Hypoxia pp 247-258 | Cite as

Optical Analysis of Hypoxia Inducible Factor (HIF)-1 Complex Assembly: Imaging of Cellular Oxygen Sensing

Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 903)

Abstract

Hypoxia is a common phenomenon that occurs in a variety of diseases such as cardiovascular ischemia, anemia, and cancer. Cellular oxygen sensors measure changes in tissue oxygenation and induce responses aimed at restoring sufficient supply with oxygen. Genetic adaptation to hypoxia is under control of hypoxia-inducible factors (HIFs), of which two highly homologous subunits HIF-1α and HIF-2α are regulated by oxygen tension. Together with HIF-1β (=ARNT; aryl hydrocarbon receptor nuclear translocator) they form transcriptionally active complexes under hypoxia which drive the expression of hypoxia inducible genes. The meaning of different HIF complexes, i.e., HIF-1α/ARNT versus HIF-2α/ARNT with respect to target gene or tissue specificity has not been fully resolved. We applied modern microscopic methods like fluorescence resonance energy transfer (FRET) to elucidate protein–protein interactions and fluorescence recovery after photo-bleaching (FRAP) to study mobility of HIF proteins inside the nuclei of living cells. We found differences both in nuclear mobility and the assembly of HIF-1 versus HIF-2 which might help to better understand the assembly of HIF complexes.

Keywords

HIF-1 assembly Dimerization Mobility 

Notes

Acknowledgments

Parts of this work were supported by grants from the Deutsche Forschungsgemeinschaft GRK1431 and the Fachhochschule Dortmund.

References

  1. 1.
    Acker H. Mechanisms and meaning of cellular oxygen sensing in the organism. Respir Physiol. 1994;95(1):1–10.CrossRefPubMedGoogle Scholar
  2. 2.
    Berchner-Pfannschmidt U, Wotzlaw C, Merten E, Acker H, Fandrey J. Visualization of the three-dimensional organization of hypoxia-inducible factor-1α and interacting cofactors in subnuclear structures. Biol Chem. 2004;385(3–4):231–7.PubMedGoogle Scholar
  3. 3.
    Berchner-Pfannschmidt U, Tug S, Trinidad B, Oehme F, Yamac H, Wotzlaw C, Flamme I, Fandrey J. Nuclear oxygen sensing: induction of endogenous prolyl-hydroxylase 2 activity by hypoxia and nitric oxide. J Biol Chem. 2008;283(46):31745–53.CrossRefPubMedGoogle Scholar
  4. 4.
    Bernardini A, Wotzlaw C, Lipinski H, Fandrey J. An automated real-time microscopy system for analysis of fluorescence resonance energy transfer. Proc SPIE. 2010;7723(1):772311.CrossRefGoogle Scholar
  5. 5.
    Bruick RK, McKnight SL. A conserved family of prolyl-4-hydroxylases that modify HIF. Science. 2001;294(5545):1337–40.CrossRefPubMedGoogle Scholar
  6. 6.
    Carnot P, Deflandre C. Sur l’activité hémopoiétique du sérum au cours de la régénération du sang. C R Acad Sci Paris. 1906;143:384–6.Google Scholar
  7. 7.
    Depping R, Steinhoff A, Schindler SG, Friedrich B, Fagerlund R, Metzen E, Hartmann E, Köhler M. Nuclear translocation of hypoxia-inducible factors (HIFs): involvement of the classical importin α/β pathway. Biochim Biophys Acta. 2008;1783(3):394–404.CrossRefPubMedGoogle Scholar
  8. 8.
    Ebert BL, Bunn HF. Regulation of the erythropoietin gene. Blood. 1999;94(6):1864–77.PubMedGoogle Scholar
  9. 9.
    Epstein AC, Gleadle JM, McNeill LA, Hewitson KS, O’Rourke J, Mole DR, Mukherji M, Metzen E, Wilson MI, Dhanda A, Tian YM, Masson N, Hamilton DL, Jaakkola P, Barstead R, Hodgkin J, Maxwell PH, Pugh CW, Schofield CJ, Ratcliffe PJ. C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell. 2001;107(1):43–54.CrossRefPubMedGoogle Scholar
  10. 10.
    Fandrey J. Oxygen-dependent and tissue-specific regulation of erythropoietin gene expression. Am J Physiol Regul Integr Comp Physiol. 2004;286(6):R977–88.CrossRefPubMedGoogle Scholar
  11. 11.
    Fandrey J, Bunn HF. In vivo and in vitro regulation of erythropoietin mRNA: measurement by competitive polymerase chain reaction. Blood. 1993;81(3):617–23.PubMedGoogle Scholar
  12. 12.
    Fandrey J, Gorr TA, Gassmann M. Regulating cellular oxygen sensing by hydroxylation. Cardiovasc Res. 2006;71(4):642–51.CrossRefPubMedGoogle Scholar
  13. 13.
    Gu YZ, Hogenesch JB, Bradfield CA. The PAS superfamily: sensors of environmental and developmental signals. Annu Rev Pharmacol Toxicol. 2000;40:519–61.CrossRefPubMedGoogle Scholar
  14. 14.
    Gustafsson MV, Zheng X, Pereira T, Gradin K, Jin S, Lundkvist J, Ruas JL, Poellinger L, Lendahl U, Bondesson M. Hypoxia requires notch signaling to maintain the undifferentiated cell state. Dev Cell. 2005;9(5):617–28.CrossRefPubMedGoogle Scholar
  15. 15.
    Hu CJ, Iyer S, Sataur A, Covello KL, Chodosh LA, Simon MC. Differential regulation of the transcriptional activities of hypoxia-inducible factor 1 alpha (HIF-1α) and HIF-2α in stem cells. Mol Cell Biol. 2006;26(9):3514–26.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Jaakkola P, Mole DR, Tian YM, Wilson MI, Gielbert J, Gaskell SJ, Kriegsheim A, Hebestreit HF, Mukherji M, Schofield CJ, Maxwell PH, Pugh CW, Ratcliffe PJ. Targeting of HIF-α to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science. 2001;292(5516):468–72.CrossRefPubMedGoogle Scholar
  17. 17.
    Jewell UR, Kvietikova I, Scheid A, Bauer C, Wenger RH, Gassmann M. Induction of HIF-1α in response to hypoxia is instantaneous. FASEB J. 2001;15(7):1312–4.PubMedGoogle Scholar
  18. 18.
    Lando D, Peet DJ, Whelan DA, Gorman JJ, Whitelaw ML. Asparagine hydroxylation of the HIF transactivation domain a hypoxic switch. Science. 2002;295(5556):858–61.CrossRefPubMedGoogle Scholar
  19. 19.
    Mahon PC, Hirota K, Semenza GL. FIH-1: a novel protein that interacts with HIF-1α and VHL to mediate repression of HIF-1 transcriptional activity. Genes Dev. 2001;15(20):2675–86.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Makino Y, Uenishi R, Okamoto K, Isoe T, Hosono O, Tanaka H, Kanopka A, Poellinger L, Haneda M, Morimoto C. Transcriptional up-regulation of inhibitory PAS domain protein gene expression by hypoxia-inducible factor 1 (HIF-1): a negative feedback regulatory circuit in HIF-1-mediated signaling in hypoxic cells. J Biol Chem. 2007;282(19):14073–82.CrossRefPubMedGoogle Scholar
  21. 21.
    Maxwell PH, Pugh CW, Ratcliffe PJ. Inducible operation of the erythropoietin 3′ enhancer in multiple cell lines: evidence for a widespread oxygen-sensing mechanism. Proc Natl Acad Sci U S A. 1993;90(6):2423–7.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Maxwell PH, Wiesener MS, Chang GW, Clifford SC, Vaux EC, Cockman ME, Wykoff CC, Pugh CW, Maher ER, Ratcliffe PJ. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature. 1999;399(6733):271–5.CrossRefPubMedGoogle Scholar
  23. 23.
    McDonald JD, Lin FK, Goldwasser E. Cloning, sequencing, and evolutionary analysis of the mouse erythropoietin gene. Mol Cell Biol. 1986;6(3):842–8.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Rosenberger C, Mandriota S, Jurgensen JS, Wiesener MS, Horstrup JH, Frei U, Ratcliffe PJ, Maxwell PH, Bachmann S, Eckardt KU. Expression of hypoxia-inducible factor-1α and -2α in hypoxic and ischemic rat kidneys. J Am Soc Nephrol. 2002;13(7):1721–32.CrossRefPubMedGoogle Scholar
  25. 25.
    Salceda S, Caro J. Hypoxia-inducible factor 1α (HIF-1α) protein is rapidly degraded by the ubiquitin-proteasome system under normoxic conditions. Its stabilization by hypoxia depends on redox-induced changes. J Biol Chem. 1997;272(36):22642–7.CrossRefPubMedGoogle Scholar
  26. 26.
    Scheuermann TH, Tomchick DR, Machius M, Guo Y, Bruick RK, Gardner KH. Artificial ligand binding within the HIF2α PAS-B domain of the HIF2 transcription factor. Proc Natl Acad Sci U S A. 2009;106(2):450–5.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Sekar RB, Periasamy A. Fluorescence resonance energy transfer (FRET) microscopy imaging of live cell protein localizations. J Cell Biol. 2003;160(5):629–33.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Semenza GL, Dureza RC, Traystman MD, Gearhart JD, Antonarakis SE. Human erythropoietin gene expression in transgenic mice: multiple transcription initiation sites and cis-acting regulatory elements. Mol Cell Biol. 1990;10(3):930–8.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Semenza GL, Koury ST, Nejfelt MK, Gearhart JD, Antonarakis SE. Cell-type-specific and hypoxia-inducible expression of the human erythropoietin gene in transgenic mice. Proc Natl Acad Sci U S A. 1991;88(19):8725–9.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Semenza GL, Nejfelt MK, Chi SM, Antonarakis SE. Hypoxia-inducible nuclear factors bind to an enhancer element located 3′ to the human erythropoietin gene. Proc Natl Acad Sci U S A. 1991;88(13):5680–4.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Takeda N, O’Dea EL, Doedens A, Kim JW, Weidemann A, Stockmann C, Asagiri M, Simon MC, Hoffmann A, Johnson RS. Differential activation and antagonistic function of HIF-α isoforms in macrophages are essential for NO homeostasis. Genes Dev. 2010;24(5):491–501.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Vaupel P, Kallinowski F, Okunieff P. Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review. Cancer Res. 1989;49(23):6449–65.PubMedGoogle Scholar
  33. 33.
    Wang GL, Jiang BH, Rue EA, Semenza GL. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci U S A. 1995;92(12):5510–4.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Wotzlaw C, Gneuss S, Konietzny R, Fandrey J. Nanoscopy of the cellular response to hypoxia by means of fluorescence resonance energy transfer (FRET) and new FRET software. PMC Biophys. 2010;3(1):5.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Wotzlaw C, Otto T, Berchner-Pfannschmidt U, Metzen E, Acker H, Fandrey J. Optical analysis of the HIF-1 complex in living cells by FRET and FRAP. FASEB J. 2007;21(3):700–7.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Institut für PhysiologieUniversität Duisburg-EssenEssenGermany

Personalised recommendations