Development of the Latest Tools for Building up “Nano-QSAR”: Quantitative Features—Property/Activity Relationships (QFPRs/QFARs)

  • Andrey A. Toropov
  • Alla P. Toropova
  • Karel Nesmerak
  • Aleksandar M. Veselinović
  • Jovana B. Veselinović
  • Danuta Leszczynska
  • Jerzy Leszczynski
Chapter

Abstract

Computational studies of common compounds are already standard ways of their investigations. However, modeling properties of nanomaterials has been always a challenging task. This chapter reveals important differences between approaches applied to these two groups of species. The development of an optimal descriptor provides one of the efficient ways for the computational techniques to estimate endpoints related to nanospecies. Notably, the optimal descriptor can represent a translator of eclectic information into the endpoint prediction. Development of the optimal descriptor could start with consideration of a hybrid of topological indices calculated with the adjacency matrix of the molecular graph and application of additive scheme where a physicochemical parameter is modeled as the summation of contributions of molecular fragments. Further, the optimal descriptor might be advanced by taking into account contributions of various physicochemical conditions. Such contributions include presence/absence of defined chemical elements and/or defined kinds of covalent bonds, as well as different kinds of rings in the molecular system—factors which are able to modify the physicochemical (biochemical) behavior of a substance. Finally, the latest version of optimal descriptor involves the applications of eclectic data into building up model for endpoints related to nanomaterials. A recently acquired collection of models developed to predict various endpoints of nanomaterials is presented and discussed in this chapter.

Keywords

QSPR/QSAR Monte Carlo method CORAL software QFPR/QFAR 

Notes

Acknowledgments

The authors are grateful to the EU project PROSIL funded under the LIFE program (Project LIFE12 ENV/IT/000154), the EC FP7 project NanoPUZZLES (Project Reference: 309837) and EU FP7 project PreNanoTox (contract 309666). D.L. and J.L. acknowledge support from the National Science Foundation (NSF/CREST HRD-0833178), and EPSCoR (Award #: 362492-190200-01/NSFEPS-090378).

References

  1. 1.
    Wiener H (1947) J Am Chem Soc 69(1):17CrossRefGoogle Scholar
  2. 2.
    Wiener H (1947) J Am Chem Soc 69(11):2636CrossRefGoogle Scholar
  3. 3.
    Wiener H (1948) J Phys Chem Soc 52(6):1082CrossRefGoogle Scholar
  4. 4.
    Wiener H (1948) J Phys Chem Soc 52(2):425CrossRefGoogle Scholar
  5. 5.
    Hosoya H (1972) J Chem Doc 12:181CrossRefGoogle Scholar
  6. 6.
    Amidon GL, Anik ST (1976) J Pharm Sci 65:801CrossRefGoogle Scholar
  7. 7.
    Bonchev D, Balaban AT, Mekenyan O (1980) J Chem Inf Comput Sci 20:106CrossRefGoogle Scholar
  8. 8.
    Chemical application of topology and graph theory: a collection of papers from a symposium held at the University of Georgia, Athens, Georgia, U.S.A, 18–22 April 1983Google Scholar
  9. 9.
    Randic M (2001) J Chem Inf Comput Sci 41(3):627CrossRefGoogle Scholar
  10. 10.
    Randic M, Basak SC (2001) J Chem Inf Comput Sci 41:614CrossRefGoogle Scholar
  11. 11.
    Randic M, Plavsic D, Lers N (2001) J Chem Inf Comput Sci 41(3):657CrossRefGoogle Scholar
  12. 12.
    Roy K, Leonard TJ (2004) Bioorg Med Chem 12:745CrossRefGoogle Scholar
  13. 13.
    Jalbout AF, Li X (2003) J Mol Struct (Theochem) 663:19Google Scholar
  14. 14.
    Visco DP Jr, Poppale RS, Rintoul MD, Faulon J-L (2002) J Mol Graph Mod 20:429CrossRefGoogle Scholar
  15. 15.
  16. 16.
    Toropov AA, Toropova AP (1988) Russ J Coord Chem 24:81Google Scholar
  17. 17.
    Toropov AA, Toropova AP (2003) J Mol Struct (Theochem) 637:1CrossRefGoogle Scholar
  18. 18.
    Krenkel G, Castro EA, Toropov AA (2001) J Mol Struct (Theochem) 542:107CrossRefGoogle Scholar
  19. 19.
    Toropov AA, Toropova AP (2004) J Mol Struct (Theochem) 711:173CrossRefGoogle Scholar
  20. 20.
    Toropov AA, Gutman I, Furtula B (2005) J Serb Chem Soc 70:669CrossRefGoogle Scholar
  21. 21.
    Gutman I, Toropov AA, Toropova AP (2005) MATCH Commun Math Comput Chem 53:215Google Scholar
  22. 22.
    Gutman I, Furtula B, Toropov AA, Toropova AP (2005) MATCH Commun Math Comput Chem 53:225Google Scholar
  23. 23.
    Toropov AA, Schultz TW (2003) J Chem Inf Comput Sci 43:560CrossRefGoogle Scholar
  24. 24.
    Weininger D (1988) J Chem Inf Comput Sci 28:31CrossRefGoogle Scholar
  25. 25.
    Weininger D, Weininger A, Weininger JL (1989) J Chem Inf Comput Sci 29:97CrossRefGoogle Scholar
  26. 26.
    Weininger D (1990) J Chem Inf Comput Sci 30:237CrossRefGoogle Scholar
  27. 27.
    Achary PGR (2014) SAR QSAR Environ Res 25(6):507CrossRefGoogle Scholar
  28. 28.
    Toropov AA, Toropova AP, Martyanov SE, Benfenati E, Gini G, Leszczynska D, Leszczynski J (2011) Chemometr Intell Lab Syst 109(1):94CrossRefGoogle Scholar
  29. 29.
    Toropova AP, Toropov AA, Martyanov SE, Benfenati E, Gini G, Leszczynska D, Leszczynski J (2013) Mol Inf 32(2):145CrossRefGoogle Scholar
  30. 30.
    Toropova AP, Toropov AA, Rasulev BF, Benfenati E, Gini G, Leszczynska D, Leszczynski J (2012) Struct Chem 23(6):1873CrossRefGoogle Scholar
  31. 31.
    Toropov AA, Toropova AP, Martyanov SE, Benfenati E, Gini G, Leszczynska D, Leszczynski J (2012) Chemom Intell Lab Syst 112:65CrossRefGoogle Scholar
  32. 32.
    Toropova AP, Toropov AA, Martyanov SE, Benfenati E, Gini G, Leszczynska D, Leszczynski J (2012) Chemom Intell Lab Syst 110(1):177CrossRefGoogle Scholar
  33. 33.
    Toropov AA, Toropova AP, Raska I Jr, Benfenati E, Gini G (2012) Struct Chem 23:1891CrossRefGoogle Scholar
  34. 34.
    Apul OG, Wang Q, Shao T, Rieck JR, Karanfil T (2013) Environ Sci Technol 47(5):2295CrossRefGoogle Scholar
  35. 35.
    Yousefinejad S, Hemmateenejad B (2014) Colloids Surf A 441:766CrossRefGoogle Scholar
  36. 36.
    Toropov AA, Toropova AP (2015) Chemosphere 124:40CrossRefGoogle Scholar
  37. 37.
    Melagraki G, Afantitis A (2014) RSC Adv 4(92):50713CrossRefGoogle Scholar
  38. 38.
    Petrova T, Rasulev BF, Toropov AA, Leszczynska D, Leszczynski J (2011) J Nanopart Res 13(8):3235CrossRefGoogle Scholar
  39. 39.
    Toropov AA, Rasulev BF, Leszczynska D, Leszczynski J (2008) Chem Phys Lett 457(4–6):332CrossRefGoogle Scholar
  40. 40.
    Toropov AA, Rasulev BF, Leszczynska D, Leszczynski J (2007) Chem Phys Lett 444(1–3):209CrossRefGoogle Scholar
  41. 41.
    MEMSnet: https://www.memsnet.org/material. Accessed 19 Feb 2013
  42. 42.
    Shinohara N, Matsumoto K, Endoh S, Maru J, Nakanishi J (2009) Toxicol Lett 191:289CrossRefGoogle Scholar
  43. 43.
    Toropov AA, Toropova AP (2014) Chemosphere 104:262CrossRefGoogle Scholar
  44. 44.
    Sayes C, Ivanov I (2010) Risk Anal 30:1723CrossRefGoogle Scholar
  45. 45.
    Patel T, Low-Kam C, Ji ZH, Zhang H, Xia T, Nel AE, Zinc JI, Telesca D (2012) COBRA preprint series 2012, Working Paper 101. http://biostats.bepress.com/cobra/art101
  46. 46.
    Toropova AP, Toropov AA, Benfenati E, Korenstein R, Leszczynska D, Leszczynski J (2015) Environ Sci Pollut Res 22:745CrossRefGoogle Scholar
  47. 47.
    Toropov AA, Leszczynska D, Leszczynski J (2007) Mater Lett 61(26):4777CrossRefGoogle Scholar
  48. 48.
    Toropova AP, Toropov AA, Puzyn T, Benfenati E, Leszczynska D, Leszczynski J (2013) J Math Chem 51(8):2230CrossRefGoogle Scholar
  49. 49.
    Veselinović AM, Milosavljević JB, Toropov AA, Nikolić GM (2013) Eur J Pharm Sci 48:532CrossRefGoogle Scholar
  50. 50.
    Veselinović AM, Milosavljević JB, Toropov AA, Nikolić GM (2013) Arch Pharm 346:134CrossRefGoogle Scholar
  51. 51.
    Nesměrák K, Toropov AA, Toropova AP (2014) Struct Chem 25(1):311CrossRefGoogle Scholar
  52. 52.
    Nesměrák K, Toropov AA, Toropova AP, Kohoutova P, Waisser K (2013) Eur J Med Chem 67:111CrossRefGoogle Scholar
  53. 53.
    Worachartcheewan A, Nantasenamat C, Isarankura-Na-Ayudhya C, Prachayasittikul V (2014) Lett Drug Des Discovery 11(4):420CrossRefGoogle Scholar
  54. 54.
    Masand VH, Toropov AA, Toropova AP, Mahajan DT (2014) Curr Comput Aided Drug Des 10(1):75CrossRefGoogle Scholar
  55. 55.
    Achary PGR (2014) SAR QSAR Environ Res 25(1):73CrossRefGoogle Scholar
  56. 56.
    Mullen LMA, Duchowicz PR, Castro EA (2011) Chemom Intell Lab Syst 107(2):269CrossRefGoogle Scholar
  57. 57.
    OECD: Organisation for Economic Co-operation and Development (2007) Guidance document on the validation of (Quantitative) Structure-Activity Relationships ((Q)SAR) models, OECD, Paris. http://www.oecd.org/dataoecd/55/35/38130292.pdf

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Andrey A. Toropov
    • 1
  • Alla P. Toropova
    • 1
  • Karel Nesmerak
    • 2
  • Aleksandar M. Veselinović
    • 3
  • Jovana B. Veselinović
    • 3
  • Danuta Leszczynska
    • 4
  • Jerzy Leszczynski
    • 5
  1. 1.IRCCS-Istituto di Ricerche Farmacologiche Mario NegriMilanItaly
  2. 2.Faculty of Science, Department of Analytical ChemistryCharles University in PraguePrague 2Czech Republic
  3. 3.Faculty of Medicine, Department of ChemistryUniversity of NišNišSerbia
  4. 4.Interdisciplinary Nanotoxicity Center, Department of Civil and Environmental EngineeringJackson State UniversityJacksonUSA
  5. 5.Interdisciplinary Nanotoxicity Center, Department of Chemistry and BiochemistryJackson State UniversityJacksonUSA

Personalised recommendations