Skip to main content

Functional Aspects of Tea Camellia sinensis as Traditional Beverage

Part of the Integrating Food Science and Engineering Knowledge Into the Food Chain book series (ISEKI-Food,volume 12)

Abstract

Tea is the commonly consumed refreshing and thirst-quenching beverage made from the leaves of Camellia sinensis and is widely known for its health benefits. People used tea as a social and medicinal beverage for centuries. Nowadays tea and its constituents are the subject matter of a great deal of research due to their possible beneficial properties in the human body. It has been implied that important constituents of tea like polyphenols scavenge free radicals, helping the human body to fight major degenerative diseases like cancer or simple aging. Today’s consumers no longer need to brew fresh tea, the market offers many different products, with comparable to tea health value.

Keywords

  • Tea
  • Camellia sinensis
  • Health benefits
  • Polyphenols
  • Catechin
  • Caffeine

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4899-7662-8_25
  • Chapter length: 17 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-1-4899-7662-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   149.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 25.1
Fig. 25.2
Fig. 25.3

References

  • Acker SA, Van Balen GP, Van den Berg DJ, Bast A, Van der Vijgh WJ (1998) Influence of iron chelation on the antioxidant activity of flavonoids. Biochem Pharmacol 56:935–943

    CrossRef  Google Scholar 

  • Ahmad N, Feyes DK, Nieminen AL, Agrawald R, Mukhtar H (1997) Green tea constituent epigallocatechin-3-gallate and induction of apoptosis and cell cycle arrest in human carcinoma cells. J Natl Cancer Inst 89:1881–1886

    CAS  CrossRef  Google Scholar 

  • Amarowicz R, Shahidi F (1995) Antioxidants activity of green tea catechins in a beta-carotene-linoleate model system. J Food Lipids 2:47–56

    CAS  CrossRef  Google Scholar 

  • Annonymus (2000) Green tea. Altern Med Rev 5: 372–375

    Google Scholar 

  • Arts MJTJ, Haenen GRMM, Voss HP, Bast A (2001) Masking of antioxidant capacity by the interaction of flavonoids with protein. Food Chem Toxicol 39:43–47

    Google Scholar 

  • Arts MJTJ, Haenen GRMM, Wilms LC, Beetstra SAJN, Heijnen CGM, Voss H, Bast A (2002) Interactions between flavonoids and proteins: effect on the total antioxidant capacity. J Agric Food Chem 50:1184–1187

    CAS  CrossRef  Google Scholar 

  • Astrup A, Toubro S, Cannon S, Hein P, Breum L, Madsen J (1990) Caffeine: a double-blind, placebo-controlled study of its thermogenic, metabolic, and cardiovascular effects in healthy volunteers. Am J Clin Nutr 51:759–767

    CAS  Google Scholar 

  • Bailey RG, Nursten HE (1993) The chemical oxidation of catechins and other phenolics: a study of the formation of black tea pigments. J Sci Food Agric 63:455–464

    CAS  CrossRef  Google Scholar 

  • Balentine D (1997) Tea and health. Crit Rev Food Sci Nutr 37:691–692

    CrossRef  Google Scholar 

  • Balentine DA, Wiseman SA, Bouwens LCM (1997) The chemistry of tea flavonoids. Crit Rev Food Sci Nutr 3:693–704

    CrossRef  Google Scholar 

  • Berube-Parent S, Pelletier C, Dore J, Tremblay A (2005) Effects of encapsulated green tea and Guarana extracts containing a mixture of epigallocatechin-3-gallate and caffeine on 24 h energy expenditure and fat oxidation in men. Br J Nutr 94:432–436

    CAS  CrossRef  Google Scholar 

  • Burda S, Oleszek W (2001) Antioxidant and antiradical activities of flavonoids. J Agric Food Chem 49:2774–2779

    CAS  CrossRef  Google Scholar 

  • Chan C-C, Koo M-W, Ng E-H, Tang O-S, Yeung W-S, Ho P-C (2006) Effects of Chinese green tea on weight, and hormonal and biochemical profiles in obese patients with polycystic ovary syndrome—a randomized placebo-controlled trial. J Soc Gynecol Investig 13:63–68

    CAS  CrossRef  Google Scholar 

  • Chantre P, Lairon D (2002) Recent findings of green tea extract AR25 (Exolise) and its activity for the treatment of obesity. Phytomedicine 9:3–8

    CAS  CrossRef  Google Scholar 

  • Chen Z-Y, Chan P-T, Ma H-M, Fung K-P, Wang J (1996) Antioxidative effect of ethanol tea extracts on oxidation of canola oil. J Am Oil Chem Soc 73:375–380

    CAS  CrossRef  Google Scholar 

  • Chen W-Y, Yang Z-B, Hosoda K-K (1998a) Clinical efficacy of oolong tea in simple obesity. Jpn Soc Clin Nutr 20:83–90

    Google Scholar 

  • Chen Z-Y, Zhu Q-Y, Wong Y-F, Zhang Z, Chung H-Y (1998b) Stabilizing effect of ascorbic acid on green tea catechins. J Agric Food Chem 46:2512–2516

    CAS  CrossRef  Google Scholar 

  • Chen Z-Y, Zhu Q-Y, Tang D, Huang Y (2001) Degradation of green tea catechins in tea drinks. J Agric Food Chem 49:477–482

    CAS  CrossRef  Google Scholar 

  • Chen L, Yao M-Z, Zhao L-P, Wang X-C (2006) Recent research progress on molecular biology of tea plant (Camellia sinensis). In: Teixeira da Silva JA (ed) Floriculture, ornamental and plant biotechnology: advances and topical issues, vol IV, 1st edn. Global Science Books, London, pp 426–437

    Google Scholar 

  • Chu DC (1997) Green tea—its cultivation, processing of the leaves for drinking materials, and kinds of green tea. In: Yamamoto T, Juneja LR, Chu DC, Kim M (eds) Chemistry and applications of green tea. CRC Press, New York, pp 1–12

    Google Scholar 

  • Chu DC, Juneja RL (1997) General chemical composition of green tea and its infusion. In: Yamamoto T, Juneja LR, Chu DC, Kim M (eds) Chemistry and applications of green tea. CRC Press, New York, pp 13–22

    Google Scholar 

  • Chung K-T, Wong T-Y, Wei C-I, Huang Y-W, Lin Y (1998) Tannins and human health: a review. Crit Rev Food Sci Nutr 38:421–464

    CAS  CrossRef  Google Scholar 

  • Disler PB, Lynch SR, Carlton RW, Torrance JD, Bothwell TH, Walker RB, Mayet F (1975a) The effect of tea on iron absorption. Gut 16:193–200

    CAS  CrossRef  Google Scholar 

  • Disler PB, Lynch SR, Torrance JD, Sayers MH, Bothwell TH, Charlton RW (1975b) The mechanism of the inhibition of iron absorption by tea. S Afr J Med Sci 40:109–116

    CAS  Google Scholar 

  • Dreosti IE (1996) Bioactive ingredients: antioxidants and polyphenols in tea. Nutr Rev 54:S51–S58

    CAS  CrossRef  Google Scholar 

  • Dreosti IE (2000) Antioxidant polyphenols in tea, cocoa and wine. Nutrition 16:692–694

    CAS  CrossRef  Google Scholar 

  • Dulloo AG, Duret C, Rohrer D, Girardier L, Mensi N, Fathi M, Chantre P, Vandermander J (1999) Efficiency of a green tea extract rich in catechin polyphenols and caffeine in increasing 24-h energy expenditure and fat oxidation in humans. Am J Clin Nutr 70:1040–1045

    CAS  Google Scholar 

  • Dulloo AG, Seydoux J, Girardier L, Chantre P, Vandermander J (2000) Green tea and thermogenesis: interactions between catechin-polyphenols, caffeine and sympathetic activity. Int J Obes Relat Metab Disord 24:252–258

    CAS  CrossRef  Google Scholar 

  • Fernandez PL, Pablos F, Martin MJ, Gonzales AG (2002) Study of catechin and xanthine tea profiles as geographical tracers. J Agric Food Chem 50:1833–1839

    CAS  CrossRef  Google Scholar 

  • Fernandez-Caceres P, Martin MJ, Pablos M, Gonzalez AG (2001) Differentiation of tea (Camellia sinensis) varieties and their geographical origin according to their metal content. J Agric Food Chem 49:4775–4779

    CAS  CrossRef  Google Scholar 

  • Ferrara L, Montesano D, Senatore A (2001) The distribution of minerals and flavonoids in the tea plant (Camellia sinensis). Farmaco 56:397–401

    CAS  CrossRef  Google Scholar 

  • Frankel EN (1998) Lipid oxidation. Oily Press, Dundee

    Google Scholar 

  • Friedman M, Jurgens HS (2000) Effect of pH on the stability of plant phenolic compounds. J Agric Food Chem 48:2101–2110

    CAS  CrossRef  Google Scholar 

  • Fujiki H, Saganuma M, Okabe S, Sueoka N, Komori A, Sueoka E, Kozu T, Tada Y, Suga K, Imai K, Nakachi K (1998) Cancer inhibition by green tea. Mutat Res 402:307–310

    CAS  CrossRef  Google Scholar 

  • Giese J (1996) Antioxidants: tools for preventing lipid oxidation. Food Technol 11:73–79

    Google Scholar 

  • Gordon MH, Roedig-Penman A (1998) The antioxidant properties of quercetin and myricetin in liposomes. Chem Phys Lipids 97:79–85

    CAS  CrossRef  Google Scholar 

  • Graham HN (1992) Green tea composition, consumption and polyphenol chemistry. Prev Med 21:334–350

    CAS  CrossRef  Google Scholar 

  • Gramza A, Korczak J (2004) Tea extracts influence on catalytical properties of Fe2+ in lipids. Pol J Environ Stud 13:143–146

    Google Scholar 

  • Gramza A, Korczak J (2005) Tea constituents (Camellia sinensis L.) as antioxidants in lipid systems. Trends Food Sci Technol 16:351–358

    CAS  CrossRef  Google Scholar 

  • Gramza A, Regula J (2007) Use of tea extracts (Camellia sinensis) as polyphenols sources in human diet. Asia Pac J Clin Nutr 16:43–46

    Google Scholar 

  • Gramza A, Korczak J, Amarowicz R (2005a) Tea polyphenols—their antioxidant properties and biological activity—a review. Pol J Environ Stud 14/55(3):219–235

    Google Scholar 

  • Gramza A, Pawlak-Lemanska K, Korczak J, Wasowicz E, Rudzinska M (2005b) Tea extracts as free radical scavengers. Pol J Environ Stud 14:153–157

    Google Scholar 

  • Gramza A, Khokhar S, Yoko S, Gliszczynska-Swiglo A, Hes M, Korczak J (2006) Antioxidant activity of tea extracts in lipids and correlation with polyphenol content. Eur J Lipid Sci Technol 108(4):351–362

    CAS  CrossRef  Google Scholar 

  • Gramza A, Korczak J, Regula J (2007) Use of plant extracts in summer and winter season butter oxidative stability improvement. Asia Pac J Clin Nutr 16:85–88

    Google Scholar 

  • Gramza-Michalowska A (2008) Antioxidant potential and radical scavenging activity of different fermentation degree tea leaves extracts. Int J Tea Sci 6(4):15–28

    Google Scholar 

  • Gramza-Michałowska A (2014) Caffeine in tea Camellia sinensis – content, absorption, benefits and risks of consumption. J Nutr Health Aging 18(2):143–149

    Google Scholar 

  • Gramza-Michalowska A, Bajerska-Jarzebowska J (2007) Leaves of Camellia sinensis: ordinary brewing plant or super antioxidant source? Food 1:56–64

    Google Scholar 

  • Gramza-Michalowska A, Korczak J, Hęś M (2007) Purification process influence on green tea extracts polyphenol content and antioxidant activity. Acta Sci Pol Technol Aliment 6(2):41–48

    CAS  Google Scholar 

  • Gray J (1978) Measurement of lipid oxidation: a review. J Am Oil Chem Soc 55:539–546

    CAS  CrossRef  Google Scholar 

  • Griffiths LA, Smith GE (1972) Metabolism of myricetin and related compounds in the rat. Metabolite formation in vivo and by the intestinal microflora in vitro. Biochem J 130:141–151

    CAS  CrossRef  Google Scholar 

  • Gupta S, Saha B, Giri AK (2002) Comparative antimutagenic and anticlastogenic effects of green tea and black tea: a review. Mutat Res 512:37–65

    CAS  CrossRef  Google Scholar 

  • Hagerman AE, Carlson DM (1998) Biological responses of tannins and other polyphenols. Rec Res Dev Agric Food Chem 2:689–704

    CAS  Google Scholar 

  • Hagerman AE, Riedl KM, Jones GA, Sovik KN, Ritchard NT, Hartzfeld PW, Riechel TL (1998) High molecular weight plant polyphenolics (tannins) as biological antioxidants. J Agric Food Chem 46:1887–1892

    CAS  CrossRef  Google Scholar 

  • Halliwell B, Murcia MA, Chirico S, Auroma OI (1995) Free radicals and antioxidants in food and in vivo: what they do and how they work? Crit Rev Food Sci Nutr 35:7–20

    CAS  CrossRef  Google Scholar 

  • Han LK, Takaku T, Li J (1999) Anti-obesity action of oolong tea. Int J Obes Relat Metab Disord 23:98–105

    CAS  CrossRef  Google Scholar 

  • Hara Y (2001a) Biosynthesis of tea catechins. In: Hara Y (ed) Green tea health benefits and applications, CRC Press, Taylor & Francis Group, pp 11–15

    Google Scholar 

  • Hara Y (2001b) Green tea: health benefits and applications. Taylor & Francis, London, pp 1–251

    CrossRef  Google Scholar 

  • Harbowy ME, Balentine DA (1997) Tea chemistry. Crit Rev Plant Sci 16:415–480

    CAS  CrossRef  Google Scholar 

  • Higashi-Okai K, Yamazaki M, Nagamori H, Okai Y (2001) Identification and antioxidant activity of several pigments from the residual green tea (Camellia sinensis) after hot water extraction. J UOEH 23:335–344

    CAS  Google Scholar 

  • Hodgson JM, Proudfoot JM, Croft KD, Puddey IB, Mori TA, Beilin LJ (1999) Comparison of the effect of black and green tea in vitro lipoprotein oxidation in human serum. J Sci Food Agric 79:561–566

    CAS  CrossRef  Google Scholar 

  • Hollman PCH (2001) Evidence for health benefits of plant phenols: local or systemic effects? J Sci Food Agric 81:842–852

    CAS  CrossRef  Google Scholar 

  • Hollman PCH, Van het Hof KH, Tijburg LB, Katan MB (2001) Addition of milk does not affect the absorption of flavonols from tea in man. Free Radic Res 34:297–300

    CAS  CrossRef  Google Scholar 

  • Houlihan CM, Ho CT (1985) Natural antioxidants. In: Min DB, Smouse TH (eds) Flavor chemistry of fats and oils. AOCS, Champaign, pp 117–143

    Google Scholar 

  • Huang SW, Frankel EN (1997) Antioxidant activity of tea catechins in different lipid systems. J Agric Food Chem 45:3033–3038

    CAS  CrossRef  Google Scholar 

  • Imai K, Nakachi K (1995) Cross-sectional study of the effect of drinking green tea on cardiovascular and liver diseases. Br Med J 310:693–696

    CAS  CrossRef  Google Scholar 

  • Inoue M, Tajima K, Mizutani M, Iwata H, Iwase T, Miura S, Hirose K, Hamajima N, Tominaga S (2001) Regular consumption of green tea and the risk of breast cancer recurrence: follow-up study from the Hospital-based Epidemiologic Research Program at Aichi Cancer Centre (HERPACCO). Cancer Lett 167:175–182

    CAS  CrossRef  Google Scholar 

  • Jankun J, Selman SH, Swiercz R, Skrzypczak-Jankun E (1997) Why drinking green tea could prevent cancer. Nature 387:561

    CAS  CrossRef  Google Scholar 

  • Kallithraka S, Bakker J, Clifford MN (2000) Interaction of (+)-catechin, (−)-epicatechin, procyanidin B2 and procyanidin C1 with pooled human saliva in vitro. J Sci Food Agric 81:261–268

    CrossRef  Google Scholar 

  • Kao YH, Hiipakka RA, Liao S (2000) Modulation of endocrine systems and food intake by green tea epigallocatechin gallate. Endocrinology 141:980–987

    CAS  Google Scholar 

  • Katiyar SK, Mukhtar H (1997) Tea antioxidants in cancer chemoprevention. J Cell Biochem 67:59–67

    CrossRef  Google Scholar 

  • Khan N, Mukhtar H (2007) Tea polyphenols for health promotion. Life Sci 81:519–33

    Google Scholar 

  • Khokhar S, Magnusdottir SGM (2002) Total phenol, catechin and caffeine contents of teas commonly consumed in the United Kingdom. J Agric Food Chem 50:565–570

    CAS  CrossRef  Google Scholar 

  • Kim MA, Masuda M (1997) Cancer chemoprevention by green tea polyphenols. In: Yamamoto T, Juneja LR, Chu DC, Kim M (eds) Chemistry and applications of green tea. CRC Press, New York, pp 61–73

    Google Scholar 

  • Kinlen LJ, Willows AN, Goldbatt P, Yudkin J (1988) Tea consumption and cancer. Br J Cancer 58:397–401

    CAS  CrossRef  Google Scholar 

  • Koketsu M, Satoh YI (1997) Antioxidative activity of green tea polyphenols in edible oils. J Food Lipids 4:1–9

    CAS  CrossRef  Google Scholar 

  • Komatsu T, Nakamori M, Komatsu K, Hosoda K, Okamura M, Toyama K, Ishikura Y, Sakai T, Kunii D, Yamamoto S (2003) Oolong tea increases energy metabolism in Japanese females. J Med Invest 50:170–175

    Google Scholar 

  • Korczak J, Hęś M, Gramza A, Jędrusek-Golińska A (2004) Influence of fat oxidation on the stability of lysine and protein digestibility in frozen meat products. Electron J Pol Agric Univ 7:1–13

    Google Scholar 

  • Lin JK, Lin CL, Liang YC, Lin-Shiau SY, Juan IM (1998) Survey of catechins, gallic acid and methylxanthines in green, oolong, pu-erh and black teas. J Agric Food Chem 46:3635–3642

    CAS  CrossRef  Google Scholar 

  • Lonchampt M, Guardiola B, Sicot N, Bertrand M, Pedrix L (1989) Protective effect of a purified flavonoid factor against reactive oxygen radicals. In vivo and in vitro study. Arzneimittelforschung 39:882–885

    CAS  Google Scholar 

  • Lorenz M, Jochmann N, Krosigk A, Martus P, Baumann G, Strangl K, Strangl V (2007) Addition of milk prevents vascular protective effects of tea. Eur Heart J 9:1–5

    CrossRef  Google Scholar 

  • Los J, Podsetek A (2004) Tannins from different foodstuffs as trypsin inhibitors. Pol J Food Nutr Sci 13:51–55

    CAS  Google Scholar 

  • Manach C, Texier O, Morand C, Crespy V, Regerat F, Demigne C, Remesy C (1999) Comparison of the bioavailability of quercetin and catechin in rats. Free Radic Biol Med 27:1259–1266

    CAS  CrossRef  Google Scholar 

  • McKay DL, Blumberg J (2002) The role of tea in human health: an update. J Am Coll Nutr 21:1–13

    CAS  CrossRef  Google Scholar 

  • Merhav H, Amitai Y, Palti H (1985) Tea drinking and microcytic anaemia in infants. Am J Clin Nutr 41:1210–1213

    CAS  Google Scholar 

  • Middleton E Jr (1998) Effect of plant flavonoids on immune and inflammatory cell function. Adv Exp Med Biol 439:175–182

    CAS  CrossRef  Google Scholar 

  • Mo H, Zhu Y, Chen Z (2008) Microbial fermented tea- a potential source of natural food preservatives. Trends Food Sci Technol 19:124–130

    CAS  CrossRef  Google Scholar 

  • Mukhtar H, Ahmad N (1999) Green tea in chemoprevention of cancer. Toxicol Sci 52:111–117

    CAS  CrossRef  Google Scholar 

  • Myers MG (1991) Caffeine and cardiac arrhythmias. Ann Intern Med 114:147–150

    CAS  CrossRef  Google Scholar 

  • Nagao T, Komine Y, Soga S, Meguro S, Hase T, Tanaka Y, Tokimitsu I (2005) Ingestion of a tea rich in catechins leads to a reduction in body fat and malondialdehyde-modified LDL in men. Am J Clin Nutr 81:122–129

    CAS  Google Scholar 

  • Nakagawa K, Okuda S, Miyazawa T (1997) Dose-depended incorporation of tea catechins, (-)-epigallocatechin-3-gallate and (-)-epigallocatechin, into human plasma. Biosci Biotechnol Biochem 61:1981–1985

    CAS  CrossRef  Google Scholar 

  • Nakane H, Ono K (1989) Differential inhibition of HIV reverse transcriptase and various DNA and RNA polymerases by some catechin derivatives. Nucleic Acids Symp Ser 21:115–116

    CAS  Google Scholar 

  • Oguni I, Nasu K, Yamamoto S, Nomura T (1988) The antitumor activity of fresh green tea leaf. Agric Biol Chem 52:1879–1880

    CrossRef  Google Scholar 

  • Okubo T, Juneja LR (1997) Effects of green tea polyphenols on human intestinal microflora. In: Yamamoto T, Juneja LR, Chu DC, Kim M (eds) Chemistry and applications of green tea. CRC, New York, pp 109–121

    Google Scholar 

  • Osawa T, Ochi H, Kawakishi S (1995) The contribution of plant antioxidants to human health. Trends Food Sci Technol 3:75–82

    Google Scholar 

  • Parr AJ, Bolwell GP (2000) Phenols in the plant and in man. The potential for possible nutritional enhancement of the diet by modifying the phenols content or profile. J Sci Agric 80:985–1012

    CAS  CrossRef  Google Scholar 

  • Passmore AP, Kondowe GB, Johnston GD (1987) Renal and cardiovascular effects of caffeine: a dose response study. Clin Sci 72:749–756

    CAS  CrossRef  Google Scholar 

  • Price WE, Spitzer JC (1994) The kinetics of extraction of individual flavanols and caffeine from a Japanese green tea (Sen Cha Uji Tsuyu) as a function of temperature. Food Chem 50:19–23

    CAS  CrossRef  Google Scholar 

  • Ramarathnam N, Osawa T, Ochi H, Kawakishi S (1995) The contribution of plant antioxidants to human health. Trends Food Sci Technol 3:75–82

    CrossRef  Google Scholar 

  • Rechner AR, Kuhnle G, Bremner P, Hubbard GP, Moore KP, Rice-Evans CA (2002) The metabolic fate of dietary polyphenols in humans. Free Radic Biol Med 33:220–235

    CAS  CrossRef  Google Scholar 

  • Rice-Evans CA, Miller NT, Paganga G (1997) Antioxidant properties of phenolic compounds. Trends Plant Sci 4:304–309

    Google Scholar 

  • Riedl KM, Hagerman AE (2001) Tannin-protein complexes as radical scavengers and radical. J Agric Food Chem 49:4917–4923

    CAS  CrossRef  Google Scholar 

  • Roedig-Penman A, Gordon MH (1997) Antioxidant properties of catechins and green tea extracts in model food emulsions. J Agric Food Chem 45:4267–4270

    CAS  CrossRef  Google Scholar 

  • Ryan L, Petit S (2010) Addition of whole, semiskimmed, and skimmed bovine milk reduces the total antioxidant capacity of black tea. Nutr Res 30:14–20

    CAS  CrossRef  Google Scholar 

  • Sadakata S, Fukao A, Hisamichi S (1992) Mortality among female practitioners of Chanoyu (Japanese tea ceremony). Tohoku J Exp Med 166:475–477

    CAS  CrossRef  Google Scholar 

  • Saganuma M, Okabe S, Oniyama M, Tada Y, Ito H, Fujiki H (1998) Wide distribution of (3H) (−)-epicatechin gallate, a cancer chemopreventive tea polyphenol in mouse tissue. Carcinogenesis 19:1771–1776

    CrossRef  Google Scholar 

  • Sakanaka S, Kim M, Taniguchi M, Yamamoto T (1989) Antibacterial substances in Japanese green tea extract against Streptococcus mutans, a cariogenic bacterium. Agric Biol Chem 53:2307–2311

    CAS  Google Scholar 

  • Salah N, Miller NJ, Paganga G, Tijburg L, Bolwell GP, Rice-Evans C (1995) Polyphenolic flavanols as scavengers of aqueous phase radicals and as chain-breaking antioxidants. Arch Biochem Biophys 22:339–346

    CrossRef  Google Scholar 

  • Samotyja U, Gramza A, Małecka M, Korczak J (2004) The use of plant extracts in stabilization of triacylglycerols. III Euro Fed lipid congress: fats and lipids in a changing world, Edinburgh, 5–8 Sept NUHE-32, p 235

    Google Scholar 

  • Sanderson GW (1972) The chemistry of tea and tea manufacturing. In: Runeckles VC (ed) Structural and functional aspects of phytochemistry. Academic Press, New York, pp 247–316

    CrossRef  Google Scholar 

  • Sato T, Miyata G (2000) The nutraceutical benefit, part I: green tea. Nutrition 16:315–317

    CAS  CrossRef  Google Scholar 

  • Sava VM, Yang SM, Hong MY, Yang PC, Huang GS (2001) Isolation and characterization of melanic pigments derived from tea and tea polyphenols. Food Chem 73:177–184

    CAS  CrossRef  Google Scholar 

  • Scalbert A, Williamson G (2000) Dietary intake and bioavailability of polyphenols. J Nutr 130:2073S–2085S

    CAS  Google Scholar 

  • Shimotoyodome A, Haramizu S, Inaba M, Murase T, Tokimitsu I (2005) Exercise and green tea extract stimulate fat oxidation and prevent obesity in mice. Med Sci Sports Exerc 37:1884–1892

    CrossRef  Google Scholar 

  • Smith DM, Dou QP (2001) Green tea induces polyphenols epigallocatechin inhibits DNA replication and consequently induces leukaemia cell apoptosis. Int J Mol Med 7:645–652

    CAS  Google Scholar 

  • Squadriato GL, Peyor WA (1998) Oxidative chemistry of nitric oxide: the roles of superoxide, peroxynitrite and carbon dioxide. Free Radic Biol Med 25:392–403

    CrossRef  Google Scholar 

  • Stagg GV (1974) Chemical changes occurring during the storage of black tea. J Sci Food Agric 25:1015–1034

    CAS  CrossRef  Google Scholar 

  • Stunkard AJ (1996) Current views on obesity. Am J Med 100:230–236

    CAS  CrossRef  Google Scholar 

  • Sung H, Nah J, Chun S, Park H, Yang SE, Min WK (2000) In vivo antioxidant effect of green tea. Eur J Clin Nutr 54:527–529

    CAS  CrossRef  Google Scholar 

  • Swiercz R, Skrzypczak-Jankun E, Merrell MM, Selman HS, Jankun J (1999) Angiostatic activity of synthetic inhibitors of urokinase type plasminogen. Oncol Rep 6:523–526

    CAS  Google Scholar 

  • Takahashi H, Ninomiya M (1997) Metabolism of tea polyphenols. In: Yamamoto T, Juneja LR, Chu DC, Kim M (eds) Chemistry and applications of green tea. CRC, New York, pp 51–60

    Google Scholar 

  • Tanaka T, Mine C, Inoue K, Matsuda M, Kouno I (2002) Synthesis of theaflavin from epicatechin and epigallocatechin by plant homogenates and role of epicatechin quinone in the synthesis and degradation of theaflavin. J Agric Food Chem 50:2142–2148

    CAS  CrossRef  Google Scholar 

  • Tang SZ, Kerry JP, Sheehan D, Buckley DJ, Morrissey PA (2001) Antioxidative effect of dietary tea catechins on lipid oxidation of long-term frozen stored chicken meat. Meat Sci 57:331–336

    CAS  CrossRef  Google Scholar 

  • Tang SZ, Kerry JP, Sheehan D, Buckley DJ (2002) Antioxidative mechanism of tea catechins in chicken meat systems. Food Chem 76:45–51

    CAS  CrossRef  Google Scholar 

  • Thanaraj SNS, Seshardi R (1990) Influence of polyphenol oxidase activity and polyphenol content of tea shoot on quality of black tea. J Sci Food Agric 51:57–69

    CAS  CrossRef  Google Scholar 

  • Tsushida T, Taeko T (1977) Zinc, copper, lead and cadmium contents in green tea. J Sci Food Agric 28:255–258

    CAS  CrossRef  Google Scholar 

  • Unno T, Sugimoto A, Kakuda T (2000) Scavenging effect of tea catechins and their epimers on superoxide anion radicals generated by a hypoxanthine and xanthine oxidase system. J Sci Food Agric 80:601–606

    CAS  CrossRef  Google Scholar 

  • Wanasundara UN, Shahidi F (1994) Stabilization of canola oil with flavonoids. Food Chem 50:393–396

    CAS  CrossRef  Google Scholar 

  • Wanasundara UN, Shahidi F (1996) Stabilization of seal blubber and menhaden oils with green tea. J Am Oil Chem Soc 73:1183–1190

    CAS  CrossRef  Google Scholar 

  • Wang H, Provan GJ, Helliwell K (2000a) Tea flavonoids, their functions, utilization and analysis. Trends Food Sci Technol 11:152–160

    CAS  CrossRef  Google Scholar 

  • Wang LF, Kim DM, Lee CY (2000b) Effects of heat processing and storage on flavanols and sensory qualities of green tea beverage. J Agric Food Chem 48:4227–4232

    CAS  CrossRef  Google Scholar 

  • Weisburger JH (1996) Tea antioxidants and health. In: Cadenas E, Packer L (eds) Handbook of Antioxidants. Marcel Dekker, New York, pp 469–486

    Google Scholar 

  • Weisburger JH (1997) Tea and health: a historical perspective. Cancer Lett 114(1–2):315–317

    CAS  CrossRef  Google Scholar 

  • Weisburger JH, Veliath E, Larios E, Pittman B, Zang E, Hara Y (2002) Tea polyphenols inhibit the formation of mutagens during the cooking of meat. Mutat Res 516:19–22

    CAS  CrossRef  Google Scholar 

  • Woodward M, Tunstall-Pedoe H (1999) Coffee and tea consumption in the Scottish Heart Health Study follow-up: conflicting relations with coronary risk factors, coronary heart disease and all-cause mortality. J Epidemiol Community Health 53:481–487

    CAS  CrossRef  Google Scholar 

  • Wu CD, Wei GX (2002) Tea as a functional food for oral health. Nutrition 18:443–444

    CAS  CrossRef  Google Scholar 

  • Wu C-H, Lu F-H, Chang C-S, Chang T-C, Wang R-H, Chang C-J (2003) Relationship among habitual tea consumption, percent body fat, and body fat distribution. Obes Res 11:1088–1095

    CrossRef  Google Scholar 

  • Yang CS (1999) Tea and health. Nutrition 15:946–949

    CAS  CrossRef  Google Scholar 

  • Yang CS, Landau JM (2000) Effects of tea consumption on nutrition and health. J Nutr 130:2409–2412

    CAS  Google Scholar 

  • Yang CS, Chen L, Lee MJ, Balentine D, Kuo MC, Schantz SP (1998) Blood and urine levels of tea catechins after ingestion of different amounts of green tea by human volunteers. Cancer Epidemiol Biomarkers Prev 7:351–354

    CAS  Google Scholar 

  • Yanishlieva-Maslarowa NV (2001) Inhibiting oxidation. In: Pokorny J, Yanishlieva N, Gordon M (eds) Antioxidants in food—practical applications. CRC, Cambridge, pp 22–70

    CrossRef  Google Scholar 

  • Yanishlieva-Maslarowa NV, Heinonen IM (2001) Sources of natural antioxidants: vegetables, fruits, herbs, spices and teas. In: Pokorny J, Yanishlieva N, Gordon M (eds) Antioxidants in food—practical applications. CRC, Cambridge, pp 210–249

    CrossRef  Google Scholar 

  • Zhu QY, Zhang A, Tsang D, Huang Y, Chen ZY (1997) Stability of green tea catechins. J Agric Food Chem 45:4624–4628

    CAS  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Gramza-Michałowska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gramza-Michałowska, A. (2016). Functional Aspects of Tea Camellia sinensis as Traditional Beverage. In: Kristbergsson, K., Ötles, S. (eds) Functional Properties of Traditional Foods. Integrating Food Science and Engineering Knowledge Into the Food Chain, vol 12. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-7662-8_25

Download citation