Skip to main content

Biochemistry of Cheese Ripening

  • Chapter
  • First Online:
Fundamentals of Cheese Science

Summary

It is during ripening that the flavour and texture characteristic of the cheese variety develop. Three major pathways constitute the biochemistry of cheese ripening: (1) metabolism of residual lactose and of lactate and citrate, (2) lipolysis and fatty acid metabolism and (3) proteolysis and amino acid catabolism. Cheese ripening is mediated by metabolically active cells from the starter, non-starter and adjunct starter microbiotas and enzymes that contribute to ripening come from the coagulant (principally chymosin but sometimes other proteinases, and in cheeses made using rennet paste, also pregastric esterase), milk (plasmin, somatic cell enzymes and lipoprotein lipase), starter and non-starter lactic acid bacteria (cell envelope-associated proteinases and a wide range of intracellular peptidases, esterases and amino acid catabolic enzymes) and adjunct starters (proteinases, peptidases and lipases). The primary products of cheese ripening (peptides, amino acids and fatty acids) are metabolized further to volatile flavour compounds through metabolism of fatty acids and amino acid catabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Addeo F, Chianese L, Salzano A et al (1992) Characterization of the 12 % trichloroacetic acid insoluble oligopeptides of Parmigiano-Reggiano cheese. J Dairy Res 59:401–411

    Article  CAS  Google Scholar 

  • Addeo F, Chianese L, Sacchi R et al (1994) Characterization of the oligopeptides of Parmigiano-Reggiano cheese soluble in 120 g trichloroacetic acid/l. J Dairy Res 61:365–374

    Article  CAS  Google Scholar 

  • Alewijn M, Smit BA, Sliwinski EL et al (2007) The formation of lactones in Gouda cheese. Int Dairy J 17:59–66

    Article  CAS  Google Scholar 

  • Bastian ED, Brown RJ (1996) Plasmin in milk and dairy products: an update. Int Dairy J 6:435–457

    Article  CAS  Google Scholar 

  • Cantor MD, van den Tempel T, Hansen TK et al (2004) Blue cheese. In: Fox PF, McSweeney PLH, Cogan TM et al (eds) Cheese: Chemistry, Physics and Microbiology, Vol 2: Major Cheese Groups, 3rd edn. Elsevier Applied Science, Amsterdam, pp 175–198

    Google Scholar 

  • Charton E, Davies C, McCrae AR (1992) Use of specific polyclonal antibodies to detect heterogeneous lipases from Geotrichum candidum. Biochim Biophys Acta 1127:191–198

    Article  CAS  Google Scholar 

  • Cogan TM, Hill C (1993) Cheese starter cultures. In: Fox PF (ed) Cheese: Chemistry, Physics and Microbiology, 2nd edn. Chapman & Hall, London, pp 193–255

    Chapter  Google Scholar 

  • Collins YF, McSweeney PLH, Wilkinson MG (2003) Lipolysis and free fatty acid catabolism in cheese: a review of current knowledge. Int Dairy J 13:841–866

    Article  CAS  Google Scholar 

  • Curtin ÁC, McSweeney PLH (2004) Catabolism of amino acids in cheese during ripening. In: Fox PF, McSweeney PLH, Cogan TM et al (eds) Cheese: Chemistry, Physics and Microbiology, Vol 1: General Aspects, 3rd edn. Elsevier Applied Science, Amsterdam, pp 436–454

    Google Scholar 

  • Fox PF (1989) Proteolysis during cheese manufacture and ripening. J Dairy Sci 72:1379–1400

    Article  CAS  Google Scholar 

  • Fox PF, Kelly AL (2006a) Indigenous enzymes in milk: overview and historical aspects – Part 1. Int Dairy J 16:500–516

    Article  CAS  Google Scholar 

  • Fox PF, Kelly AL (2006b) Indigenous enzymes in milk: overview and historical aspects – Part 2. Int Dairy J 16:517–532

    Article  CAS  Google Scholar 

  • Fox PF, McSweeney PLH (1996) Proteolysis in cheese during ripening. Food Rev Int 12:457–509

    Article  CAS  Google Scholar 

  • Fox PF, McSweeney PLH (1998) Dairy Chemistry and Biochemistry. Chapman & Hall, London

    Google Scholar 

  • Fox PF, Stepaniak L (1993) Enzymes in cheese technology. Int Dairy J 3:609

    Google Scholar 

  • Fox PF, Wallace JM (1997) Formation of flavour compounds in cheese. Adv Appl Microbiol 45:17–85

    Article  CAS  Google Scholar 

  • Fox PF, Lucey JA, Cogan TM (1990) Glycolysis and related reactions during cheese manufacture and ripening. CRC Crit Rev Food Sci Nutr 29:237–253

    Article  CAS  Google Scholar 

  • Fox PF, Law J, McSweeney PLH et al (1993) Biochemistry of cheese ripening. In: Fox PF (ed) Cheese: Chemistry, Physics and Microbiology, vol 1, 2nd edn. Chapman & Hall, London, pp 389–438

    Chapter  Google Scholar 

  • Fox PF, Singh TK, McSweeney PLH (1994) Proteolysis in cheese during ripening. In: Andrews AT, Varley J (eds) Biochemistry of Milk Products. Royal Society of Chemistry, Cambridge, pp 1–31

    Google Scholar 

  • Fox PF, McSweeney PLH, Singh TK (1995) Methods for assessing proteolysis in cheese during ripening. In: Malin EL, Tunick MH (eds) Chemistry of Structure-Function Relationships in Cheese. Plenum Press, New York, pp 161–194

    Chapter  Google Scholar 

  • Fox PF, O’Connor TP, McSweeney PLH et al (1996) Cheese: physical, biochemical and nutritional aspects. Adv Food Nutr Res 39:163–328

    Article  CAS  Google Scholar 

  • Fox PF, McSweeney PLH, Lynch CM (1998) Significance of non-starter lactic acid bacteria in Cheddar cheese. Aust J Dairy Technol 53:83–89

    Google Scholar 

  • Gobbetti M, Fox PF, Stepaniak L (1996) Esterolytic and lipolytic activities of mesophilic and thermophilic lactobacilli. Italian J Food Sci 8:127–136

    CAS  Google Scholar 

  • Grappin R, Rank TC, Olson NF (1985) Primary proteolysis of cheese proteins during ripening. J Dairy Sci 68:531–540

    Article  CAS  Google Scholar 

  • Gripon J-C (1987) Mould-ripened cheeses. In: Fox PF (ed) Cheese: Chemistry, Physics and Microbiology, vol 1. Elsevier Science Publishers, London, pp 121–149

    Google Scholar 

  • Gripon J-C (1993) Mould-ripened cheeses. In: Fox PF (ed) Cheese: Chemistry, Physics and Microbiology, 2nd edn. Chapman & Hall, London, pp 111–136

    Chapter  Google Scholar 

  • Grufferty MB, Fox PF (1988) Milk alkaline proteinase: a review. J Dairy Res 55:609–630

    Article  CAS  Google Scholar 

  • Hemme D, Bouillanne C, Métro F et al (1982) Microbial catabolism of amino acids during cheese ripening. Sci Aliment 2:113–123

    CAS  Google Scholar 

  • Holland R, Liu SQ, Crow VL et al (2005) Esterases of lactic acid bacteria and cheese flavour: milk fat hydrolysis, alcoholysis and esterification. Int Dairy J 15:711–718

    Article  CAS  Google Scholar 

  • Huffman LM, Kristoffersen T (1984) Role of lactose in Cheddar cheese manufacturing and ripening. N Z J Dairy Sci Technol 19:151–162

    CAS  Google Scholar 

  • IDF (1991) Chemical Methods for Evaluation of Proteolysis in Cheese Maturation, Bulletin No. 261. International Dairy Federation, Brussels

    Google Scholar 

  • Karahadian C, Lindsay RC (1987) Integrated roles of lactate, ammonia, and calcium in texture development of mold surface-ripening cheese. J Dairy Sci 70:909–918

    Article  CAS  Google Scholar 

  • Kelly AL, O’Flaherty F, Fox PF (2006) Indigenous proteolytic enzymes in milk: a brief overview of the present state of knowledge. Int Dairy J 16:563–572

    Article  CAS  Google Scholar 

  • Khalid NM, El-Soda M, Marth EH (1990) Esterase of Lactobacillus helveticus and Lactobacillus delbrueckii ssp. bulgaricus. J Dairy Sci 73:2711–2719

    Article  CAS  Google Scholar 

  • Kunji ERS, Mierau I, Hagting A et al (1996) The proteolytic system of lactic acid bacteria. Antonie Van Leeuwenhoek 70:187–221

    Article  CAS  Google Scholar 

  • Law BA (1987) Proteolysis in relation to normal and accelerated cheese ripening. In: Fox PF (ed) Cheese: Chemistry, Physics and Microbiology, vol 1. Elsevier Science Publishers, London, pp 365–392

    Google Scholar 

  • Law J, Haandrikman A (1997) Proteolytic enzymes of lactic acid bacteria. Int Dairy J 7:1–11

    Article  CAS  Google Scholar 

  • Lenoir J (1984) The Surface Flora and its Role in the Ripening of Cheese, Bulletin No. 171. International Dairy Federation, Brussels, pp 3–20

    Google Scholar 

  • Lowney SA (1997) Characterization of proteolysis in the Italian Smear-ripened cheese, Taleggio. MSc Thesis, National University of Ireland, Cork

    Google Scholar 

  • McSweeney PLH (2004) Biochemistry of cheese ripening: introduction and overview. In: Fox PF, McSweeney PLH, Cogan TM et al (eds) Cheese: Chemistry, Physics and Microbiology, Vol 1: General Aspects, 3rd edn. Elsevier Applied Science, Amsterdam, pp 347–360

    Google Scholar 

  • McSweeney PLH, Fox PF (1993) Cheese: methods of chemical analysis. In: Fox PF (ed) Cheese: Chemistry, Physics and Microbiology, vol 1. Elsevier Science Publishers, London, pp 341–388

    Chapter  Google Scholar 

  • McSweeney PLH, Fox PF (1997) Chemical methods for the characterization of proteolysis in cheese during ripening. Lait 77:41–76

    Article  CAS  Google Scholar 

  • McSweeney PLH, Fox PF (2004) Metabolism of residual lactose and of lactate and citrate. In: Fox PF, McSweeney PLH, Cogan TM et al (eds) Cheese: Chemistry, Physics and Microbiology, Vol 1: General Aspects, 3rd edn. Elsevier Applied Science, Amsterdam, pp 361–371

    Google Scholar 

  • McSweeney PLH, Fox PF, Lucey JA et al (1993a) Contribution of the indigenous microflora to the maturation of Cheddar cheese. Int Dairy J 3:613–634

    Article  CAS  Google Scholar 

  • McSweeney PLH, Olson NF, Fox PF et al (1993b) Proteolytic specificity of chymosin on bovine αs1-casein. J Dairy Res 60:401–412

    Article  CAS  Google Scholar 

  • McSweeney PLH, Olson NF, Fox PF et al (1994) Proteolysis of bovine αs2-casein by chymosin. Z Lebensm-Unters Forsch 119:429–432

    Article  Google Scholar 

  • McSweeney PLH, Fox PF, Olson NF (1995) Proteolysis of bovine casein by cathepsin D: preliminary observations and comparison with chymosin. Int Dairy J 5:321–336

    Article  CAS  Google Scholar 

  • Monnet V, Chapot-Chartier MP, Gripon J-C (1993) Les peptidases des lactocoques. Lait 73:97–108

    Article  CAS  Google Scholar 

  • Mooney JS, Fox PF, Healy A et al (1998) Identification of the principal water-insoluble peptides in Cheddar cheese. Int Dairy J 8:813–818

    Article  CAS  Google Scholar 

  • Mottar JF (1989) Effect on the quality of dairy products. In: McKellar RC (ed) Enzymes of Psychrotrophs of Raw Foods. CRC Press, Boca Raton, FL, pp 227–243

    Google Scholar 

  • Nelson JH, Jensen RG, Pitas RE (1977) Pregastric esterase and other oral lipases – a review. J Dairy Sci 60:327–362

    Article  CAS  Google Scholar 

  • O’Mahony JA, Fox PF, Kelly AL (2013) Indigenous enzymes of milk. In: McSweeney PLH, Fox PF (eds) Advanced Dairy Chemistry, Vol 1A. Proteins: Basic Aspects, 4th edn. Springer, New York, pp 337–385

    Google Scholar 

  • Olivecrona T, Bengtsson-Olivecrona G (1991) Indigenous enzymes in milk: lipase. In: Fox PF (ed) Food Enzymology, vol 1. Elsevier Science Publishers, London, pp 62–78

    Google Scholar 

  • Olivecrona T, Vilaro S, Bengtsson-Olivecrona G (1992) Indigenous enzymes in milk. II. Lipases in milk. In: Fox PF (ed) Advanced Dairy Chemistry, vol 1. Elsevier Science Publishers, London, pp 292–310

    Google Scholar 

  • Oterholm A, Ordal ZJ, Witter LD (1970) Purificaiton and properties of glycerol ester hydrolase (lipase) from Propionibacterium shermanii. Appl Microbiol 20:16–22

    CAS  Google Scholar 

  • Parente E, Cogan TM (2004) Starter cultures: general aspects. In: Fox PF, McSweeney PLH, Cogan TM et al (eds) Cheese: Chemistry, Physics and Microbiology, Vol 1: General Aspects, 3rd edn. Elsevier Applied Science, Amsterdam, pp 123–147

    Google Scholar 

  • Rank TC, Grappin R, Olson NF (1985) Secondary proteolysis of cheese during ripening: a review. J Dairy Sci 68:801–805

    Article  CAS  Google Scholar 

  • Rattray FP, Fox PF (1997) Purification and characterization of an intracellular esterase from Brevibacterium linens ATCC 9174. Int Dairy J 7:273–278

    Article  CAS  Google Scholar 

  • Rattray FP, Fox PF (1998) Recently identified enzymes of Brevibacterium linens ATCC 9174 – a review. J Food Biochem 22:353–373

    Article  CAS  Google Scholar 

  • Rea DM (1997) Comparison of Cheddar cheese made with Chymosin, Rhizomucor miehei Proteinase or Chryphonectria parasitica Proteinases. MSc Thesis, National University of Ireland, Cork

    Google Scholar 

  • Shakeel-ur-Rehman, Waldron, DS, Fox, PF (2004). Effect of modifying lactose concentration in cheese curd on proteolysis and quality of Cheddar cheese. Int Dairy J 14:591–597

    Google Scholar 

  • Sidebottom CM, Charton E, Dunn PPJ et al (1991) Geotrichum candidum produces several lipases with markedly different substrate specificities. Eur J Biochem 202:485–491

    Article  CAS  Google Scholar 

  • Sousa MJ, Ardo Y, McSweeney PLH (2001) Advances in the study of proteolysis in cheese during ripening. Int Dairy J 11:327–345

    Article  CAS  Google Scholar 

  • Tan PST, Poolman B, Konings WN (1993) Proteolytic enzymes of Lactococcus lactis. J Dairy Res 60:269–286

    Article  Google Scholar 

  • Thomas TD (1987) Acetate production from lactate and citrate by non-starter bacteria in Cheddar cheese. N Z J Dairy Sci Technol 22:25–38

    CAS  Google Scholar 

  • Thomas TD, Crow VL (1983) Mechanism of D(−)-lactic acid formation in Cheddar cheese. N Z J Dairy Sci Technol 18:131–141

    CAS  Google Scholar 

  • Thomas TD, Pritchard GC (1987) Proteolytic enzymes in dairy starter cultures. FEMS Microbiol Rev 46:245–268

    Article  CAS  Google Scholar 

  • Tzanetakis N, Litopoulou-Tzanetaki E (1989) Biochemical activities of Pediococcus pentosaceus isolates of dairy origin. J Dairy Sci 72:859–863

    Article  CAS  Google Scholar 

  • Upadhyay VK, McSweeney PLH, Magboul AAA et al (2004) Proteolysis in cheese during ripening. In: Fox PF, McSweeney PLH, Cogan TM et al (eds) Cheese: Chemistry, Physics and Microbiology, Vol 1: General Aspects, 3rd edn. Elsevier Applied Science, Amsterdam, pp 392–433

    Google Scholar 

  • Visser S (1993) Proteolytic enzymes and their relation to cheese ripening and flavor: an overview. J Dairy Sci 76:329–350

    Article  CAS  Google Scholar 

  • Waldron DS (1997) Effect of lactose concentration on the quality of Cheddar cheese. MSc Thesis, National University of Ireland, Cork

    Google Scholar 

  • Woo AH, Lindsay RC (1984) Concentration of major free fatty acids and flavor development in Italian cheese varieties. J Dairy Sci 67:960–968

    Article  CAS  Google Scholar 

  • Woo AH, Kollodge S, Lindsay RC (1984) Quantitation of major free fatty acids in several cheese varieties. J Dairy Sci 67:874–878

    Article  CAS  Google Scholar 

  • Yvon M, Rijnen L (2001) Cheese flavour by amino acid catabolism. Int Dairy J 11:185–201

    Article  CAS  Google Scholar 

  • Zarmpoutis IV (1995) Proteolysis in Bllue-veined cheese varieties. MSc Thesis, National University of Ireland, Cork

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer New York

About this chapter

Cite this chapter

Fox, P.F., Guinee, T.P., Cogan, T.M., McSweeney, P.L.H. (2017). Biochemistry of Cheese Ripening. In: Fundamentals of Cheese Science. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-7681-9_12

Download citation

Publish with us

Policies and ethics