Skip to main content

Physiological and Clinical Implications of Adrenergic Pathways at High Altitude

  • Chapter
  • First Online:
Hypoxia

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 903))

Abstract

The adrenergic system is part of a full array of mechanisms allowing the human body to adapt to the hypoxic environment. Triggered by the stimulation of peripheral chemoreceptors, the adrenergic centers in the medulla are activated in acute hypoxia and augment the adrenergic drive to the organs, especially to the heart, leading to tachycardia. With prolonged exposure to altitude hypoxia, the adrenergic drive persists, as witnessed by elevated blood concentrations of catecholamines and nerve activity in adrenergic fibers. In response to this persistent stimulation, the pathways leading to the activation of adenylate cyclase are modified. A downregulation of β-adrenergic and adenosinergic receptors is observed, while muscarinic receptors are upregulated. The expression and activity of Gi and Gs proteins are modified, leading to a decreased response of adenylate cyclase activity to adrenergic stimulation. The clinical consequences of these cellular and molecular changes are of importance, especially for exercise performance and protection of heart function. The decrease in maximal exercise heart rate in prolonged hypoxia is fully accounted for the observed changes in adrenergic and muscarinic pathways. The decreased heart rate response to isoproterenol infusion is another marker of the desensitization of adrenergic pathways. These changes can be considered as mechanisms protecting the heart from a too high oxygen consumption in conditions where the oxygen availability is severely reduced. Similarly, intermittent exposure to hypoxia has been shown to protect the heart from an ischemic insult with similar mechanisms involving G proteins and downregulation of β receptors. Other pathways with G proteins are concerned in adaptation to hypoxia, such as lactate release by the muscles and renal handling of calcium. Altogether, the activation of the adrenergic system is useful for the acute physiological response to hypoxia. With prolonged exposure to hypoxia, the autonomous nervous system adapts to protect vital organs, especially the heart, against a too high energetic state, via a purely local autoregulation mechanism necessary for the preservation of overall homeostasis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Antezana AM, Kacimi R, Le Trong JL, Marchal M, Abousahl I, Dubray C, Richalet JP. Adrenergic status of humans during prolonged exposure to the altitude of 6542m. J Appl Physiol. 1994;76:1055–9.

    Article  CAS  PubMed  Google Scholar 

  2. Bogaard HJ, Hopkins SR, Yamaya Y, Niizeki K, Ziegler MG, Wagner PD. Role of the autonomic nervous system in the reduced maximal cardiac output at altitude. J Appl Physiol. 2002;93:271–9.

    Article  PubMed  Google Scholar 

  3. Boushel R, Calbet JAL, Rådegran G, Sondegaard H, Wager PD, Saltin B. Parasympathetic neural activity accounts for the lowering of exercise heart rate at high altitude. Circulation. 2001;104:1785–91.

    Article  CAS  PubMed  Google Scholar 

  4. Boussuges A, Molenat F, Burnet H, Cauchy E, Gardette B, Sainty JM, Jammes Y, Richalet JP. Operation Everest III (COMEX’97): modifications of cardiac function secondary to altitude-induced hypoxia: an echocardiographic and Doppler study. Am J Respir Crit Care Med. 2000;161:264–70.

    Article  CAS  PubMed  Google Scholar 

  5. Calbet JA, Boushel R, Radegran G, Sondergaard H, Wagner PD, Saltin B. Why is VO2 max after altitude acclimatization still reduced despite normalization of arterial O2 content? Am J Physiol Regul Integr Comp Physiol. 2003;284:R304–16.

    Article  CAS  PubMed  Google Scholar 

  6. Christensen EH, Forbes WH. Der Kreislauf in grossen Höhen. Skand Arch Physiol. 1937;76:75–89.

    Article  Google Scholar 

  7. Clancy RL, Moue Y, Erwig LP, Smith PG, Gonzalez NC. Role of β-adrenergic and cholinergic systems in acclimatisation to hypoxia in the rat. Respir Physiol. 1997;107:75–84.

    Article  CAS  PubMed  Google Scholar 

  8. de Glisezinski I, Crampes F, Harant I, Havlik P, Gardette B, Jammes Y, Souberbielle JC, Richalet JP, Rivière D. Decrease of subcutaneous adipose tissue lipolysis after exposure to hypoxia during a simulated ascent of Mt Everest. Pflugers Arch. 1999;439:134–40.

    Article  PubMed  Google Scholar 

  9. di Prampero PE, Ferretti G. Factors limiting maximal oxygen consumption in humans. Respir Physiol. 1990;80:113–27.

    Article  PubMed  Google Scholar 

  10. Favret F, Richalet JP, Henderson KK, Germack R, Gonzalez NC. Myocardial adrenergic and cholinergic receptor function in hypoxia: correlation with O2 transport in exercise. Am J Physiol. 2001;280:R730–8.

    CAS  Google Scholar 

  11. Favret F, Richalet JP. Exercise in hypoxia: the role of the autonomous nervous system. Respir Physiol Neurobiol. 2007;158:280–6.

    Article  PubMed  Google Scholar 

  12. Gonzalez NC, Clancy RL, Moue Y, Richalet JP. Increasing maximal heart rate increases maximal O2 uptake in rats acclimatized to simulated altitude. J Appl Physiol. 1998;84:164–8.

    CAS  PubMed  Google Scholar 

  13. Gonzalez NC, Clancy RL, Wagner PD. Determinants of maximal oxygen uptake in rats acclimated to simulated altitude. J Appl Physiol. 1993;75:1608–14.

    CAS  PubMed  Google Scholar 

  14. Hartley LH, Vogel JA, Cruz JC. Reduction of maximal exercise heart rate at altitude and its reversal with atropine. J Appl Physiol. 1974;36:362–5.

    CAS  PubMed  Google Scholar 

  15. Henderson KK, Wagner H, Favret F, Britton SL, Koch LG, Wagner PD, Gonzalez NC. Determinants of maximal O2 uptake in rats selectively bred for endurance running capacity. J Appl Physiol. 2002;93:1265–74.

    Article  PubMed  Google Scholar 

  16. Hrbasova M, Novotny J, Hejnova L, Kolar F, Neckar J, Svoboda P. Altered myocardial Gs protein and adenylyl cyclase signaling in rats exposed to chronic hypoxia and normoxic recovery. J Appl Physiol. 2003;94:2423–32.

    Article  CAS  PubMed  Google Scholar 

  17. Kacimi R, Richalet JP, Corsin A, Abousahl I, Crozatier B. Hypoxia-induced downregulation of β-adrenergic receptors in rat heart. J Appl Physiol. 1992;73:1377–82.

    CAS  PubMed  Google Scholar 

  18. Kacimi R, Richalet JP, Crozatier B. Hypoxia-induced differential modulation of adenosinergic and muscarinic receptors in rat heart. J Appl Physiol. 1993;75:1123–8.

    CAS  PubMed  Google Scholar 

  19. Kacimi R, Moalic JM, Aldashev A, Vatner DE, Richalet JP, Crozatier B. Differential regulation of G protein expression in rat hearts exposed to chronic hypoxia. Am J Physiol Heart Circ Physiol. 1995;38:H1865–73.

    Google Scholar 

  20. Kaijser L, Grubbstrom J, Berglund B. Coronary circulation in acute hypoxia. Clin Physiol. 1990;10:259–63.

    Article  CAS  PubMed  Google Scholar 

  21. Krasney JA. A neurogenic basis for acute altitude illness. Med Sci Sports Exerc. 1994;26:195–208.

    Article  CAS  PubMed  Google Scholar 

  22. León-Velarde F, Bourin MC, Germack R, Mohammidi K, Crozatier B, Richalet JP. Differential alterations in cardiac adrenergic signalling in chronic hypoxia or norepinephrine infusion. Am J Physiol Regul Integr Comp Physiol. 2001;280:R274–80.

    PubMed  Google Scholar 

  23. León-Velarde F, Richalet JP, Chavez JC, Kacimi R, Rivera-Chira M, Palacios JA, Clark D. Hypoxia- and normoxia-induced reversibility of autonomic control in Andean guinea pig heart. J Appl Physiol. 1996;81:2229–34.

    PubMed  Google Scholar 

  24. Lundby C, Araoz M, van Hall G. Peak heart rate decreases with increasing severity of acute hypoxia. High Alt Med Biol. 2001;2:369–76.

    Article  CAS  PubMed  Google Scholar 

  25. Maher JT, Deniiston JC, Wolfe DL, Cymerman A. Mechanism of the attenuated cardiac response to β-adrenergic stimulation in chronic hypoxia. J Appl Physiol. 1978;44:647–51.

    CAS  PubMed  Google Scholar 

  26. Mardon K, Merlet P, Syrota A, Maziere B. Effects of 5-day hypoxia on cardiac adrenergic neurotransmission in rats. J Appl Physiol. 1998;85:890–7.

    CAS  PubMed  Google Scholar 

  27. Mazzeo RS, Bender PR, Brooks GA, Butterfield GE, Groves BM, Sutton JR, Wolfel EE, Reeves JT. Arterial catecholamine responses during exercise with acute and chronic high-altitude exposure. Am J Physiol. 1991;261:E419–24.

    CAS  PubMed  Google Scholar 

  28. Mollard P, Woorons X, Letournel M, Lamberto C, Favret F, Pichon A, Beaudry M, Richalet JP. Determinants of maximal oxygen uptake in moderate acute hypoxia in endurance athletes. Respir Physiol Neurobiol. 2007;100:663–73.

    CAS  Google Scholar 

  29. Noakes TD. Physiological models to understand exercise fatigue and the adaptations that predict or enhance athletic performance. Scand J Med Sci Sports. 2000;10:123–45.

    Article  CAS  PubMed  Google Scholar 

  30. Pei JM, Yu XC, Fung ML, Zhou JJ, Cheung CS, Wong NS, Leung MP, Wong TM. Impaired G(s)α and adenylyl cyclase cause β-adrenoceptor desensitisation in chronically hypoxic rat hearts. Am J Physiol Cell Physiol. 2000;279:C1455–63.

    CAS  PubMed  Google Scholar 

  31. Rajagopal S, Rajagopal K, Lefkowitz RJ. Teaching old receptors new tricks: biasing seven-transmembrane receptors. Nat Rev Drug Discov. 2010;9:373–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Richalet JP. The heart and adrenergic system. In: Sutton JR, Coates G, Remmers JE, editors. Hypoxia, the adaptations. Philadelphia, PA: Dekker; 1990. p. 231–45.

    Google Scholar 

  33. Richalet JP, Mehdioui H, Rathat C, Vignon P, Kéromès A, Herry JP, Sabatier C, Tanche M, Lhoste F. Acute hypoxia decreases cardiac response to catecholamines in exercising humans. Int J Sports Med. 1988;9:157–62.

    Article  CAS  PubMed  Google Scholar 

  34. Richalet JP, Larmignat P, Rathat C, Kéromès A, Baud P, Lhoste F. Decreased human cardiac response to isoproterenol infusion in acute and chronic hypoxia. J Appl Physiol. 1988;65:1957–61.

    CAS  PubMed  Google Scholar 

  35. Richalet JP, Le-Trong JL, Rathat C, Merlet P, Bouissou P, Kéromès A, Veyrac P. Reversal of hypoxia-induced decrease in human cardiac response to isoproterenol infusion. J Appl Physiol. 1989;67:523–7.

    CAS  PubMed  Google Scholar 

  36. Richalet JP, Merlet P, Bourguignon M, Le Trong JL, Kéromès A, Rathat C, Jouve B, Hot MA, Castaigne A, Syrota A. MIBG scintigraphic assessment of cardiac adrenergic activity in response to altitude hypoxia. J Nucl Med. 1990;31:34–7.

    CAS  PubMed  Google Scholar 

  37. Richalet JP. Oxygen sensors in the organism. Examples of regulation under altitude hypoxia in mammals. Comp Biochem Physiol. 1997;118A:9–14.

    Article  CAS  Google Scholar 

  38. Richalet JP. A proposed classification of environmental adaptation: the example of high altitude. Rev Environ Sci Biotech. 2007;6:223–9.

    Article  Google Scholar 

  39. Richalet JP, Letournel M, Souberbielle JC. Effects of high altitude hypoxia on the hormonal response to hypothalamic factors. Am J Physiol Regul Integr Comp Physiol. 2010;299:R1685–92.

    Article  CAS  PubMed  Google Scholar 

  40. Sartori C, Allemann Y, Duplain H, Lepori M, Egli M, Lipp E, Hutter D, Turini P, Hugli O, Cook S, Nicod P, Scherrer U. Salmeterol for the prevention of high-altitude pulmonary edema. N Engl J Med. 2002;346:1631–6.

    Article  CAS  PubMed  Google Scholar 

  41. Savard GK, Areskog NH, Saltin B. Cardiovascular response to exercise in humans following acclimatization to extreme altitude. Acta Physiol Scand. 1995;154:499–509.

    Article  CAS  PubMed  Google Scholar 

  42. Seals DR, Johnson DG, Fregosi RF. Hypoxia potentiates exercise-induced sympathetic neural activation in humans. J Appl Physiol. 1991;71:1032–40.

    CAS  PubMed  Google Scholar 

  43. Souberbielle JC, Richalet JP, Garabedian M, Sachs C, Déchaux M. High altitude hypoxia and calcium metabolism. In: Sutton JR, Houston CS, Coates G, editors. Hypoxia and the brain. Burlington, VA: Queen City Printers Inc.; 1995. p. 336.

    Google Scholar 

  44. Stobdan T, Kumar R, Mohammad G, Thinlas T, Norboo T, Iqbal M, Pasha MA. Probable role of β2-adrenergic receptor gene haplotype in high-altitude pulmonary oedema. Respirology. 2010;15:651–8.

    Article  PubMed  Google Scholar 

  45. Voelkel NF, Hegstrand L, Reeves JT, McMurty IF, Molinoff PB. Effects of hypoxia on density of β-adrenergic receptors. J Appl Physiol. 1981;50:363–6.

    CAS  PubMed  Google Scholar 

  46. Wagner PD. Reduced maximal cardiac output at altitude--mechanisms and significance. Respir Physiol. 2000;120:1–11.

    Article  CAS  PubMed  Google Scholar 

  47. Wenzlaff H, Stein B, Teschemacher H. Diminution of contractile response by kappa-opioid receptor agonists in isolated rat ventricular cardiomyocytes is mediated via a pertussis toxin-sensitive G protein. Naunyn Schmiedebergs Arch Pharmacol. 1998;358:360–6.

    Article  CAS  PubMed  Google Scholar 

  48. Westerterp KR, Kayser B, Wouters L, Le Trong JL, Richalet JP. Energy balance at high altitude of 6,542 m. J Appl Physiol. 1994;77:862–6.

    CAS  PubMed  Google Scholar 

  49. Westerterp KR, Rubbens M, Meijer E, Robach P, Richalet JP. Operation Everest III: energy and water balance. Pflügers Arch. 2000;439:483–8.

    Article  CAS  PubMed  Google Scholar 

  50. Wolfe BB, Voelkel NF. Effects of hypoxia on atrial muscarinic cholinergic receptors and cardiac parasympathetic responsiveness. Biochem Pharmacol. 1983;32:1999–2002.

    Article  CAS  PubMed  Google Scholar 

  51. Wong TM, Shan J. Modulation of sympathetic actions on the heart by opioid receptor stimulation. J Biomed Sci. 2001;8:299–306.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Paul Richalet M.D., Dr.Sc. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Richalet, JP. (2016). Physiological and Clinical Implications of Adrenergic Pathways at High Altitude. In: Roach, R., Hackett, P., Wagner, P. (eds) Hypoxia. Advances in Experimental Medicine and Biology, vol 903. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-7678-9_23

Download citation

Publish with us

Policies and ethics