Skip to main content

Biofunctionality of Chia (Salvia hispanica L.) Protein Hydrolysates

Part of the Integrating Food Science and Engineering Knowledge Into the Food Chain book series (ISEKI-Food,volume 12)

Abstract

Oxidative stress is produced by an imbalance between oxidizing species and natural antioxidants in the body, thus motivating researchers to search for natural food source antioxidants that may protect the body from free radicals and delay evolution in many chronic diseases. ACE inhibitory and antioxidant peptides from chia (Salvia hispanica) proteins represent sources of health-enhancing components. This suggests that the chia protein hydrolysates produced here with Alcalase®-Flavourzyme®, which exhibit ACE inhibitory activity, are capable of resisting gastrointestinal proteases and are therefore appropriate for application in food systems (e.g., functional foods) aimed at those suffering arterial hypertension disorders.

Keywords

  • Chia
  • Protein hydrolysate
  • ACE inhibitory activity
  • Antioxidant activity

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4899-7662-8_14
  • Chapter length: 8 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-1-4899-7662-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   149.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 14.1

References

  • Ayerza R (2010) Effects of seed color and growing locations on fatty acid content and composition of two chia (Salvia hispanica L.) genotypes. J Am Oil Chem Soc 87:1161–1165

    CAS  CrossRef  Google Scholar 

  • Ayerza R (2011) The seed’s oil content and fatty acid composition of chia (Salvia hispanica L.) var. iztac 1, grown under six tropical ecosystems conditions. Interciencia 36(8):620–624

    Google Scholar 

  • Elias RJ, Kellerby SS, Decker EA (2008) Antioxidant activity of proteins and peptides. Crit Rev Food Sci Nutr 48:430–441

    CAS  CrossRef  Google Scholar 

  • Gilmartin L, Jervis L (2000) Production of cod (Gadus morhua) muscle hydrolysates: influence of combinations of commercial enzyme preparations on hydrolysate peptide size range. J Agric Food Chem 50:5417–5423

    CrossRef  Google Scholar 

  • Hayakari M, Kondo Y, Izumi H (1978) A rapid and simple spectrophotometric assay of angiotensin-converting enzyme. Anal Biochem 84:361–369

    CAS  CrossRef  Google Scholar 

  • Ixtaina VY, Nolasco SM, Tomás MC (2008) Physical properties of chia (Salvia hispanica L.) seeds. Ind Crop Prod 28:286–293

    CrossRef  Google Scholar 

  • Li GH, Qu MR, Wan JZ, You JM (2007) Antihypertensive effect of rice protein hydrolysate with in vitro angiotensin I-converting enzyme inhibitory activity in spontaneously hypertensive rats. Asia Pac J Clin Nutr 16:275–280

    CAS  Google Scholar 

  • Matsufuji H, Matsui T, Seki E, Osajima K, Nakashima M, Osajima Y (1994) Angiotensin I-converting enzyme inhibitory peptides in an alkaline protease hydrolysate derived from sardine muscle. Biosci Biotechnol Biochem 58:2244–2245

    CAS  CrossRef  Google Scholar 

  • Montgomery D (2004) Diseño y análisis de experimentos. Limusa-Wiley, Mexico City

    Google Scholar 

  • Moreira R, Chenlo F, Prieto DM, Torres MD (2010) Water adsorption isotherms of chia (Salvia hispanica L.) seeds. Food Bioprocess Technol 5(3):1077–1082. doi:10.1007/s11947-010-0400-y

    CrossRef  Google Scholar 

  • Nielsen P, Petersen D, Dammann C (2001) Improved method for determining food protein degree of hydrolysis. J Food Sci 66:642–646

    CAS  CrossRef  Google Scholar 

  • Pedroche J, Yust MM, Girón-Calle J, Alaiz M, Millán F, Vioque J (2002) Utilisation of chickpea protein isolates for production of peptides with angiotensin I-converting enzyme (ACE) inhibitory activity. J Sci Food Agric 82:960–965

    CAS  CrossRef  Google Scholar 

  • Pukalskas A, Van Beek T, Venskutonis R, Linssen J, Van Veldhuizen A, Groot A (2002) Identification of radical scavengers in sweet grass (Hierochloe odorata). J Agric Food Chem 50:2914–2919

    CAS  CrossRef  Google Scholar 

  • Segura-Campos MR, Chel-Guerrero LA, Betancur-Ancona DA (2010) Angiotensin I-converting enzyme inhibitory and antioxidant activities of peptide fractions extracted by ultrafiltration of cowpea Vigna unguiculata hydrolysates. J Sci Food Agric 90:2512–2518

    CAS  CrossRef  Google Scholar 

  • Vázquez-Ovando JA, Rosado-Rubio JG, Chel-Guerrero LA, Betancur-Ancona DA (2009) A physicochemical properties of a fibrous fraction from chia (Salvia hispanica L.). LWT-Food Sci Technol 42:168–173

    CrossRef  Google Scholar 

  • Vázquez-Ovando JA, Rosado-Rubio JG, Chel-Guerrero LA, Betancur-Ancona DA (2010) Dry processing of chia (Salvia hispanica L.) flour: chemical and characterization of fiber and protein. CyTA J Food 8(2):117–127

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Abram Betancur-Ancona .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Segura-Campos, M.R., Chel-Guerrero, L.A., Rosado-Rubio, J.G., Betancur-Ancona, D.A. (2016). Biofunctionality of Chia (Salvia hispanica L.) Protein Hydrolysates. In: Kristbergsson, K., Ötles, S. (eds) Functional Properties of Traditional Foods. Integrating Food Science and Engineering Knowledge Into the Food Chain, vol 12. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-7662-8_14

Download citation