Skip to main content

Integrative Conductance of Oxygen During Exercise at Altitude

  • Chapter
  • First Online:
Hypoxia

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 903))

Abstract

In the oxygen (O2) cascade downstream steps can never achieve higher flows of O2 than the preceding ones. At the lung the transfer of O2 is determined by the O2 gradient between the alveolar space and the lung capillaries and the O2 diffusing capacity (DLO2). While DLO2 may be increased several times during exercise by recruiting more lung capillaries and by increasing the oxygen carrying capacity of blood due to higher peripheral extraction of O2, the capacity to enhance the alveolocapillary PO2 gradient is more limited. The transfer of oxygen from the alveolar space to the hemoglobin (Hb) must overcome first the resistance offered by the alveolocapillary membrane (1/DM) and the capillary blood (1/θVc). The fractional contribution of each of these two components to DLO2 remains unknown. During exercise these resistances are reduced by the recruitment of lung capillaries. The factors that reduce the slope of the oxygen dissociation curve of the Hb (ODC) (i.e., lactic acidosis and hyperthermia) increase 1/θVc contributing to limit DLO2. These effects are accentuated in hypoxia. Reducing the size of the active muscle mass improves pulmonary gas exchange during exercise and reduces the rightward shift of the ODC. The flow of oxygen from the muscle capillaries to the mitochondria is pressumably limited by muscle O2 conductance (DmcO2) (an estimation of muscle oxygen diffusing capacity). However, during maximal whole body exercise in normoxia, a higher flow of O2 is achieved at the same pressure gradients after increasing blood [Hb], implying that in healthy humans exercising in normoxia there is a functional reserve in DmcO2. This conclusion is supported by the fact that during small muscle exercise in chronic hypoxia, peak exercise DmcO2 is similar to that observed during exercise in normoxia despite a markedly lower O2 pressure gradient driving diffusion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amann M, Calbet JA. Convective oxygen transport and fatigue. J Appl Physiol. 2008;104:861–70.

    Article  PubMed  Google Scholar 

  2. Amann M, Eldridge MW, Lovering AT, Stickland MK, Pegelow DF, Dempsey JA. Arterial oxygenation influences central motor output and exercise performance via effects on peripheral locomotor muscle fatigue in humans. J Physiol. 2006;575:937–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Amann M, Kayser B. Nervous system function during exercise in hypoxia. High Alt Med Biol. 2009;10:149–64.

    Article  PubMed  Google Scholar 

  4. Amann M, Venturelli M, Ives SJ, McDaniel J, Layec G, Rossman MJ, Richardson RS. Peripheral fatigue limits endurance exercise via a sensory feedback-mediated reduction in spinal motoneuronal output. J Appl Physiol. 2013;115:355–64.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Bebout DE, Story D, Roca J, Hogan MC, Poole DC, Gonzalez-Camarena R, Ueno O, Haab P, Wagner PD. Effects of altitude acclimatization on pulmonary gas exchange during exercise. J Appl Physiol. 1989;67:2286–95.

    CAS  PubMed  Google Scholar 

  6. Bergeron M, Bahr R, Bartsch P, Bourdon L, Calbet J, Carlsen K, Castagna O, Gonzalez-Alonso J, Lundby C, Maughan R, Millet G, Mountjoy M, Racinais S, Rasmussen P, Subudhi A, Young A, Soligard T, Engebretsen L. International Olympic Committee consensus statement on thermoregulatory and altitude challenges for high-level athletes. Br J Sports Med. 2012;46:770–9.

    Article  CAS  PubMed  Google Scholar 

  7. Blomqvist G, Johnson Jr RL, Saltin B. Pulmonary diffusing capacity limiting human performance at altitude. Acta Physiol Scand. 1969;76:284–7.

    Article  CAS  PubMed  Google Scholar 

  8. Calbet JA. Chronic hypoxia increases blood pressure and noradrenaline spillover in healthy humans. J Physiol. 2003;551:379–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Calbet JA, Boushel R, Radegran G, Sondergaard H, Wagner PD, Saltin B. Determinants of maximal oxygen uptake in severe acute hypoxia. Am J Physiol Regul Integr Comp Physiol. 2003;284:R291–303.

    Article  CAS  PubMed  Google Scholar 

  10. Calbet JA, Boushel R, Radegran G, Sondergaard H, Wagner PD, Saltin B. Why is VO2max after altitude acclimatization still reduced despite normalization of arterial O2 content? Am J Physiol Regul Integr Comp Physiol. 2003;284:R304–16.

    Google Scholar 

  11. Calbet JA, Jensen-Urstad M, Van Hall G, Holmberg HC, Rosdahl H, Saltin B. Maximal muscular vascular conductances during whole body upright exercise in humans. J Physiol. 2004;558:319–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Calbet JA, Losa-Reyna J, Torres-Peralta R, Rasmussen P, Ponce-Gonzalez JG, Sheel AW, Calle-Herrero J, Guadalupe-Grau A, Morales-Alamo D, Fuentes T, Rodríguez-García L, Siebenmann C, Boushel R, Lundby C. Limitations to oxygen transport and utilisation during sprint exercise in humans: evidence for a functional reserve in muscle O2 diffusing capacity. J Physiol. 2015;593:4649–64.

    Google Scholar 

  13. Calbet JA, Lundby C. Air to muscle O2 delivery during exercise at altitude. High Alt Med Biol. 2009;10:123–34.

    Article  PubMed  Google Scholar 

  14. Calbet JA, Lundby C, Sander M, Robach P, Saltin B, Boushel R. Effects of ATP-induced leg vasodilation on VO2peak and leg O2 extraction during maximal exercise in humans. Am J Physiol Regul Integr Comp Physiol. 2006;291:R447–53.

    Google Scholar 

  15. Calbet JA, Radegran G, Boushel R, Saltin B. On the mechanisms that limit oxygen uptake during exercise in acute and chronic hypoxia: role of muscle mass. J Physiol. 2009;587:477–90.

    Article  CAS  PubMed  Google Scholar 

  16. Calbet JA, Radegran G, Boushel R, Sondergaard H, Saltin B, Wagner PD. Effect of blood haemoglobin concentration on VO2max and cardiovascular function in lowlanders acclimatised to 5260 m. J Physiol. 2002;545:715–28.

    Google Scholar 

  17. Calbet JA, Robach P, Lundby C, Boushel R. Is pulmonary gas exchange during exercise in hypoxia impaired with the increase of cardiac output? Appl Physiol Nutr Metab. 2008;33:593–600.

    Article  CAS  PubMed  Google Scholar 

  18. Capen RL, Wagner Jr WW. Intrapulmonary blood flow redistribution during hypoxia increases gas exchange surface area. J Appl Physiol. 1982;52:1575–80.

    CAS  PubMed  Google Scholar 

  19. Clanton TL, Hogan MC, Gladden LB. Regulation of cellular gas exchange, oxygen sensing, and metabolic control. Compr Physiol. 2013;3:1135–90.

    CAS  PubMed  Google Scholar 

  20. Dehnert C, Risse F, Ley S, Kuder TA, Buhmann R, Puderbach M, Menold E, Mereles D, Kauczor HU, Bartsch P, Fink C. Magnetic resonance imaging of uneven pulmonary perfusion in hypoxia in humans. Am J Respir Crit Care Med. 2006;174:1132–8.

    Article  PubMed  Google Scholar 

  21. Dempsey JA, Amann M, Romer LM, Miller JD. Respiratory system determinants of peripheral fatigue and endurance performance. Med Sci Sports Exerc. 2008;40:457–61.

    Article  PubMed  Google Scholar 

  22. Ekblom B, Wilson G, Astrand PO. Central circulation during exercise after venesection and reinfusion of red blood cells. J Appl Physiol. 1976;40:379–83.

    CAS  PubMed  Google Scholar 

  23. Faoro V, Huez S, Vanderpool R, Groepenhoff H, de Bisschop C, Martinot JB, Lamotte M, Pavelescu A, Guenard H, Naeije R. Pulmonary circulation and gas exchange at exercise in Sherpas at high altitude. J Appl Physiol. 2014;116:919–26.

    Article  PubMed  Google Scholar 

  24. Fitts RH. Cellular mechanisms of muscle fatigue. Physiol Rev. 1994;74:49–94.

    CAS  PubMed  Google Scholar 

  25. Gayeski TE, Honig CR. O2 gradients from sarcolemma to cell interior in red muscle at maximal VO2. Am J Physiol. 1986;251:H789–99.

    Google Scholar 

  26. Goodall S, Twomey R, Amann M, Ross EZ, Lovering AT, Romer LM, Subudhi AW, Roach RC. AltitudeOmics: exercise-induced supraspinal fatigue is attenuated in healthy humans after acclimatization to high altitude. Acta Physiol (Oxf). 2014;210:875–88.

    Article  CAS  Google Scholar 

  27. Hanel B, Clifford PS, Secher NH. Restricted postexercise pulmonary diffusion capacity does not impair maximal transport for O2. J Appl Physiol. 1994;77:2408–12.

    Google Scholar 

  28. Holmberg HC, Calbet JA. Insufficient ventilation as a cause of impaired pulmonary gas exchange during submaximal exercise. Respir Physiol Neurobiol. 2007;157:348–59.

    Article  PubMed  Google Scholar 

  29. Honig A. Peripheral arterial chemoreceptors and reflex control of sodium and water homeostasis. Am J Physiol. 1989;257:R1282–302.

    CAS  PubMed  Google Scholar 

  30. Hsia CC. Recruitment of lung diffusing capacity: update of concept and application. Chest. 2002;122:1774–83.

    Article  PubMed  Google Scholar 

  31. Hsia CC, Ramanathan M, Estrera AS. Recruitment of diffusing capacity with exercise in patients after pneumonectomy. Am Rev Respir Dis. 1992;145:811–6.

    Article  CAS  PubMed  Google Scholar 

  32. Kayser B. Exercise starts and ends in the brain. Eur J Appl Physiol. 2003;90:411–9.

    Article  PubMed  Google Scholar 

  33. Lundby C, Boushel R, Robach P, Moller K, Saltin B, Calbet JA. During hypoxic exercise some vasoconstriction is needed to match O2 delivery with O2 demand at the microcirculatory level. J Physiol. 2008;586:123–30.

    Article  CAS  PubMed  Google Scholar 

  34. Lundby C, Calbet JA, van Hall G, Saltin B, Sander M. Pulmonary gas exchange at maximal exercise in Danish lowlanders during 8 wk of acclimatization to 4,100 m and in high-altitude Aymara natives. Am J Physiol Regul Integr Comp Physiol. 2004;287:R1202–8.

    Article  CAS  PubMed  Google Scholar 

  35. Lundby C, Hellsten Y, Jensen MB, Munch AS, Pilegaard H. Erythropoietin receptor in human skeletal muscle and the effects of acute and long-term injections with recombinant human erythropoietin on the skeletal muscle. J Appl Physiol. 2008;104:1154–60.

    Article  CAS  PubMed  Google Scholar 

  36. Lundby C, Robach P, Boushel R, Thomsen JJ, Rasmussen P, Koskolou M, Calbet JA. Does recombinant human Epo increase exercise capacity by means other than augmenting oxygen transport? J Appl Physiol. 2008;105:581–7.

    Article  CAS  PubMed  Google Scholar 

  37. Lundby C, Sander M, van Hall G, Saltin B, Calbet JA. Maximal exercise and muscle oxygen extraction in acclimatizing lowlanders and high altitude natives. J Physiol. 2006;573:535–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Marconi C, Marzorati M, Grassi B, Basnyat B, Colombini A, Kayser B, Cerretelli P. Second generation Tibetan lowlanders acclimatize to high altitude more quickly than Caucasians. J Physiol. 2004;556:661–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Morales-Alamo D, Losa-Reyna J, Torres-Peralta R, Martin-Rincon M, Perez-Valera M, Curtelin D, Ponce-Gonzalez JG, Santana A, Calbet JA. What limits performance during whole body incremental exercise to exhaustion in humans? J Physiol. 2015;593:4631–48.

    Google Scholar 

  40. Piiper J, Scheid P. Model for capillary-alveolar equilibration with special reference to O2 uptake in hypoxia. Respir Physiol. 1981;46:193–208.

    Google Scholar 

  41. Remensnyder JP, Mitchell JH, Sarnoff SJ. Functional sympatholysis during muscular activity. Observations on influence of carotid sinus on oxygen uptake. Circ Res. 1962;11:370–80.

    Article  CAS  PubMed  Google Scholar 

  42. Richardson RS, Duteil S, Wary C, Wray DW, Hoff J, Carlier PG. Human skeletal muscle intracellular oxygenation: the impact of ambient oxygen availability. J Physiol. 2006;571:415–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Richardson RS, Newcomer SC, Noyszewski EA. Skeletal muscle intracellular PO2 assessed by myoglobin desaturation: response to graded exercise. J Appl Physiol. 2001;91:2679–85.

    Google Scholar 

  44. Richardson RS, Noyszewski EA, Kendrick KF, Leigh JS, Wagner PD. Myoglobin O2 desaturation during exercise. Evidence of limited O2 transport. J Clin Invest. 1995;96:1916–26.

    Google Scholar 

  45. Roughton FJ, Forster RE. Relative importance of diffusion and chemical reaction rates in determining rate of exchange of gases in the human lung, with special reference to true diffusing capacity of pulmonary membrane and volume of blood in the lung capillaries. J Appl Physiol. 1957;11:290–302.

    CAS  PubMed  Google Scholar 

  46. Ryan BJ, Wachsmuth NB, Schmidt WF, Byrnes WC, Julian CG, Lovering AT, Subudhi AW, Roach RC. AltitudeOmics: rapid hemoglobin mass alterations with early acclimatization to and de-acclimatization from 5260 m in healthy humans. PLoS One. 2014;9:e108788.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Saltin B. Hemodynamic adaptations to exercise. Am J Cardiol. 1985;55:42D–7.

    Article  CAS  PubMed  Google Scholar 

  48. Simonson TS, Wei G, Wagner HE, Wuren T, Qin G, Yan M, Wagner PD, Ge RL. Low haemoglobin concentration in Tibetan males is associated with greater high-altitude exercise capacity. J Physiol. 2015;593:3207–18.

    Article  CAS  PubMed  Google Scholar 

  49. Steinacker JM, Tobias P, Menold E, Reissnecker S, Hohenhaus E, Liu Y, Lehmann M, Bartsch P, Swenson ER. Lung diffusing capacity and exercise in subjects with previous high altitude pulmonary oedema. Eur Respir J. 1998;11:643–50.

    CAS  PubMed  Google Scholar 

  50. Sutton JR, Reeves JT, Wagner PD, Groves BM, Cymerman A, Malconian MK, Rock PB, Young PM, Walter SD, Houston CS. Operation Everest II: oxygen transport during exercise at extreme simulated altitude. J Appl Physiol. 1988;64:1309–21.

    CAS  PubMed  Google Scholar 

  51. Torre-Bueno JR, Wagner PD, Saltzman HA, Gale GE, Moon RE. Diffusion limitation in normal humans during exercise at sea level and simulated altitude. J Appl Physiol. 1985;58:989–95.

    CAS  PubMed  Google Scholar 

  52. Wagner PD. Diffusion and chemical reaction in pulmonary gas exchange. Physiol Rev. 1977;57:257–312.

    CAS  PubMed  Google Scholar 

  53. Wagner PD. The lungs during exercise. News Physiol Sci. 1987;2:6–10.

    Google Scholar 

  54. Wagner PD, Araoz M, Boushel R, Calbet JA, Jessen B, Radegran G, Spielvogel H, Sondegaard H, Wagner H, Saltin B. Pulmonary gas exchange and acid-base state at 5,260 m in high-altitude Bolivians and acclimatized lowlanders. J Appl Physiol. 2002;92:1393–400.

    Article  PubMed  Google Scholar 

  55. Wagner PD, Gale GE, Moon RE, Torre-Bueno JR, Stolp BW, Saltzman HA. Pulmonary gas exchange in humans exercising at sea level and simulated altitude. J Appl Physiol. 1986;61:260–70.

    CAS  PubMed  Google Scholar 

  56. Wagner PD, Sutton JR, Reeves JT, Cymerman A, Groves BM, Malconian MK. Operation Everest II: pulmonary gas exchange during a simulated ascent of Mt. Everest. J Appl Physiol. 1987;63:2348–59.

    CAS  PubMed  Google Scholar 

  57. Wang JS, Abboud RT, Wang LM. Effect of lung resection on exercise capacity and on carbon monoxide diffusing capacity during exercise. Chest. 2006;129:863–72.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Supported in part by a grant from the Ministerio de Educación y Ciencia of Spain (DEP2009-11638 and FEDER).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José A. L. Calbet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Calbet, J.A.L., Lundby, C., Boushel, R. (2016). Integrative Conductance of Oxygen During Exercise at Altitude. In: Roach, R., Hackett, P., Wagner, P. (eds) Hypoxia. Advances in Experimental Medicine and Biology, vol 903. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-7678-9_26

Download citation

Publish with us

Policies and ethics