Ed 50:7105–7108

    Article  CAS  Google Scholar 

  24. Dopieralski P et al (2013) The Janus-faced role of external forces in mechanochemical disulfide bond cleavage. Nat Chem 5:685–691

    Article  CAS  Google Scholar 

  25. Kauzmann W, Eyring H (1940) The viscous flow of large molecules. J Am Chem Soc 62:3113–3125

    Article  CAS  Google Scholar 

  26. Zhurkov SN (1965) Kinetic concept of the strength of solids. Int J Fract Mech 1:311–323

    CAS  Google Scholar 

  27. Bell GI (1978) Models for the specific adhesion of cells to cells. Science 200:618–627

    Article  CAS  Google Scholar 

  28. Evans E, Ritchie K (1997) Dynamic strength of molecular adhesion bonds. Biophys J 72:1541–1555

    Article  CAS  Google Scholar 

  29. Beyer MK (2000) The mechanical strength of a covalent bond calculated by density functional theory. J Chem Phys 112:7307–7311

    Article  CAS  Google Scholar 

  30. Ribas-Arino J, Shiga M, Marx D (2009) Understanding covalent mechanochemistry. Angew Chem Int Ed 48:4190–4193

    Article  CAS  Google Scholar 

  31. Ong MT, Leiding J, Tao H, Virshup AM, Martinez TJ (2009) First principles dynamics and minimum energy pathways for mechanochemical ring opening of cyclobutene. J Am Chem Soc 131:6377–6379

    Article  CAS  Google Scholar 

  32. Wolinski K, Baker J (2009) Theoretical predictions of enforced structural changes in molecules. Molec Phys 107:2403–2417

    Article  CAS  Google Scholar 

  33. Ribas-Arino J, Shiga M, Marx D (2009) Unravelling the mechanism of force-induced ring-opening of benzocyclobutenes. Chem Eur J 15:13331–13335

    Article  CAS  Google Scholar 

  34. Ribas-Arino J, Shiga M, Marx D (2010) Mechanochemical transduction of externally applied forces to mechanophores. J Am Chem Soc 132:10609–10614

    Article  CAS  Google Scholar 

  35. Carter E, Ciccotti G, Hynes JT, Kapral R (1989) Constrained reaction coordinate dynamics for the simulation of rare events. Chem Phys Lett 156:472–477

    Article  CAS  Google Scholar 

  36. Sprik M, Ciccotti G (1998) Free energy from constrained molecular dynamics. J Chem Phys 109:7737–7744

    Article  CAS  Google Scholar 

  37. Kirkwood JG (1935) Statistical mechanics of fluid mixtures. J Chem Phys 3:300–313 . http://dx.doi.org/doi/10.1063/1.1749657

    Google Scholar 

  38. Laio A, Parrinello M (2002) Escaping free-energy minima. Proc Natl Acad Sci USA 99:12562–12566

    Article  CAS  Google Scholar 

  39. Iannuzzi M, Laio A, Parrinello M (2003) Efficient exploration of reactive potential energy surfaces using Car-Parrinello molecular dynamics. Phys Rev Lett 90:238302–1–4

    Google Scholar 

  40. Dopieralski P, Ribas-Arino J, Marx D (2012) Mechanochemistry of covalent bond breaking from first principles simulations. In: Binder K, Münster G, Kremer M (eds) NIC Symposium 2012 Proceedings, vol 45. Forschungszentrum Jülich GmbH, pp 115–122

    Google Scholar 

  41. Lenhardt JM, Black AL, Craig SL (2009) gem-dichlorocyclopropanes as abundant and efficient mechanophores in polybutadiene copolymers under mechanical stress. J Am Chem Soc 131:10818–10819

    Article  CAS  Google Scholar 

  42. Anjukandi P, Dopieralski P, Ribas-Arino J, Marx D (2014) The effect of tensile stress on the conformational free energy landscape of disulfide bonds. PLOS One 9, e108812–1–7

    Google Scholar 

  43. Kucharski TJ et al (2009) Kinetics of thiol/disulfide exchange correlate weakly with the restoring force in the disulfide moiety. Angew Chem Int Ed 48:7040–7043

    Article  CAS  Google Scholar 

Download references

Acknowledgments

All work covered in this chapter as well as a all original publications on which it is based have been carried out in a tight and longstanding collaboration with Professor Dominik Marx and his research group (Lehrstuhl fuer Theoretische Chemie, Ruhr-Universitat Bochum, 44780 Bochum, Germany). It gives us great pleasure to thank Professor Dominik Marx for giving us opportunity to work with him on covalent mechanochemistry and Jordi Ribas–Arino and Padmesh Anjukandi for fruitful collaboration.We are grateful to National Science Center Poland under Grant No. 2014/13/B/ST4/05009 and Ministry of Science and Higher Education Poland under Grant No. 627/STYP/9/20l4 for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Przemyslaw Dopieralski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Dopieralski, P., Latajka, Z. (2016). Computational Mechanochemistry. In: Leszczynski, J., Shukla, M. (eds) Practical Aspects of Computational Chemistry IV. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-7699-4_8

Download citation

Publish with us

Policies and ethics