Skip to main content

High Cut Off Hemodialysis

  • 1885 Accesses

Abstract

High cut off hemodialysis (HCO-HD) uses a dialyzer membrane that provides significant clearance of molecules up to a molecular weight (MW) of albumin (65 kDa) from blood. The characteristics of the dialyzer are distinct from high-flux HD (HF-HD) and protein-permeable HD (PP-HD), which remove molecules up to a MW of 20 and 25 kDa, respectively. The clinical rationale for HCO-HD is to improve patient outcomes by removing molecules that contribute to a high mortality risk in patients who require dialysis for distinct clinical indications.

The dialyzer was initially developed for use in sepsis syndrome, targeting pro-inflammatory cytokines. It was subsequently repurposed for removal of immunoglobulin free light chains (FLC) in multiple myeloma. Short pilot studies have also been done in patients receiving chronic HD, targeting molecules associated with chronic inflammation.

Several thousand dialysis sessions with HCO-HD have been carried out till date, the large majority of these in patients with multiple myelom (MM). Pilot studies have reported better renal recovery rates than those historically reported for MM and severe acute kidney injury (AKI). Despite high albumin loss, HCO-HD appears well tolerated by patients with MM, and two randomized controlled trials of HCO-HD in MM are now in process. The high albumin loss, however, precludes use of HCO-HD in larger (phase II/III) clinical trials utilizing a chronic HD prescription. This limitation may lead to the development of dialysis membranes with a sharper MW cut off, maintaining high clearance of middle molecules but with less albumin loss than HCO-HD.

Keywords

  • High cut off hemodialysis
  • Molecular weight cut off
  • Sepsis syndrome
  • Acute kidney injury
  • Multiple myeloma
  • End-stage kidney disease
  • Albumin

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4899-7657-4_21
  • Chapter length: 12 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   89.00
Price excludes VAT (USA)
  • ISBN: 978-1-4899-7657-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   119.99
Price excludes VAT (USA)
Hardcover Book
USD   169.99
Price excludes VAT (USA)
Fig. 21.1
Fig. 21.2
Fig. 21.3
Fig. 21.4
Fig. 21.5

References

  1. Davenport A. Membrane designs and composition for hemodialysis, hemofiltration and hemodialfiltration: past, present and future. Minerva Urol Nefrol. 2010;62(1):29–40.

    CAS  PubMed  Google Scholar 

  2. Vanholder R, De Smet R, Glorieux G, Argilés A, Baurmeister U, Brunet P, et al. Review on uremic toxins: classification, concentration, and interindividual variability. Kidney Int. 2003;63(5):1934–43.

    CAS  CrossRef  PubMed  Google Scholar 

  3. Leypoldt JK, Cheung AK. Characterization of molecular transport in artificial kidneys. Artif Organs. 1996;20(5):381–9.

    CAS  CrossRef  PubMed  Google Scholar 

  4. Hwang K-J, Sz P-Y. Effect of membrane pore size on the performance of cross-flow microfiltration of BSA/dextran mixtures. J Membr Sci. 2011;378(1):272–9.

    CAS  CrossRef  Google Scholar 

  5. Bakhshayeshi M, Zhou H, Olsen C, Yuan W, Zydney AL. Understanding dextran retention data for hollow fiber ultrafiltration membranes. J Membr Sci. 2011;385:243–50.

    CrossRef  Google Scholar 

  6. Leypoldt JK, Frigon RP, Henderson LW. Dextran sieving coefficients of hemofiltration membranes. Trans Am Soc Artif Intern Organs. 1983;29:678–83.

    CAS  PubMed  Google Scholar 

  7. Boschetti-de-Fierro A, Voigt M, Storr M, Krause B. Extended characterization of a new class of membranes for blood purification: the high cut-off membranes. Int J Artif Organs. 2013;36(7):455–63.

    CrossRef  PubMed  Google Scholar 

  8. Ronco C, Brendolan A, Feriani M, Milan M, Conz P, Lupi A, et al. A new scintigraphic method to characterize ultrafiltration in hollow fiber dialyzers. Kidney Int. 1992;41(5):1383–93.

    CAS  CrossRef  PubMed  Google Scholar 

  9. Samtleben W, Dengler C, Reinhardt B, Nothdurft A, Lemke HD. Comparison of the new polyethersulfone high-flux membrane DIAPES HF800 with conventional high-flux membranes during on-line haemodiafiltration. Nephrol Dial Transplant. 2003;18(11):2382–6.

    CAS  CrossRef  PubMed  Google Scholar 

  10. Galli F, Benedetti S, Buoncristiani U, Piroddi M, Conte C, Canestrari F, et al. The effect of pmma-based protein-leaking dialyzers on plasma homocysteine levels. Kidney Int. 2003;64(2):748–55.

    CAS  CrossRef  PubMed  Google Scholar 

  11. Vanholder R, Meert N, Schepers E, Glorieux G, Argiles A, Brunet P, et al. Review on uraemic solutes ii—variability in reported concentrations: causes and consequences. Nephrol Dial Transplant. 2007;22(11):3115–21.

    CAS  CrossRef  PubMed  Google Scholar 

  12. Cohen G, Glorieux G, Thornalley P, Schepers E, Meert N, Jankowski J, et al. Review on uraemic toxins III: recommendations for handling uraemic retention solutes in vitro—towards a standardized approach for research on uraemia. Nephrol Dial Transplant. 2007;22(12):3381–90.

    CAS  CrossRef  PubMed  Google Scholar 

  13. Vanholder R, Abou-Deif O, Argiles A, Baurmeister U, Beige J, Brouckaert P, et al. The role of eutox in uremic toxin research. Semin Dial. 2009;22(4):323–8.

    CrossRef  PubMed  Google Scholar 

  14. Hutchison CA, Harding S, Mead G, Goehl H, Storr M, Bradwell A, Cockwell P. Serum free-light chain removal by high cutoff hemodialysis: optimizing removal and supportive care. Artif Organs. 2008;32(12):910–7.

    CrossRef  PubMed  Google Scholar 

  15. Pinsky MR, Vincent JL, Deviere J, Alegre M, Kahn RJ, Dupont E. Serum cytokine levels in human septic shock. Relation to multiple-system organ failure and mortality. Chest. 1993;103(2):565–75.

    CAS  CrossRef  PubMed  Google Scholar 

  16. Heering P, Morgera S, Schmitz FJ, Schmitz G, Willers R, Schultheiss HP, et al. Cytokine removal and cardiovascular hemodynamics in septic patients with continuous venovenous hemofiltration. Intensive Care Med. 1997;23(3):288–96.

    CAS  CrossRef  PubMed  Google Scholar 

  17. Kline JA, Gordon BE, Williams C, Blumenthal S, Watts JA, Diaz-Buxo J. Large-pore hemodialysis in acute endotoxin shock. Crit Care Med. 1999;27(3):588–96.

    CAS  CrossRef  PubMed  Google Scholar 

  18. Uchino S, Bellomo R, Goldsmith D, Davenport P, Cole L, Baldwin I, et al. Super high flux hemofiltration: a new technique for cytokine removal. Intensive Care Med. 2002;28(5):651–5.

    CAS  CrossRef  PubMed  Google Scholar 

  19. Morgera S, Klonower D, Rocktäschel J, Haase M, Priem F, Ziemer S, et al. TNF-alpha elimination with high cut-off haemofilters: a feasible clinical modality for septic patients? Nephrol Dial Transplant. 2003;18(7):1361–9.

    CrossRef  PubMed  Google Scholar 

  20. Morgera S, Haase M, Rocktäschel J, Böhler T, von Heymann C, Vargas-Hein O, et al. High permeability haemofiltration improves peripheral blood mononuclear cell proliferation in septic patients with acute renal failure. Nephrol Dial Transplant. 2003;18(12):2570–6.

    CrossRef  PubMed  Google Scholar 

  21. Bosmann M, Ward PA. The inflammatory response in sepsis. Trends Immunol. 2013;34(3):129–36.

    CAS  CrossRef  PubMed  Google Scholar 

  22. Morgera S, Slowinski T, Melzer C, Sobottke V, Vargas-Hein O, Volk T, et al. Renal replacement therapy with high-cutoff hemofilters: impact of convection and diffusion on cytokine clearances and protein status. Am J Kidney Dis. 2004;43(3):444–53.

    CAS  CrossRef  PubMed  Google Scholar 

  23. Morgera S, Haase M, Kuss T, Vargas-Hein O, Zuckermann-Becker H, Melzer C, et al. Pilot study on the effects of high cutoff hemofiltration on the need for norepinephrine in septic patients with acute renal failure. Crit Care Med. 2006;34(8):2099–104.

    CAS  CrossRef  PubMed  Google Scholar 

  24. Haase M, Bellomo R, Baldwin I, Haase-Fielitz A, Fealy N, Davenport P, et al. Hemodialysis membrane with a high-molecular-weight cutoff and cytokine levels in sepsis complicated by acute renal failure: a phase 1 randomized trial. Am J Kidney Dis. 2007;50(2):296–304.

    CAS  CrossRef  PubMed  Google Scholar 

  25. Haase M, Bellomo R, Morgera S, Baldwin I, Boyce N. High cut-off point membranes in septic acute renal failure: a systematic review. Int J Artif Organs. 2007;30(12):1031–41.

    CAS  PubMed  Google Scholar 

  26. Dimopoulos MA, Delimpasi S, Katodritou E, Vassou A, Kyrtsonis MC, Repousis P, et al. Significant improvement in the survival of patients with multiple myeloma presenting with severe renal impairment after the introduction of novel agents. Ann Oncol. 2014;25(1):195–200.

    CAS  CrossRef  PubMed  Google Scholar 

  27. Stringer S, Basnayake K, Hutchison C, Cockwell P. Recent advances in the pathogenesis and management of cast nephropathy (myeloma kidney). Bone Marrow Res 2011, 493697.

    Google Scholar 

  28. Basnayake K, Stringer SJ, Hutchison CA, Cockwell P. The biology of immunoglobulin free light chains and kidney injury. Kidney Int. 2011;79(12):1289–301.

    CAS  CrossRef  PubMed  Google Scholar 

  29. Kumar SK, Rajkumar SV, Dispenzieri A, Lacy MQ, Hayman SR, Buadi FK, et al. Improved survival in multiple myeloma and the impact of novel therapies. Blood. 2008;111(5):2516–20.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  30. Ludwig H, Beksac M, Blade J, Boccadoro M, Cavenagh J, Cavo M, et al. Current multiple myeloma treatment strategies with novel agents: a european perspective. Oncologist. 2010;15(1):6–25.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  31. Haynes RJ, Read S, Collins GP, Darby SC, Winearls CG. Presentation and survival of patients with severe acute kidney injury and multiple myeloma: a 20-year experience from a single centre. Nephrol Dial Transplant. 2010;25(2):419–26.

    CrossRef  PubMed  Google Scholar 

  32. Tsakiris DJ, Stel VS, Finne P, Fraser E, Heaf J, de Meester J, et al. Incidence and outcome of patients starting renal replacement therapy for end-stage renal disease due to multiple myeloma or light-chain deposit disease: an ERA-EDTA registry study. Nephrol Dial Transplant. 2010;25(4):1200–6.

    CrossRef  PubMed  Google Scholar 

  33. Hutchison CA, Bradwell AR, Cook M, Basnayake K, Basu S, Harding S, et al. Treatment of acute renal failure secondary to multiple myeloma with chemotherapy and extended high cut-off hemodialysis. Clin J Am Soc Nephrol. 2009;4(4):745–54.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  34. Zucchelli P, Pasquali S, Cagnoli L, Ferrari G. Controlled plasma exchange trial in acute renal failure due to multiple myeloma. Kidney Int. 1988;33(6):1175–80.

    CAS  CrossRef  PubMed  Google Scholar 

  35. Johnson WJ, Kyle RA, Pineda AA, O’Brien PC, Holley KE. Treatment of renal failure associated with multiple myeloma. Plasmapheresis, hemodialysis, and chemotherapy. Arch Intern Med. 1990;150(4):863–9.

    CAS  CrossRef  PubMed  Google Scholar 

  36. Clark WF, Stewart AK, Rock GA, Sternbach M, Sutton DM, Barrett BJ, et al. Plasma exchange when myeloma presents as acute renal failure: a randomized, controlled trial. Ann Intern Med. 2005;143(11):777–84.

    CrossRef  PubMed  Google Scholar 

  37. Leung N, Gertz MA, Zeldenrust SR, Rajkumar SV, Dispenzieri A, Fervenza FC, et al. Improvement of cast nephropathy with plasma exchange depends on the diagnosis and on reduction of serum free light chains. Kidney Int. 2008;73(11):1282–8.

    CAS  CrossRef  PubMed  Google Scholar 

  38. Burnette BL, Leung N, Rajkumar SV. Renal improvement in myeloma with bortezomib plus plasma exchange. N Engl J Med. 2011;364(24):2365–6.

    CAS  CrossRef  PubMed  Google Scholar 

  39. Kastritis E, Terpos E, Dimopoulos MA. Current treatments for renal failure due to multiple myeloma. Expert Opin Pharmacother. 2013;14(11):1477–95.

    CAS  CrossRef  PubMed  Google Scholar 

  40. Popat R, Joel S, Oakervee H, Cavenagh J. Bortezomib for multiple myeloma. Expert Opin Pharmacother. 2006;7(10):1337–46.

    CAS  CrossRef  PubMed  Google Scholar 

  41. Takagi K, Kin K, Itoh Y, Enomoto H, Kawai T. Human alpha 1-microglobulin levels in various body fluids. J Clin Pathol. 1980;33(8):786–91.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  42. Ward RA, Greene T, Hartmann B, Samtleben W. Resistance to intercompartmental mass transfer limits beta2-microglobulin removal by post-dilution hemodiafiltration. Kidney Int. 2006;69(8):1431–7.

    CAS  CrossRef  PubMed  Google Scholar 

  43. Cserti C, Haspel R, Stowell C, Dzik W. Light-chain removal by plasmapheresis in myeloma-associated renal failure. Transfusion. 2007;47(3):511–4.

    CAS  CrossRef  PubMed  Google Scholar 

  44. Hutchison CA, Cockwell P, Reid S, Chandler K, Mead GP, Harrison J, et al. Efficient removal of immunoglobulin free light chains by hemodialysis for multiple myeloma: in vitro and in vivo studies. J Am Soc Nephrol. 2007;18(3):886–95.

    CAS  CrossRef  PubMed  Google Scholar 

  45. Ward RA. Protein-leaking membranes for hemodialysis: a new class of membranes in search of an application? J Am Soc Nephrol. 2005;16(8):2421–30.

    CAS  CrossRef  PubMed  Google Scholar 

  46. Kleeberg L, Morgera S, Jakob C, Hocher B, Schneider M, Peters H, et al. Novel renal replacement strategies for the elimination of serum free light chains in patients with kappa light chain nephropathy. Eur J Med Res. 2009;14:47–54.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  47. Peters NO, Laurain E, Cridlig J, Hulin C, Cao-Huu T, Frimat L. Impact of free light chain hemodialysis in myeloma cast nephropathy: a case-control study. Hemodial Int. 2011;15(4):538–45.

    CrossRef  PubMed  Google Scholar 

  48. Heyne N, Denecke B, Guthoff M, Oehrlein K, Kanz L, Haring HU, Weisel KC. Extracorporeal light chain elimination: high cut-off (HCO) hemodialysis parallel to chemotherapy allows for a high proportion of renal recovery in multiple myeloma patients with dialysis-dependent acute kidney injury. Ann Hematol 2011;91:729–35.

    CrossRef  PubMed  Google Scholar 

  49. Martin-Reyes G, Toledo-Rojas R, Torres-de Rueda A, Sola-Moyano E, Blanca-Martos L, Fuentes-Sanchez L, et al. Haemodialysis using high cut-off dialysers for treating acute renal failure in multiple myeloma. Nefrologia. 2012;32(1):35–43.

    PubMed  Google Scholar 

  50. Hutchison CA, Heyne N, Airia P, Schindler R, Zickler D, Cook M, et al. Immunoglobulin free light chain levels and recovery from myeloma kidney on treatment with chemotherapy and high cut-off haemodialysis. Nephrol Dial Transplant. 2012;27(10):3823–8.

    CAS  CrossRef  PubMed  Google Scholar 

  51. Sinisalo M, Silvennoinen R, Wirta O. High cut-off hemodialysis and bortezomib-based therapy to rescue kidneys in myeloma-dependent cast nephropathy. Am J Hematology. 2012;87(6):640.

    CrossRef  Google Scholar 

  52. Borrego-Hinojosa J, Perez-Del Barrio MP, Biechy-Baldan MD, Merino-Garcia E, Sanchez-Perales MC, Garcia-Cortes MJ, et al. Treatment by long haemodialysis sessions with high cut-off filters in myeloma cast nephropathy: our experience. Nefrologia. 2013;33(4):515–23.

    PubMed  Google Scholar 

  53. Khalafallah AA, Loi SW, Love S, Mohamed M, Mace R, Khalil R, et al. Early application of high cut-off haemodialysis for de-novo myeloma nephropathy is associated with long-term dialysis-independency and renal recovery. Mediterr J Hematol Infect Dis. 2013;5(1):e2013007.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  54. Tan J, Lam-Po-Tang M, Hutchison CA, de Zoysa JR. Extended high cut-off haemodialysis for myeloma cast nephropathy in auckland, 2008–2012. Nephrology (Carlton). 2014;19(7):432–5.

    CrossRef  PubMed  Google Scholar 

  55. Harding S, Provot F, Beuscart JB, Cook M, Bradwell AR, Stringer S, et al. Aggregated serum free light chains may prevent adequate removal by high cut-off haemodialysis. Nephrol Dial Transplant. 2011;26(4):1438.

    CAS  CrossRef  PubMed  Google Scholar 

  56. Krieter DH, Devine E, Wanner C, Storr M, Krause B, Lemke HD. Clearance of drugs for multiple myeloma therapy during in vitro high-cutoff hemodialysis. Artif Organs 2014;38:888–93.

    CAS  CrossRef  PubMed  Google Scholar 

  57. Hutchison CA, Cook M, Heyne N, Weisel K, Billingham L, Bradwell A, Cockwell P. European trial of free light chain removal by extended haemodialysis in cast nephropathy (eulite): a randomised control trial. Trials. 2008;9:55.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  58. Naka T, Jones D, Baldwin I, Fealy N, Bates S, Goehl H, et al. Myoglobin clearance by super high-flux hemofiltration in a case of severe rhabdomyolysis: a case report. Crit Care. 2005;9(2):R90.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  59. Heyne N, Guthoff M, Krieger J, Haap M, Häring HU. High cut-off renal replacement therapy for removal of myoglobin in severe rhabdomyolysis and acute kidney injury: a case series. Nephron Clin Pract. 2012;121(3–4):c159–64.

    CAS  CrossRef  PubMed  Google Scholar 

  60. Keir R, Evans ND, Hutchison CA, Vigano MR, Stella A, Fabbrini P, et al. Kinetic modelling of haemodialysis removal of myoglobin in rhabdomyolysis patients. Comput Methods Programs Biomed. 2014;114(3):e29–38.

    CAS  CrossRef  PubMed  Google Scholar 

  61. Ritz E. Atherosclerosis in dialyzed patients. Blood Purif. 2004;22(1):28–37.

    CrossRef  PubMed  Google Scholar 

  62. Barreto DV, Barreto FC, Liabeuf S, Temmar M, Lemke HD, Tribouilloy C, et al. Plasma interleukin-6 is independently associated with mortality in both hemodialysis and pre-dialysis patients with chronic kidney disease. Kidney Int. 2010;77(6):550–6.

    CAS  CrossRef  PubMed  Google Scholar 

  63. Lonnemann G, Novick D, Rubinstein M, Passlick-Deetjen J, Lang D, Dinarello CA. A switch to high-flux helixone membranes reverses suppressed interferon-gamma production in patients on low-flux dialysis. Blood Purif. 2003;21(3):225–31.

    CAS  CrossRef  PubMed  Google Scholar 

  64. Stein G, Franke S, Mahiout A, Schneider S, Sperschneider H, Borst S, Vienken J. Influence of dialysis modalities on serum AGE levels in end-stage renal disease patients. Nephrol Dial Transplant. 2001;16(5):999–1008.

    CAS  CrossRef  PubMed  Google Scholar 

  65. Maduell F, Navarro V, Cruz MC, Torregrosa E, Garcia D, Simon V, Ferrero JA. Osteocalcin and myoglobin removal in on-line hemodiafiltration versus low-and high-flux hemodialysis. Am J Kidney Dis. 2002;40(3):582–9.

    CAS  CrossRef  PubMed  Google Scholar 

  66. Meert N, Eloot S, Schepers E, Lemke HD, Dhondt A, Glorieux G, et al. Comparison of removal capacity of two consecutive generations of high-flux dialysers during different treatment modalities. Nephrol Dial Transplant. 2011;26(8):2624–30.

    CrossRef  PubMed  Google Scholar 

  67. Honda H, Qureshi AR, Heimbürger O, Barany P, Wang K, Pecoits-Filho R, et al. Serum albumin, c-reactive protein, interleukin 6, and fetuin a as predictors of malnutrition, cardiovascular disease, and mortality in patients with ESRD. Am J Kidney Dis. 2006;47(1):139–48.

    CAS  CrossRef  PubMed  Google Scholar 

  68. Kaysen GA, Dubin JA, Müller HG, Mitch WE, Rosales LM, Levin NW. Relationships among inflammation nutrition and physiologic mechanisms establishing albumin levels in hemodialysis patients. Kidney Int. 2002;61(6):2240–9.

    CrossRef  PubMed  Google Scholar 

  69. Haller C. Hypoalbuminemia in renal failure: pathogenesis and therapeutic considerations. Kidney Blood Press Res. 2005;28(5–6):307–10.

    CAS  PubMed  Google Scholar 

  70. Lee D, Haase M, Haase-Fielitz A, Paizis K, Goehl H, Bellomo R. A pilot, randomized, double-blind, cross-over study of high cut-off versus high-flux dialysis membranes. Blood Purif. 2009;28(4):365–72.

    CAS  CrossRef  PubMed  Google Scholar 

  71. Fiedler R, Neugebauer F, Ulrich C, Wienke A, Gromann C, Storr M, et al. Randomized controlled pilot study of 2 weeks’ treatment with high cutoff membrane for hemodialysis patients with elevated c-reactive protein. Artif Organs. 2012;36(10):886–93.

    CAS  CrossRef  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Cockwell MBBCh, MRCP, FRCP, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2016 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Day, C., Cockwell, P. (2016). High Cut Off Hemodialysis. In: Magee, C., Tucker, J., Singh, A. (eds) Core Concepts in Dialysis and Continuous Therapies. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-7657-4_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-7657-4_21

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-7655-0

  • Online ISBN: 978-1-4899-7657-4

  • eBook Packages: MedicineMedicine (R0)