Skip to main content

Modulation of the Hypoxic Response

  • Chapter
  • First Online:
Hypoxia

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 903))

Abstract

Hypoxia stimulates a variety of adaptive responses, many mediated via the hypoxia inducible factors (HIF) family of transcriptional complexes. The balance of HIF-1, -2 and -3 controls a variety of genes, directly up-regulating transcription of genes involved in erythropoiesis, angiogenesis, vasomotor tone, metabolic pathways and processes related to cell multiplication and survival, and indirectly reducing the transcription of genes with other effects. HIF transcription factors are heterodimers consisting of an oxygen-regulated alpha chain bound to the constitutive aryl hydrocarbon receptor nuclear translocator. Under circumstances where oxygen is abundant the activity of the alpha chain is blocked by the actions of members of a family of oxygen-, iron- and oxoglutarate-dependent dioxygenase enzymes. Hydroxylation of two critical prolyl residues by the HIF prolyl hydroxylases (PHD1-3) leads to recognition by the von Hippel–Lindau E3 ubiquitin ligase complex, polyubiquitylation of the alpha chain and its consequent destruction by the proteasome. Hydroxylation of an asparaginyl residue by Factor Inhibiting HIF prevents any surviving HIF alpha chains from recruiting p300-CBP proteins, important for maximal transcriptional activation. Under conditions of acute hypoxia enzyme activity is suppressed, the HIF alpha chains are allowed to exist in their active form and target gene transcription is enhanced. In sustained hypoxia, adaptive responses mediated by the HIF pathway reduce oxygen demand and increase oxygen supply and thus ultimately down-regulate the pathway. However, a number of other processes also modulate HIF signalling and the balance between HIF-1 and HIF-2 actions. These include the generation of antisense HIF-1 and micro RNAs, up-regulation of HIF-3 alpha, antagonism of the HIF-p300 interaction by CITED2, increased PHD2 and PHD3 levels and effects on the pool of ankyrins within the cell which compete with HIF for the action of FIH. Additionally, effects on intermediary metabolism, reactive oxygen species, iron availability, nitric oxide levels and redox status within the cell may modulate HIF activity. Together, these effects lead to a reduction in the magnitude of the HIF response even if oxygenation is not restored and are predicted to alter the responsiveness of the system when oxygenation is restored.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ang SO, Chen H, Hirota K, Gordeuk VR, Jelinek J, Guan Y, Liu E, Sergueeva AI, Miasnikova GY, Mole D, Maxwell PH, Stockton DW, Semenza GL, Prchal JT. Disruption of oxygen homeostasis underlies congenital Chuvash polycythemia. Nat Genet. 2002;32:614.

    Article  CAS  PubMed  Google Scholar 

  2. Aragones J, Schneider M, Van Geyte K, Fraisl P, Dresselaers T, Mazzone M, Dirkx R, Zacchigna S, Lemieux H, Jeoung NH, Lambrechts D, Bishop T, Lafuste P, Diez-Juan A, Harten SK, Van Noten P, De Bock K, Willam C, Tjwa M, Grosfeld A, Navet R, Moons L, Vandendriessche T, Deroose C, Wijeyekoon B, Nuyts J, Jordan B, Silasi-Mansat R, Lupu F, Dewerchin M, Pugh C, Salmon P, Mortelmans L, Gallez B, Gorus F, Buyse J, Sluse F, Harris RA, Gnaiger E, Hespel P, Van Hecke P, Schuit F, Van Veldhoven P, Ratcliffe P, Baes M, Maxwell P, Carmeliet P. Deficiency or inhibition of oxygen sensor Phd1 induces hypoxia tolerance by reprogramming basal metabolism. Nat Genet. 2008;40:170–80.

    Article  CAS  PubMed  Google Scholar 

  3. Bachmann S, Le Hir M, Eckardt K-U. Co-localization of erythropoietin messenger RNA and ecto-5′-nucleotidase immunoreactivity in peritubular cells of rat renal cortex indicates that fibroblasts produce erythropoietin. J Histochem Cytochem. 1993;41:335–41.

    Article  CAS  PubMed  Google Scholar 

  4. Beck I, Ramirez S, Weinmann R, Caro J. Enhancer element at the 3′-flanking region controls transcriptional response to hypoxia in the human erythropoietin gene. J Biol Chem. 1991;266:15563–6.

    CAS  PubMed  Google Scholar 

  5. Bhattacharya S, Michels CL, Leung MK, Arany ZP, Kung AL, Livingston DM. Functional role of p35srj, a novel p300/CBP binding protein, during transactivation by HIF-1. Genes Dev. 1999;13:64–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bishop T, Gallagher D, Pascual A, Lygate CA, de Bono JP, Nicholls LG, Ortega-Saenz P, Oster H, Wijeyekoon B, Sutherland AI, Grosfeld A, Aragones J, Schneider M, van Geyte K, Teixeira D, Diez-Juan A, Lopez-Barneo J, Channon KM, Maxwell PH, Pugh CW, Davies AM, Carmeliet P, Ratcliffe PJ. Abnormal sympathoadrenal development and systemic hypotension in PHD3-/- mice. Mol Cell Biol. 2008;28:3386–400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Camps C, Buffa FM, Colella S, Moore J, Sotiriou C, Sheldon H, Harris AL, Gleadle JM, Ragoussis J. hsa-miR-210 Is induced by hypoxia and is an independent prognostic factor in breast cancer. Clin Cancer Res. 2008;14:1340–8.

    Article  CAS  PubMed  Google Scholar 

  8. Clifford SC, Cockman ME, Smallwood AC, Mole DR, Woodward ER, Maxwell PH, Ratcliffe PJ, Maher ER. Contrasting effects on HIF-1α regulation by disease-causing pVHL mutations correlate with patterns of tumourigenesis in von Hippel-Lindau disease. Hum Mol Genet. 2001;10:1029–38.

    Article  CAS  PubMed  Google Scholar 

  9. Cockman ME, Lancaster DE, Stolze IP, Hewitson KS, McDonough MA, Coleman ML, Coles CH, Yu X, Hay RT, Ley SC, Pugh CW, Oldham NJ, Masson N, Schofield CJ, Ratcliffe PJ. Posttranslational hydroxylation of ankyrin repeats in I{kappa}B proteins by the hypoxia-inducible factor (HIF) asparaginyl hydroxylase, factor inhibiting HIF (FIH). Proc Natl Acad Sci U S A. 2006;103:14767.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cockman ME, Webb JD, Kramer HB, Kessler BM, and Ratcliffe PJ. Proteomic-based identification of novel factor inhibiting HIF (FIH) substrates indicates widespread hydroxylation of ankyrin repeat domain-containing proteins. Molecular & Cellular Proteomics. 2009;8:535–46.

    Google Scholar 

  11. Coleman ML, McDonough MA, Hewitson KS, Coles C, Mecinovic J, Edelmann M, Cook KM, Cockman ME, Lancaster DE, Kessler BM, Oldham NJ, Ratcliffe PJ, Schofield CJ. Asparaginyl hydroxylation of the Notch ankyrin repeat domain by factor inhibiting hypoxia-inducible factor. J Biol Chem. 2007;282:24027–38.

    Article  CAS  PubMed  Google Scholar 

  12. Cummins EP, Berra E, Comerford KM, Ginouves A, Fitzgerald KT, Seeballuck F, Godson C, Nielsen JE, Moynagh P, Pouyssegur J, Taylor CT. Prolyl hydroxylase-1 negatively regulates I{kappa}B kinase-beta, giving insight into hypoxia-induced NF{kappa}B activity. Proc Natl Acad Sci U S A. 2006;103:18154–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ebert BL, Firth JD, Ratcliffe PJ. Hypoxia and mitochondrial inhibitors regulate expression of glucose transporter-1 via distinct cis-acting sequences. J Biol Chem. 1995;270:29083–9.

    Article  CAS  PubMed  Google Scholar 

  14. Eckardt K-U, Koury ST, Tan CC, Schuster SJ, Kaissling B, Ratcliffe PJ, Kurtz A. Distribution of erythropoietin producing cells in rat kidneys during hypoxic hypoxia. Kidney Int. 1993;43:815–23.

    Article  CAS  PubMed  Google Scholar 

  15. Elkins JM, Hewitson KS, McNeill LA, Seibel JF, Schlemminger I, Pugh CW, Ratcliffe PJ, Schofield CJ. Structure of factor-inhibiting hypoxia-inducible factor (HIF) reveals mechanism of oxidative modification of HIF-1α. J Biol Chem. 2003;278:1802–6.

    Article  CAS  PubMed  Google Scholar 

  16. Elson DA, Thurston G, Huang LE, Ginzinger DG, McDonald DM, Johnson RS, Arbeit JM. Induction of hypervascularity without leakage or inflammation in transgenic mice overexpressing hypoxia-inducible factor-1α. Genes Dev. 2001;15:2520–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ema M, Taya S, Yokotani N, Sogawa K, Matsuda Y, Fujii-Kuriyama Y. A novel bHLH-PAS factor with close sequence similarity to hypoxia-inducible factor 1α regulates the VEGF expression and is potentially involved in lung and vascular development. Proc Natl Acad Sci U S A. 1997;94:4273–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Epstein ACR, Gleadle JM, McNeill LA, Hewitson KS, O’Rourke J, Mole DR, Mukherji M, Metzen E, Wilson MI, Dhanda A, Tian Y-M, Masson N, Hamilton DL, Jaakkola P, Barstead R, Hodgkin J, Maxwell PH, Pugh CW, Schofield CJ, Ratcliffe PJ. C. elegans EGL-9 and mammalian homologues define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell. 2001;107:43–54.

    Article  CAS  PubMed  Google Scholar 

  19. Fandrey J, Frede S, Jelkmann W. Role of hydrogen peroxide in hypoxia-induced erythropoietin production. Biochem J. 1994;303:507–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Firth JD, Ebert BL, Pugh CW, Ratcliffe PJ. Oxygen-regulated control elements in the phosphoglycerate kinase 1 and lactate dehydrogenase A genes: similarities with the erythropoeitin 3′ enhancer. Proc Natl Acad Sci U S A. 1994;91:6496–500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Firth JD, Ebert BL, Ratcliffe PJ. Hypoxic regulation of lactate dehydrogenase A: interaction between hypoxia inducible factor 1 and cAMP response elements. J Biol Chem. 1995;270:21021–7.

    Article  CAS  PubMed  Google Scholar 

  22. Flamme I, Fröhlich T, von Reutern M, Kappel A, Damert A, Risau W. HRF, a putative basic helix-loop-helix-PAS-domain transcription factor is closely related to hypoxia-inducible factor-1α and developmentally expressed in blood vessels. Mech Dev. 1997;63:51–60.

    Article  CAS  PubMed  Google Scholar 

  23. Gleadle JM, Ebert BL, Firth JD, Ratcliffe PJ. Regulation of angiogenic growth factor expression by hypoxia, transition metals, and chelating agents. Am J Physiol. 1995;268:C1362–8.

    CAS  PubMed  Google Scholar 

  24. Gordan JD, Simon MC. Hypoxia-inducible factors: central regulators of the tumor phenotype. Curr Opin Genet Dev. 2007;17:71–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Grosfeld A, Stolze IP, Cockman ME, Pugh CW, Edelmann M, Kessler B, Bullock AN, Ratcliffe PJ, Masson N. Interaction of hydroxylated collagen IV with the von Hippel-Lindau tumor suppressor. J Biol Chem. 2007;282:13264–9.

    Article  CAS  PubMed  Google Scholar 

  26. Habelhah H, Laine A, Erdjument-Bromage H, Tempst P, Gershwin ME, Bowtell DD, Ronai Z. Regulation of 2-oxoglutarate (alpha-ketoglutarate) dehydrogenase stability by the RING finger ubiquitin ligase Siah. J Biol Chem. 2004;279:53782–8.

    Article  CAS  PubMed  Google Scholar 

  27. Henderson J, Withford-Cave JM, Duffy DL, Cole SJ, Sawyer NA, Gulbin JP, Hahn A, Trent RJ, Yu B. The EPAS1 gene influences the aerobic-anaerobic contribution in elite endurance athletes. Hum Genet. 2005;118:416–23.

    Article  CAS  PubMed  Google Scholar 

  28. Hon WC, Wilson MI, Harlos K, Claridge TD, Schofield CJ, Pugh CW, Maxwell PH, Ratcliffe PJ, Stuart DI, Jones EY. Structural basis for the recognition of hydroxyproline in HIF-1α by pVHL. Nature. 2002;417:975–8.

    Article  CAS  PubMed  Google Scholar 

  29. Isaacs JS, Jung YJ, Mole DR, Lee S, Torres-Cabala C, Merino M, Trepel J, Zbar B, Toro J, Ratcliffe PJ, Lineham M, Neckers L. HIF overexpression correlates with biallelic loss of fumarate hydratase in renal cancer: novel role of fumarate in regulation of HIF stability. Cancer Cell. 2005;8:143–53.

    Article  CAS  PubMed  Google Scholar 

  30. Ivan M, Kondo K, Yang H, Kim W, Valiando J, Ohh M, Salic A, Asara JM, Lane WS, Kaelin WGJ. HIFα targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science. 2001;292:464–8.

    Article  CAS  PubMed  Google Scholar 

  31. Jaakkola P, Mole DR, Tian Y-M, Wilson MI, Gielbert J, Gaskell SJ, Kriegsheim AV, Hebestreit HF, Mukherji M, Schofield CJ, Maxwell PH, Pugh CW, Ratcliffe PJ. Targeting of HIF-α to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science. 2001;292:468–72.

    Article  CAS  PubMed  Google Scholar 

  32. Jelkmann W. Erythropoietin: structure, control of production, and function. Physiol Rev. 1992;72:449–89.

    CAS  PubMed  Google Scholar 

  33. Kaelin WG, Maher ER. The VHL tumour-suppressor gene paradigm. Trends Genet. 1998;14:423–6.

    Article  CAS  PubMed  Google Scholar 

  34. Knowles HJ, Raval RR, Harris AL, Ratcliffe PJ. Effect of ascorbate on the activity of hypoxia inducible factor (HIF) in cancer cells. Cancer Res. 2003;63:1764–8.

    CAS  PubMed  Google Scholar 

  35. Kurban G, Duplan E, Ramlal N, Hudon V, Sado Y, Ninomiya Y, Pause A. Collagen matrix assembly is driven by the interaction of von Hippel-Lindau tumor suppressor protein with hydroxylated collagen IV alpha 2. Oncogene. 2007;27:1004–12.

    Article  PubMed  Google Scholar 

  36. Kurban G, Hudon V, Duplan E, Ohh M, Pause A. Characterization of a von Hippel Lindau pathway involved in extracellular matrix remodeling, cell invasion, and angiogenesis. Cancer Res. 2006;66:1313–9.

    Article  CAS  PubMed  Google Scholar 

  37. Kuznetsova AV, Meller J, Schnell PO, Nash JA, Ignacak ML, Sanchez Y, Conaway JW, Conaway RC, Czyzyk-Krzeska MF. von Hippel-Lindau protein binds hyperphosphorylated large subunit of RNA polymerase II through a proline hydroxylation motif and targets it for ubiquitination. Proc Natl Acad Sci U S A. 2003;100:2706–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lando D, Peet DJ, Gorman JJ, Whelan DA, Whitelaw ML, Bruick RK. FIH-1 is an asparaginyl hydroxylase enzyme that regulates the transcriptional activity of hypoxia-inducible factor. Genes Dev. 2002;16:1466–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lando D, Peet DJ, Whelan DA, Gorman JJ, Whitelaw ML. Asparagine hydroxylation of the HIF transactivation domain: a hypoxic switch. Science. 2002;295:858–61.

    Article  CAS  PubMed  Google Scholar 

  40. Lau KW, Tian YM, Raval RR, Ratcliffe PJ, Pugh CW. Target gene selectivity of hypoxia-inducible factor-alpha in renal cancer cells is conveyed by post-DNA-binding mechanisms. Br J Cancer. 2007;96:1284–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Liu Y, Cox SR, Morita T, Kourembanas S. Hypoxia regulates vascular endothelial growth factor gene expression in endothelial cells. Circ Res. 1995;77:638–43.

    Article  CAS  PubMed  Google Scholar 

  42. Makino Y, Kanopka A, Wilson WJ, Tanaka H, Poellinger L. Inhibitory PAS domain protein (IPAS) is a hypoxia-inducible splicing variant of the hypoxia-inducible factor-3α locus. J Biol Chem. 2002;277:32405–8.

    Article  CAS  PubMed  Google Scholar 

  43. Maxwell PH, Osmond MK, Pugh CW, Heryet A, Nicholls LG, Tan CC, Doe BG, Ferguson DJP, Johnson MH, Ratcliffe PJ. Identification of the renal erythropoietin-producing cells using transgenic mice. Kidney Int. 1993;44:1149–62.

    Article  CAS  PubMed  Google Scholar 

  44. Maxwell PH, Pugh CW, Ratcliffe PJ. Inducible operation of the erythropoietin 3′ enhancer in multiple cell lines: evidence for a widespread oxygen sensing mechanism. Proc Natl Acad Sci U S A. 1993;90:2423–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Metzen E, Zhou J, Jelkmann W, Fandrey J, Brune B. Nitric oxide impairs normoxic degradation of HIF-1alpha by inhibition of prolyl hydroxylases. Mol Biol Cell. 2003;14:3470–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Milledge JS, Cotes PM. Serum erythropoietin in humans at high altitude and its relation to plasma renin. J Appl Physiol. 1985;59:360–4.

    CAS  PubMed  Google Scholar 

  47. Minamishima YA, Moslehi J, Bardeesy N, Cullen D, Bronson RT, Kaelin Jr WG. Somatic inactivation of the PHD2 prolyl hydroxylase causes polycythemia and congestive heart failure. Blood. 2008;111:3236–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Mole DR, Blancher C, Copley RR, Pollard PJ, Gleadle JM, Ragoussis J, Ratcliffe PJ. Genome-wide association of HIF-1α and HIF-2α DNA-binding with expression profiling of hypoxia-inducible transcripts. J Biol Chem. 2009;284:16767.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Nakayama K, Frew IJ, Hagensen M, Skals M, Habelhah H, Bhoumik A, Kadoya T, Erdjument-Bromage H, Tempst P, Frappell PB, Bowtell DD, Ronai Z. Siah2 regulates stability of prolyl-hydroxylases, controls HIF1α abundance, and modulates physiological responses to hypoxia. Cell. 2004;117:941–52.

    Article  CAS  PubMed  Google Scholar 

  50. Percy MJ, Furlow PW, Beer PA, Lappin TR, McMullin MF, Lee FS. A novel erythrocytosis-associated PHD2 mutation suggests the location of a HIF binding groove. Blood. 2007;110:2193–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Percy MJ, Furlow PW, Lucas GS, Li X, Lappin TR, McMullin MF, Lee FS. A gain-of-function mutation in the HIF2A gene in familial erythrocytosis. N Engl J Med. 2008;358:162–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Percy MJ, Zhao Q, Flores A, Harrison C, Lappin TR, Maxwell PH, McMullin MF, Lee FS. A family with erythrocytosis establishes a role for prolyl hydroxylase domain protein 2 in oxygen homeostasis. Proc Natl Acad Sci U S A. 2006;103:654–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Perrotta S, Della Ragione F. The HIF2A gene in familial erythrocytosis. N Engl J Med. 2008;358:1966. author reply 1966-1967.

    CAS  PubMed  Google Scholar 

  54. Pollard PJ, Briere JJ, Alam NA, Barwell J, Barclay E, Wortham NC, Hunt T, Mitchell M, Olpin S, Moat SJ, Hargreaves IP, Heales SJ, Chung YL, Griffiths JR, Dalgleish A, McGrath JA, Gleeson MJ, Hodgson SV, Poulsom R, Rustin P, Tomlinson IP. Accumulation of Krebs cycle intermediates and over-expression of HIF1alpha in tumours which result from germline FH and SDH mutations. Hum Mol Genet. 2005;14:2231–9.

    Article  CAS  PubMed  Google Scholar 

  55. Pugh CW, Ratcliffe PJ. Regulation of angiogenesis by hypoxia: role of the HIF system. Nat Med. 2003;9:677–84.

    Article  CAS  PubMed  Google Scholar 

  56. Pugh CW, Tan CC, Jones RW, Ratcliffe PJ. Functional analysis of an oxygen-regulated transcriptional enhancer lying 3′ to the mouse erythropoietin gene. Proc Natl Acad Sci U S A. 1991;88:10553–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Qing G, Simon MC. Hypoxia inducible factor-2alpha: a critical mediator of aggressive tumor phenotypes. Curr Opin Genet Dev. 2009;19:60–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Rosenberger C, Mandriota SJ, Jurgensen JS, Wiesener MS, Horstrup JH, Frei U, Ratcliffe PJ, Maxwell PH, Bachmann S, Eckardt KU. Expression of hypoxia-inducible factor-1α and -2α in hypoxic and ischemic rat kidneys. J Am Soc Nephrol. 2002;13:1721–32.

    Article  CAS  PubMed  Google Scholar 

  59. Semenza GL. Targeting HIF-1 for cancer therapy. Nat Rev Cancer. 2003;3:721–32.

    Article  CAS  PubMed  Google Scholar 

  60. Semenza GL, Nejfelt MK, Chi SM, Antonarakis SE. Hypoxia-inducible nuclear factors bind to an enhancer element located 3′ to the human erythropoietin gene. Proc Natl Acad Sci U S A. 1991;88:5680–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Seth P, Krop I, Porter D, Polyak K. Novel estrogen and tamoxifen induced genes identified by SAGE (Serial Analysis of Gene Expression). Oncogene. 2002;21:836–43.

    Article  CAS  PubMed  Google Scholar 

  62. Shimoda LA, Manalo DJ, Sham JSK, Semenza GL, Sylvester JT. Partial HIF-1α deficiency impairs pulmonary arterial myocyte electrophysiological responses to hypoxia. Am J Physiol Lung Cell Mol Physiol. 2001;281:205–8.

    Google Scholar 

  63. Smith TG, Brooks JT, Balanos GM, Lappin TR, Layton DM, Leedham DL, Liu C, Maxwell PH, McMullin MF, McNamara CJ, Percy MJ, Pugh CW, Ratcliffe PJ, Talbot NP, Treacy M, Robbins PA. Mutation of von Hippel-Lindau tumour suppressor and human cardiopulmonary physiology. PLoS Med. 2006;3:e290.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Takeda K, Ho V, Takeda H, Duan LJ, Nagy A, Fong GH. Placental but not heart defect is associated with elevated HIF{alpha} levels in mice lacking prolyl hydroxylase domain protein 2. Mol Cell Biol. 2006;26:8336.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Tan CC, Eckardt K-U, Firth JD, Ratcliffe PJ. Feedback modulation of renal and hepatic erythropoietin mRNA in response to graded anemia and hypoxia. Am J Physiol. 1992;263:F474–81.

    CAS  PubMed  Google Scholar 

  66. Thrash-Bingham CA, Tartof KD. aHIF: a natural antisense transcript overexpressed in human renal cancer and during hypoxia. J Natl Cancer Inst. 1999;91:143–51.

    Article  CAS  PubMed  Google Scholar 

  67. Tian H, McKnight SL, Russell DW. Endothelial PAS domain protein 1 (EPAS1), a transcription factor selectively expressed in endothelial cells. Genes Dev. 1997;11:72–82.

    Article  CAS  PubMed  Google Scholar 

  68. Tretter L, Adam-Vizi V. Inhibition of Krebs cycle enzymes by hydrogen peroxide: a key role of α-Ketoglutarate dehydrogenase in limiting NADH production under oxidative stress. J Neurosci. 2000;20:8972–9.

    CAS  PubMed  Google Scholar 

  69. Vincent KA, Shyu KG, Luo Y, Magner M, Tio RA, Jiang C, Goldberg MA, Akita GY, Gregory RJ, Isner JM. Angiogenesis is induced in a rabbit model of hindlimb ischemia by naked DNA encoding an HIF-1α/VP16 hybrid transcription factor. Circulation. 2000;102:2255–22561.

    Article  CAS  PubMed  Google Scholar 

  70. Walmsley SR, Cowburn AS, Clatworthy MR, Morrell NW, Roper EC, Singleton V, Maxwell P, Whyte MK, Chilvers ER. Neutrophils from patients with heterozygous germline mutations in the von Hippel Lindau protein (pVHL) display delayed apoptosis and enhanced bacterial phagocytosis. Blood. 2006;108:3176–8.

    Article  CAS  PubMed  Google Scholar 

  71. Wang GL, Jiang B-H, Rue EA, Semenza GL. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci U S A. 1995;92:5510–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Webb JD, Murányi A, Pugh CW, Ratcliffe PJ, Coleman ML. MYPT1, the targeting subunit of smooth muscle myosin phosphatase, is a substrate for the asparaginyl hydroxylase factor inhibiting hypoxia inducible factor (FIH). Biochem J. 2009;420:327.

    Article  CAS  PubMed  Google Scholar 

  73. Willam C, Maxwell PH, Nichols L, Lygate C, Tian YM, Bernhardt W, Wiesener M, Ratcliffe PJ, Eckardt KU, Pugh CW. HIF prolyl hydroxylases in the rat; organ distribution and changes in expression following hypoxia and coronary artery ligation. J Mol Cell Cardiol. 2006;41:68.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author acknowledges help from friends and colleagues in the oxygen-sensing field who have contributed directly or indirectly to the data and thought processes expressed in this chapter. Financial support for work in the author’s laboratory has been provided by the Wellcome Trust, Cancer Research UK, the MRC, the British Heart Foundation, the BBSRC and the European Commission, via the Pulmotension and Euroxy FP6 consortia. The author is a scientific co-founder of ReOx Ltd.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher W. Pugh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Pugh, C.W. (2016). Modulation of the Hypoxic Response. In: Roach, R., Hackett, P., Wagner, P. (eds) Hypoxia. Advances in Experimental Medicine and Biology, vol 903. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-7678-9_18

Download citation

Publish with us

Policies and ethics