Gene Therapy for Spinal Cord Injury

  • Ioana Goganau
  • Armin Blesch


New insights into the pathophysiological mechanisms that contribute to the limited functional recovery after spinal cord injury (SCI) have led to the development of several novel experimental approaches. Gene therapy is one means to identify and modulate molecular mechanisms that promote plasticity and regeneration in the injured spinal cord. Therapeutic targets that can be pursued by gene delivery include the intrinsic regenerative capacity of injured neurons, the rearrangement of spared circuitry, and extrinsic factors in and around the lesion site limiting axonal regeneration. An increasing number of animal studies have also employed gene therapy in combinatorial treatments to tackle the complexity of injury-induced changes. However, several challenges regarding the efficiency, safety, and regulation of gene expression remain to be addressed. This chapter aims to summarize different strategies for gene transfer after SCI and their translational potential.


Regeneration Plasticity Combinatorial treatments Functional recovery Cell transplantation Viral vectors AAV Lentivirus Retrovirus Regulated gene expression 



This work was supported by the Deutsche Forschungsgemeinschaft (BL414/3-1), EU (IRG268282), International Spinal Research Trust, and the International Foundation for Research in Paraplegia.


  1. 1.
    Giger RJ, Hollis 2nd ER, Tuszynski MH. Guidance molecules in axon regeneration. Cold Spring Harb Perspect Biol. 2010;2:a001867.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Smith DS, Skene JH. A transcription-dependent switch controls competence of adult neurons for distinct modes of axon growth. J Neurosci. 1997;17:646–58.PubMedGoogle Scholar
  3. 3.
    Michaelevski I, Segal-Ruder Y, Rozenbaum M, Medzihradszky KF, Shalem O, Coppola G, et al. Signaling to transcription networks in the neuronal retrograde injury response. Sci Signal. 2010;3:ra53.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Blackmore MG, Moore DL, Smith RP, Goldberg JL, Bixby JL, Lemmon VP. High content screening of cortical neurons identifies novel regulators of axon growth. Mol Cell Neurosci. 2010;44:43–54.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Tuszynski MH, Peterson DA, Ray J, Baird A, Nakahara Y, Gage FH. Fibroblasts genetically modified to produce nerve growth factor induce robust neuritic ingrowth after grafting to the spinal cord. Exp Neurol. 1994;126:1–14.PubMedCrossRefGoogle Scholar
  6. 6.
    Blesch A, Uy HS, Grill RJ, Cheng JG, Patterson PH, Tuszynski MH. Leukemia inhibitory factor augments neurotrophin expression and corticospinal axon growth after adult CNS injury. J Neurosci. 1999;19:3556–66.PubMedGoogle Scholar
  7. 7.
    Himes BT, Liu Y, Solowska JM, Snyder EY, Fischer I, Tessler A. Transplants of cells genetically modified to express neurotrophin-3 rescue axotomized Clarke’s nucleus neurons after spinal cord hemisection in adult rats. J Neurosci Res. 2001;65:549–64.PubMedCrossRefGoogle Scholar
  8. 8.
    Jin Y, Fischer I, Tessler A, Houle JD. Transplants of fibroblasts genetically modified to express BDNF promote axonal regeneration from supraspinal neurons following chronic spinal cord injury. Exp Neurol. 2002;177:265–75.PubMedCrossRefGoogle Scholar
  9. 9.
    Jin Y, Tessler A, Fischer I, Houle JD. Fibroblasts genetically modified to produce BDNF support regrowth of chronically injured serotonergic axons. Neurorehabil Neural Repair. 2000;14:311–7.PubMedCrossRefGoogle Scholar
  10. 10.
    Jones LL, Sajed D, Tuszynski MH. Axonal regeneration through regions of chondroitin sulfate proteoglycan deposition after spinal cord injury: a balance of permissiveness and inhibition. J Neurosci. 2003;23:9276–88.PubMedGoogle Scholar
  11. 11.
    Liu Y, Kim D, Himes BT, Chow SY, Schallert T, Murray M, et al. Transplants of fibroblasts genetically modified to express brain-derived neurotrophic factor promote regeneration of adult rat rubrospinal axons and recovery of forelimb function. J Neurosci. 1999;19:4370–87.PubMedGoogle Scholar
  12. 12.
    Lu P, Blesch A, Tuszynski MH. Neurotrophism without neurotropism: BDNF promotes survival but not growth of lesioned corticospinal neurons. J Comp Neurol. 2001;436:456–70.PubMedCrossRefGoogle Scholar
  13. 13.
    Mitsui T, Fischer I, Shumsky JS, Murray M. Transplants of fibroblasts expressing BDNF and NT-3 promote recovery of bladder and hindlimb function following spinal contusion injury in rats. Exp Neurol. 2005;194:410–31.PubMedCrossRefGoogle Scholar
  14. 14.
    Tobias CA, Shumsky JS, Shibata M, Tuszynski MH, Fischer I, Tessler A, et al. Delayed grafting of BDNF and NT-3 producing fibroblasts into the injured spinal cord stimulates sprouting, partially rescues axotomized red nucleus neurons from loss and atrophy, and provides limited regeneration. Exp Neurol. 2003;184:97–113.PubMedCrossRefGoogle Scholar
  15. 15.
    Grill R, Murai K, Blesch A, Gage FH, Tuszynski MH. Cellular delivery of neurotrophin-3 promotes corticospinal axonal growth and partial functional recovery after spinal cord injury. J Neurosci. 1997;17:5560–72.PubMedGoogle Scholar
  16. 16.
    Grill RJ, Blesch A, Tuszynski MH. Robust growth of chronically injured spinal cord axons induced by grafts of genetically modified NGF-secreting cells. Exp Neurol. 1997;148:444–52.PubMedCrossRefGoogle Scholar
  17. 17.
    Blesch A, Tuszynski MH. Cellular GDNF delivery promotes growth of motor and dorsal column sensory axons after partial and complete spinal cord transection, and induces remyelination. J Comp Neurol. 2003;467:403–17.PubMedCrossRefGoogle Scholar
  18. 18.
    Blesch A, Yang H, Weidner N, Hoang A, Otero D. Axonal responses to cellularly delivered NT-4/5 after spinal cord injury. Mol Cell Neurosci. 2004;27:190–201.PubMedCrossRefGoogle Scholar
  19. 19.
    Brock JH, Rosenzweig ES, Blesch A, Moseanko R, Havton LA, Edgerton VR, et al. Local and remote growth factor effects after primate spinal cord injury. J Neurosci. 2010;30:9728–37.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Lu P, Jones LL, Tuszynski MH. BDNF-expressing marrow stromal cells support extensive axonal growth at sites of spinal cord injury. Exp Neurol. 2005;191:344–60.PubMedCrossRefGoogle Scholar
  21. 21.
    Taylor L, Jones L, Tuszynski MH, Blesch A. Neurotrophin-3 gradients established by lentiviral gene delivery promote short-distance axonal bridging beyond cellular grafts in the injured spinal cord. J Neurosci. 2006;26:9713–21.PubMedCrossRefGoogle Scholar
  22. 22.
    Lu P, Jones LL, Tuszynski MH. Axon regeneration through scars and into sites of chronic spinal cord injury. Exp Neurol. 2007;203:8–21.PubMedCrossRefGoogle Scholar
  23. 23.
    Menei P, Montero-Menei C, Whittemore SR, Bunge RP, Bunge MB. Schwann cells genetically modified to secrete human BDNF promote enhanced axonal regrowth across transected adult rat spinal cord. Eur J Neurosci. 1998;10:607–21.PubMedCrossRefGoogle Scholar
  24. 24.
    Weidner N, Blesch A, Grill RJ, Tuszynski MH. Nerve growth factor-hypersecreting Schwann cell grafts augment and guide spinal cord axonal growth and remyelinate central nervous system axons in a phenotypically appropriate manner that correlates with expression of L1. J Comp Neurol. 1999;413:495–506.PubMedCrossRefGoogle Scholar
  25. 25.
    Tuszynski MH, Weidner N, McCormack M, Miller I, Powell H, Conner J. Grafts of genetically modified Schwann cells to the spinal cord: survival, axon growth, and myelination. Cell Transplant. 1998;7:187–96.PubMedCrossRefGoogle Scholar
  26. 26.
    Kanno H, Pressman Y, Moody A, Berg R, Muir EM, Rogers JH, et al. Combination of engineered Schwann cell grafts to secrete neurotrophin and chondroitinase promotes axonal regeneration and locomotion after spinal cord injury. J Neurosci. 2014;34:1838–55.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Golden KL, Pearse DD, Blits B, Garg MS, Oudega M, Wood PM, et al. Transduced Schwann cells promote axon growth and myelination after spinal cord injury. Exp Neurol. 2007;207:203–17.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Ruitenberg MJ, Plant GW, Hamers FP, Wortel J, Blits B, Dijkhuizen PA, et al. Ex vivo adenoviral vector-mediated neurotrophin gene transfer to olfactory ensheathing glia: effects on rubrospinal tract regeneration, lesion size, and functional recovery after implantation in the injured rat spinal cord. J Neurosci. 2003;23:7045–58.PubMedGoogle Scholar
  29. 29.
    Ruitenberg MJ, Levison DB, Lee SV, Verhaagen J, Harvey AR, Plant GW. NT-3 expression from engineered olfactory ensheathing glia promotes spinal sparing and regeneration. Brain. 2005;128:839–53.PubMedCrossRefGoogle Scholar
  30. 30.
    Cao L, Liu L, Chen ZY, Wang LM, Ye JL, Qiu HY, et al. Olfactory ensheathing cells genetically modified to secrete GDNF to promote spinal cord repair. Brain. 2004;127:535–49.PubMedCrossRefGoogle Scholar
  31. 31.
    Liu Y, Himes BT, Solowska J, Moul J, Chow SY, Park KI, et al. Intraspinal delivery of neurotrophin-3 using neural stem cells genetically modified by recombinant retrovirus. Exp Neurol. 1999;158:9–26.PubMedCrossRefGoogle Scholar
  32. 32.
    Lu P, Jones LL, Snyder EY, Tuszynski MH. Neural stem cells constitutively secrete neurotrophic factors and promote extensive host axonal growth after spinal cord injury. Exp Neurol. 2003;181:115–29.PubMedCrossRefGoogle Scholar
  33. 33.
    Cao Q, Xu XM, Devries WH, Enzmann GU, Ping P, Tsoulfas P, et al. Functional recovery in traumatic spinal cord injury after transplantation of multineurotrophin-expressing glial-restricted precursor cells. J Neurosci. 2005;25:6947–57.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Blits B, Kitay BM, Farahvar A, Caperton CV, Dietrich WD, Bunge MB. Lentiviral vector-mediated transduction of neural progenitor cells before implantation into injured spinal cord and brain to detect their migration, deliver neurotrophic factors and repair tissue. Restor Neurol Neurosci. 2005;23:313–24.PubMedGoogle Scholar
  35. 35.
    Blits B, Dijkhuizen PA, Carlstedt TP, Poldervaart H, Schiemanck S, Boer GJ, et al. Adenoviral vector-mediated expression of a foreign gene in peripheral nerve tissue bridges implanted in the injured peripheral and central nervous system. Exp Neurol. 1999;160:256–67.PubMedCrossRefGoogle Scholar
  36. 36.
    Blits B, Dijkhuizen PA, Boer GJ, Verhaagen J. Intercostal nerve implants transduced with an adenoviral vector encoding neurotrophin-3 promote regrowth of injured rat corticospinal tract fibers and improve hindlimb function. Exp Neurol. 2000;164:25–37.PubMedCrossRefGoogle Scholar
  37. 37.
    Levi-Montalcini R, Hamburger V. Selective growth stimulating effects of mouse sarcoma on the sensory and sympathetic nervous system of the chick embryo. J Exp Zool. 1951;116:321–61.PubMedCrossRefGoogle Scholar
  38. 38.
    Urfer R, Tsoulfas P, Soppet D, Escandon E, Parada LF, Presta LG. The binding epitopes of neurotrophin-3 to its receptors trkC and gp75 and the design of a multifunctional human neurotrophin. EMBO J. 1994;13:5896–909.PubMedPubMedCentralGoogle Scholar
  39. 39.
    Tuszynski MH, Gabriel K, Gage FH, Suhr S, Meyer S, Rosetti A. Nerve growth factor delivery by gene transfer induces differential outgrowth of sensory, motor, and noradrenergic neurites after adult spinal cord injury. Exp Neurol. 1996;137:157–73.PubMedCrossRefGoogle Scholar
  40. 40.
    Courtine G, Song B, Roy RR, Zhong H, Herrmann JE, Ao Y, et al. Recovery of supraspinal control of stepping via indirect propriospinal relay connections after spinal cord injury. Nat Med. 2008;14:69–74.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Deng LX, Deng P, Ruan Y, Xu ZC, Liu NK, Wen X, et al. A novel growth-promoting pathway formed by GDNF-overexpressing Schwann cells promotes propriospinal axonal regeneration, synapse formation, and partial recovery of function after spinal cord injury. J Neurosci. 2013;33:5655–67.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Schnell L, Schneider R, Kolbeck R, Barde YA, Schwab ME. Neurotrophin-3 enhances sprouting of corticospinal tract during development and after adult spinal cord lesion. Nature. 1994;367:170–3.PubMedCrossRefGoogle Scholar
  43. 43.
    Tuszynski MH, Grill R, Jones LL, Brant A, Blesch A, Low K, et al. NT-3 gene delivery elicits growth of chronically injured corticospinal axons and modestly improves functional deficits after chronic scar resection. Exp Neurol. 2003;181:47–56.PubMedCrossRefGoogle Scholar
  44. 44.
    Lynskey JV, Sandhu FA, Dai HN, McAtee M, Slotkin JR, MacArthur L, et al. Delayed intervention with transplants and neurotrophic factors supports recovery of forelimb function after cervical spinal cord injury in adult rats. J Neurotrauma. 2006;23:617–34.PubMedCrossRefGoogle Scholar
  45. 45.
    Giehl KM, Tetzlaff W. BDNF and NT-3, but not NGF, prevent axotomy-induced death of rat corticospinal neurons in vivo. Eur J Neurosci. 1996;8:1167–75.PubMedCrossRefGoogle Scholar
  46. 46.
    Hiebert GW, Khodarahmi K, McGraw J, Steeves JD, Tetzlaff W. Brain-derived neurotrophic factor applied to the motor cortex promotes sprouting of corticospinal fibers but not regeneration into a peripheral nerve transplant. J Neurosci Res. 2002;69:160–8.PubMedCrossRefGoogle Scholar
  47. 47.
    Hollis 2nd ER, Jamshidi P, Low K, Blesch A, Tuszynski MH. Induction of corticospinal regeneration by lentiviral trkB-induced Erk activation. Proc Natl Acad Sci U S A. 2009;106:7215–20.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Ozdinler PH, Macklis JD. IGF-I specifically enhances axon outgrowth of corticospinal motor neurons. Nat Neurosci. 2006;9:1371–81.PubMedCrossRefGoogle Scholar
  49. 49.
    Hollis 2nd ER, Lu P, Blesch A, Tuszynski MH. IGF-I gene delivery promotes corticospinal neuronal survival but not regeneration after adult CNS injury. Exp Neurol. 2009;215:53–9.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Kobayashi NR, Fan DP, Giehl KM, Bedard AM, Wiegand SJ, Tetzlaff W. BDNF and NT-4/5 prevent atrophy of rat rubrospinal neurons after cervical axotomy, stimulate GAP-43 and Talpha1-tubulin mRNA expression, and promote axonal regeneration. J Neurosci. 1997;17:9583–95.PubMedGoogle Scholar
  51. 51.
    Kwon BK, Liu J, Messerer C, Kobayashi NR, McGraw J, Oschipok L, et al. Survival and regeneration of rubrospinal neurons 1 year after spinal cord injury. Proc Natl Acad Sci U S A. 2002;99:3246–51.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Ruitenberg MJ, Blits B, Dijkhuizen PA, te Beek ET, Bakker A, van Heerikhuize JJ, et al. Adeno-associated viral vector-mediated gene transfer of brain-derived neurotrophic factor reverses atrophy of rubrospinal neurons following both acute and chronic spinal cord injury. Neurobiol Dis. 2004;15:394–406.PubMedCrossRefGoogle Scholar
  53. 53.
    Kwon BK, Liu J, Lam C, Plunet W, Oschipok LW, Hauswirth W, et al. Brain-derived neurotrophic factor gene transfer with adeno-associated viral and lentiviral vectors prevents rubrospinal neuronal atrophy and stimulates regeneration-associated gene expression after acute cervical spinal cord injury. Spine. 2007;32:1164–73.PubMedCrossRefGoogle Scholar
  54. 54.
    Abdellatif AA, Pelt JL, Benton RL, Howard RM, Tsoulfas P, Ping P, et al. Gene delivery to the spinal cord: comparison between lentiviral, adenoviral, and retroviral vector delivery systems. J Neurosci Res. 2006;84:553–67.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Huber AB, Ehrengruber MU, Schwab ME, Brosamle C. Adenoviral gene transfer to the injured spinal cord of the adult rat. Eur J Neurosci. 2000;12:3437–42.PubMedCrossRefGoogle Scholar
  56. 56.
    Geller AI, Yu L, Wang Y, Fraefel C. Helper virus-free herpes simplex virus-1 plasmid vectors for gene therapy of Parkinson’s disease and other neurological disorders. Exp Neurol. 1997;144:98–102.PubMedCrossRefGoogle Scholar
  57. 57.
    Buning H, Nicklin SA, Perabo L, Hallek M, Baker AH. AAV-based gene transfer. Curr Opin Mol Ther. 2003;5:367–75.PubMedGoogle Scholar
  58. 58.
    Blomer U, Naldini L, Kafri T, Trono D, Verma IM, Gage FH. Highly efficient and sustained gene transfer in adult neurons with a lentivirus vector. J Virol. 1997;71:6641–9.PubMedPubMedCentralGoogle Scholar
  59. 59.
    Vroemen M, Weidner N, Blesch A. Loss of gene expression in lentivirus- and retrovirus-transduced neural progenitor cells is correlated to migration and differentiation in the adult spinal cord. Exp Neurol. 2005;195:127–39.PubMedCrossRefGoogle Scholar
  60. 60.
    Yanez-Munoz RJ, Balaggan KS, MacNeil A, Howe SJ, Schmidt M, Smith AJ, et al. Effective gene therapy with nonintegrating lentiviral vectors. Nat Med. 2006;12:348–53.PubMedCrossRefGoogle Scholar
  61. 61.
    Peluffo H, Foster E, Ahmed SG, Lago N, Hutson TH, Moon L, et al. Efficient gene expression from integration-deficient lentiviral vectors in the spinal cord. Gene Ther. 2013;20:645–57.PubMedCrossRefGoogle Scholar
  62. 62.
    Banasik MB, McCray Jr PB. Integrase-defective lentiviral vectors: progress and applications. Gene Ther. 2010;17:150–7.PubMedCrossRefGoogle Scholar
  63. 63.
    Saida H, Matsuzaki Y, Takayama K, Iizuka A, Konno A, Yanagi S, et al. One-year follow-up of transgene expression by integrase-defective lentiviral vectors and their therapeutic potential in spinocerebellar ataxia model mice. Gene Ther. 2014;21:820–7.PubMedCrossRefGoogle Scholar
  64. 64.
    Zhou L, Baumgartner BJ, Hill-Felberg SJ, McGowen LR, Shine HD. Neurotrophin-3 expressed in situ induces axonal plasticity in the adult injured spinal cord. J Neurosci. 2003;23:1424–31.PubMedGoogle Scholar
  65. 65.
    Hermens WT, Giger RJ, Holtmaat AJ, Dijkhuizen PA, Houweling DA, Verhaagen J. Transient gene transfer to neurons and glia: analysis of adenoviral vector performance in the CNS and PNS. J Neurosci Methods. 1997;71:85–98.PubMedCrossRefGoogle Scholar
  66. 66.
    Keir SD, Mitchell WJ, Feldman LT, Martin JR. Targeting and gene expression in spinal cord motor neurons following intramuscular inoculation of an HSV-1 vector. J Neurovirol. 1995;1:259–67.PubMedCrossRefGoogle Scholar
  67. 67.
    Berto E, Bozac A, Marconi P. Development and application of replication-incompetent HSV-1-based vectors. Gene Ther. 2005;12 Suppl 1:S98–102.PubMedCrossRefGoogle Scholar
  68. 68.
    Blits B, Derks S, Twisk J, Ehlert E, Prins J, Verhaagen J. Adeno-associated viral vector (AAV)-mediated gene transfer in the red nucleus of the adult rat brain: comparative analysis of the transduction properties of seven AAV serotypes and lentiviral vectors. J Neurosci Methods. 2010;185:257–63.PubMedCrossRefGoogle Scholar
  69. 69.
    Burger C, Gorbatyuk OS, Velardo MJ, Peden CS, Williams P, Zolotukhin S, et al. Recombinant AAV viral vectors pseudotyped with viral capsids from serotypes 1, 2, and 5 display differential efficiency and cell tropism after delivery to different regions of the central nervous system. Mol Ther. 2004;10:302–17.PubMedCrossRefGoogle Scholar
  70. 70.
    Mason MR, Ehlert EM, Eggers R, Pool CW, Hermening S, Huseinovic A, et al. Comparison of AAV serotypes for gene delivery to dorsal root ganglion neurons. Mol Ther. 2010;18:715–24.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Taymans JM, Vandenberghe LH, Haute CV, Thiry I, Deroose CM, Mortelmans L, et al. Comparative analysis of adeno-associated viral vector serotypes 1, 2, 5, 7, and 8 in mouse brain. Hum Gene Ther. 2007;18:195–206.PubMedCrossRefGoogle Scholar
  72. 72.
    Grimm D, Kay MA. From virus evolution to vector revolution: use of naturally occurring serotypes of adeno-associated virus (AAV) as novel vectors for human gene therapy. Curr Gene Ther. 2003;3:281–304.PubMedCrossRefGoogle Scholar
  73. 73.
    Wu Z, Asokan A, Samulski RJ. Adeno-associated virus serotypes: vector toolkit for human gene therapy. Mol Ther. 2006;14:316–27.PubMedCrossRefGoogle Scholar
  74. 74.
    Hollis 2nd ER, Kadoya K, Hirsch M, Samulski RJ, Tuszynski MH. Efficient retrograde neuronal transduction utilizing self-complementary AAV1. Mol Ther. 2008;16:296–301.PubMedCrossRefGoogle Scholar
  75. 75.
    Towne C, Schneider BL, Kieran D, Redmond Jr DE, Aebischer P. Efficient transduction of non-human primate motor neurons after intramuscular delivery of recombinant AAV serotype 6. Gene Ther. 2010;17:141–6.PubMedCrossRefGoogle Scholar
  76. 76.
    Hutson TH, Verhaagen J, Yanez-Munoz RJ, Moon LD. Corticospinal tract transduction: a comparison of seven adeno-associated viral vector serotypes and a non-integrating lentiviral vector. Gene Ther. 2012;19:49–60.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Petrosyan HA, Alessi V, Singh V, Hunanyan AS, Levine JM, Arvanian VL. Transduction efficiency of neurons and glial cells by AAV-1, -5, -9, -rh10 and -hu11 serotypes in rat spinal cord following contusion injury. Gene Ther. 2014;21:991–1000.PubMedCrossRefGoogle Scholar
  78. 78.
    Azzouz M, Le T, Ralph GS, Walmsley L, Monani UR, Lee DC, et al. Lentivector-mediated SMN replacement in a mouse model of spinal muscular atrophy. J Clin Invest. 2004;114:1726–31.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Boulis NM, Noordmans AJ, Song DK, Imperiale MJ, Rubin A, Leone P, et al. Adeno-associated viral vector gene expression in the adult rat spinal cord following remote vector delivery. Neurobiol Dis. 2003;14:535–41.PubMedCrossRefGoogle Scholar
  80. 80.
    Ghadge GD, Roos RP, Kang UJ, Wollmann R, Fishman PS, Kalynych AM, et al. CNS gene delivery by retrograde transport of recombinant replication-defective adenoviruses. Gene Ther. 1995;2:132–7.PubMedGoogle Scholar
  81. 81.
    Wong LF, Azzouz M, Walmsley LE, Askham Z, Wilkes FJ, Mitrophanous KA, et al. Transduction patterns of pseudotyped lentiviral vectors in the nervous system. Mol Ther. 2004;9:101–11.PubMedCrossRefGoogle Scholar
  82. 82.
    Hollis 2nd ER, Jamshidi P, Lorenzana AO, Lee JK, Gray SJ, Samulski RJ, et al. Transient demyelination increases the efficiency of retrograde AAV transduction. Mol Ther. 2010;18(8):1496–500.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Fortun J, Puzis R, Pearse DD, Gage FH, Bunge MB. Muscle injection of AAV-NT3 promotes anatomical reorganization of CST axons and improves behavioral outcome following SCI. J Neurotrauma. 2009;26:941–53.PubMedCrossRefGoogle Scholar
  84. 84.
    Kaspar BK, Llado J, Sherkat N, Rothstein JD, Gage FH. Retrograde viral delivery of IGF-1 prolongs survival in a mouse ALS model. Science. 2003;301:839–42.PubMedCrossRefGoogle Scholar
  85. 85.
    Mazarakis ND, Azzouz M, Rohll JB, Ellard FM, Wilkes FJ, Olsen AL, et al. Rabies virus glycoprotein pseudotyping of lentiviral vectors enables retrograde axonal transport and access to the nervous system after peripheral delivery. Hum Mol Genet. 2001;10:2109–21.PubMedCrossRefGoogle Scholar
  86. 86.
    Zhang Y, Zheng Y, Zhang YP, Shields LB, Hu X, Yu P, et al. Enhanced adenoviral gene delivery to motor and dorsal root ganglion neurons following injection into demyelinated peripheral nerves. J Neurosci Res. 2010;88:2374–84.PubMedCrossRefGoogle Scholar
  87. 87.
    McCarty DM, Fu H, Monahan PE, Toulson CE, Naik P, Samulski RJ. Adeno-associated virus terminal repeat (TR) mutant generates self-complementary vectors to overcome the rate-limiting step to transduction in vivo. Gene Ther. 2003;10:2112–8.PubMedCrossRefGoogle Scholar
  88. 88.
    McCarty DM, Monahan PE, Samulski RJ. Self-complementary recombinant adeno-associated virus (scAAV) vectors promote efficient transduction independently of DNA synthesis. Gene Ther. 2001;8:1248–54.PubMedCrossRefGoogle Scholar
  89. 89.
    Storek B, Harder NM, Banck MS, Wang C, McCarty DM, Janssen WG, et al. Intrathecal long-term gene expression by self-complementary adeno-associated virus type 1 suitable for chronic pain studies in rats. Mol Pain. 2006;2:4.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Storek B, Reinhardt M, Wang C, Janssen WG, Harder NM, Banck MS, et al. Sensory neuron targeting by self-complementary AAV8 via lumbar puncture for chronic pain. Proc Natl Acad Sci U S A. 2008;105:1055–60.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Gray SJ, Blake BL, Criswell HE, Nicolson SC, Samulski RJ, McCown TJ. Directed evolution of a novel adeno-associated virus (AAV) vector that crosses the seizure-compromised blood-brain barrier (BBB). Mol Ther. 2010;18:570–8.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Fouad K, Bennett DJ, Vavrek R, Blesch A. Long-term viral brain-derived neurotrophic factor delivery promotes spasticity in rats with a cervical spinal cord hemisection. Front Neurol. 2013;4:187.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Lu P, Blesch A, Graham L, Wang Y, Samara R, Banos K, et al. Motor axonal regeneration after partial and complete spinal cord transection. J Neurosci. 2012;32:8208–18.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Ma L, Harada T, Harada C, Romero M, Hebert JM, McConnell SK, et al. Neurotrophin-3 is required for appropriate establishment of thalamocortical connections. Neuron. 2002;36:623–34.PubMedCrossRefGoogle Scholar
  95. 95.
    Markus A, Patel TD, Snider WD. Neurotrophic factors and axonal growth. Curr Opin Neurobiol. 2002;12:523–31.PubMedCrossRefGoogle Scholar
  96. 96.
    Marotte LR, Vidovic M, Wheeler E, Jhaveri S. Brain-derived neurotrophic factor is expressed in a gradient in the superior colliculus during development of the retinocollicular projection. Eur J Neurosci. 2004;20:843–7.PubMedCrossRefGoogle Scholar
  97. 97.
    Tucker KL, Meyer M, Barde YA. Neurotrophins are required for nerve growth during development. Nat Neurosci. 2001;4:29–37.PubMedCrossRefGoogle Scholar
  98. 98.
    Tessier-Lavigne M, Goodman CS. The molecular biology of axon guidance. Science. 1996;274:1123–33.PubMedCrossRefGoogle Scholar
  99. 99.
    Blesch A, Tuszynski MH. Transient growth factor delivery sustains regenerated axons after spinal cord injury. J Neurosci. 2007;27:10535–45.PubMedCrossRefGoogle Scholar
  100. 100.
    Hou S, Nicholson L, van Niekerk E, Motsch M, Blesch A. Dependence of regenerated sensory axons on continuous neurotrophin-3 delivery. J Neurosci. 2012;32:13206–20.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Rhim T, Lee DY, Lee M. Hypoxia as a target for tissue specific gene therapy. J Control Release. 2013;172:484–94.PubMedCrossRefGoogle Scholar
  102. 102.
    Kim HJ, Oh JS, An SS, Pennant WA, Gwak SJ, Kim AN, et al. Hypoxia-specific GM-CSF-overexpressing neural stem cells improve graft survival and functional recovery in spinal cord injury. Gene Ther. 2012;19:513–21.PubMedCrossRefGoogle Scholar
  103. 103.
    Panman L, Andersson E, Alekseenko Z, Hedlund E, Kee N, Mong J, et al. Transcription factor-induced lineage selection of stem-cell-derived neural progenitor cells. Cell Stem Cell. 2011;8:663–75.PubMedCrossRefGoogle Scholar
  104. 104.
    Alfa RW, Tuszynski MH, Blesch A. A novel inducible tyrosine kinase receptor to regulate signal transduction and neurite outgrowth. J Neurosci Res. 2009;87:2624–31.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Grusch M, Schelch K, Riedler R, Reichhart E, Differ C, Berger W, et al. Spatio-temporally precise activation of engineered receptor tyrosine kinases by light. EMBO J. 2014;33:1713–26.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Gundersen RW, Barrett JN. Neuronal chemotaxis: chick dorsal-root axons turn toward high concentrations of nerve growth factor. Science. 1979;206:1079–80.PubMedCrossRefGoogle Scholar
  107. 107.
    Hu X, Cai J, Yang J, Smith GM. Sensory axon targeting is increased by NGF gene therapy within the lesioned adult femoral nerve. Exp Neurol. 2010;223:153–65.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Heumann R, Lindholm D, Bandtlow C, Meyer M, Radeke MJ, Misko TP, et al. Differential regulation of mRNA encoding nerve growth factor and its receptor in rat sciatic nerve during development, degeneration, and regeneration: role of macrophages. Proc Natl Acad Sci U S A. 1987;84:8735–9.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Naveilhan P, ElShamy WM, Ernfors P. Differential regulation of mRNAs for GDNF and its receptors Ret and GDNFR alpha after sciatic nerve lesion in the mouse. Eur J Neurosci. 1997;9:1450–60.PubMedCrossRefGoogle Scholar
  110. 110.
    Funakoshi H, Frisen J, Barbany G, Timmusk T, Zachrisson O, Verge VM, et al. Differential expression of mRNAs for neurotrophins and their receptors after axotomy of the sciatic nerve. J Cell Biol. 1993;123:455–65.PubMedCrossRefGoogle Scholar
  111. 111.
    Sendtner M, Stockli KA, Thoenen H. Synthesis and localization of ciliary neurotrophic factor in the sciatic nerve of the adult rat after lesion and during regeneration. J Cell Biol. 1992;118:139–48.PubMedCrossRefGoogle Scholar
  112. 112.
    Trupp M, Belluardo N, Funakoshi H, Ibanez CF. Complementary and overlapping expression of glial cell line-derived neurotrophic factor (GDNF), c-ret proto-oncogene, and GDNF receptor-alpha indicates multiple mechanisms of trophic actions in the adult rat CNS. J Neurosci. 1997;17:3554–67.PubMedGoogle Scholar
  113. 113.
    English AW, Meador W, Carrasco DI. Neurotrophin-4/5 is required for the early growth of regenerating axons in peripheral nerves. Eur J Neurosci. 2005;21:2624–34.PubMedCrossRefGoogle Scholar
  114. 114.
    Geremia NM, Pettersson LM, Hasmatali JC, Hryciw T, Danielsen N, Schreyer DJ, et al. Endogenous BDNF regulates induction of intrinsic neuronal growth programs in injured sensory neurons. Exp Neurol. 2010;223:128–42.PubMedCrossRefGoogle Scholar
  115. 115.
    Zhang JY, Luo XG, Xian CJ, Liu ZH, Zhou XF. Endogenous BDNF is required for myelination and regeneration of injured sciatic nerve in rodents. Eur J Neurosci. 2000;12:4171–80.PubMedGoogle Scholar
  116. 116.
    Zhong J, Dietzel ID, Wahle P, Kopf M, Heumann R. Sensory impairments and delayed regeneration of sensory axons in interleukin-6-deficient mice. J Neurosci. 1999;19:4305–13.PubMedGoogle Scholar
  117. 117.
    Alto LT, Havton LA, Conner JM, Hollis Ii ER, Blesch A, Tuszynski MH. Chemotropic guidance facilitates axonal regeneration and synapse formation after spinal cord injury. Nat Neurosci. 2009;12:1106–13.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Bonner JF, Blesch A, Neuhuber B, Fischer I. Promoting directional axon growth from neural progenitors grafted into the injured spinal cord. J Neurosci Res. 2010;88:1182–92.PubMedPubMedCentralGoogle Scholar
  119. 119.
    Bonner JF, Connors TM, Silverman WF, Kowalski DP, Lemay MA, Fischer I. Grafted neural progenitors integrate and restore synaptic connectivity across the injured spinal cord. J Neurosci. 2011;31:4675–86.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Jin Y, Ziemba KS, Smith GM. Axon growth across a lesion site along a preformed guidance pathway in the brain. Exp Neurol. 2008;210:521–30.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Romero MI, Rangappa N, Li L, Lightfoot E, Garry MG, Smith GM. Extensive sprouting of sensory afferents and hyperalgesia induced by conditional expression of nerve growth factor in the adult spinal cord. J Neurosci. 2000;20:4435–45.PubMedGoogle Scholar
  122. 122.
    Tang XQ, Tanelian DL, Smith GM. Semaphorin3A inhibits nerve growth factor-induced sprouting of nociceptive afferents in adult rat spinal cord. J Neurosci. 2004;24:819–27.PubMedCrossRefGoogle Scholar
  123. 123.
    Ziemba KS, Chaudhry N, Rabchevsky AG, Jin Y, Smith GM. Targeting axon growth from neuronal transplants along preformed guidance pathways in the adult CNS. J Neurosci. 2008;28:340–8.PubMedCrossRefGoogle Scholar
  124. 124.
    Prang P, Muller R, Eljaouhari A, Heckmann K, Kunz W, Weber T, et al. The promotion of oriented axonal regrowth in the injured spinal cord by alginate-based anisotropic capillary hydrogels. Biomaterials. 2006;27:3560–9.PubMedGoogle Scholar
  125. 125.
    Stokols S, Sakamoto J, Breckon C, Holt T, Weiss J, Tuszynski MH. Templated agarose scaffolds support linear axonal regeneration. Tissue Eng. 2006;12:2777–87.PubMedCrossRefGoogle Scholar
  126. 126.
    Straley KS, Foo CW, Heilshorn SC. Biomaterial design strategies for the treatment of spinal cord injuries. J Neurotrauma. 2010;27:1–19.PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Gros T, Sakamoto JS, Blesch A, Havton LA, Tuszynski MH. Regeneration of long-tract axons through sites of spinal cord injury using templated agarose scaffolds. Biomaterials. 2010;31:6719–29.PubMedCrossRefGoogle Scholar
  128. 128.
    Günther M, Motsch M, Weidner N, Müller M, Blesch A. Anisotropic capillary hydrogels with cellular growth factor delivery promote linear axonal growth in the injured spinal cord. Society for Neuroscience Abstract Meeting Planner. 2014:595.10.Google Scholar
  129. 129.
    Fernandes KJ, Fan DP, Tsui BJ, Cassar SL, Tetzlaff W. Influence of the axotomy to cell body distance in rat rubrospinal and spinal motoneurons: differential regulation of GAP-43, tubulins, and neurofilament-M. J Comp Neurol. 1999;414:495–510.PubMedCrossRefGoogle Scholar
  130. 130.
    Goldberg JL, Klassen MP, Hua Y, Barres BA. Amacrine-signaled loss of intrinsic axon growth ability by retinal ganglion cells. Science. 2002;296:1860–4.PubMedCrossRefGoogle Scholar
  131. 131.
    Zhou FQ, Snider WD. Intracellular control of developmental and regenerative axon growth. Philos Trans R Soc Lond B Biol Sci. 2006;361:1575–92.PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Park KK, Liu K, Hu Y, Smith PD, Wang C, Cai B, et al. Promoting axon regeneration in the adult CNS by modulation of the PTEN/mTOR pathway. Science. 2008;322:963–6.PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Costigan M, Befort K, Karchewski L, Griffin RS, D’Urso D, Allchorne A, et al. Replicate high-density rat genome oligonucleotide microarrays reveal hundreds of regulated genes in the dorsal root ganglion after peripheral nerve injury. BMC Neurosci. 2002;3:16.PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Blesch A, Lu P, Tsukada S, Alto LT, Roet K, Coppola G, et al. Conditioning lesions before or after spinal cord injury recruit broad genetic mechanisms that sustain axonal regeneration: superiority to camp-mediated effects. Exp Neurol. 2012;235:162–73.PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Richardson PM, Issa VM. Peripheral injury enhances central regeneration of primary sensory neurones. Nature. 1984;309:791–3.PubMedCrossRefGoogle Scholar
  136. 136.
    Neumann S, Woolf CJ. Regeneration of dorsal column fibers into and beyond the lesion site following adult spinal cord injury. Neuron. 1999;23:83–91.PubMedCrossRefGoogle Scholar
  137. 137.
    Kadoya K, Tsukada S, Lu P, Coppola G, Geschwind D, Filbin M, et al. Combined intrinsic and extrinsic neuronal mechanisms facilitate bridging axonal regeneration one year after spinal cord injury. Neuron. 2009;64:165–72.PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Lu P, Yang H, Jones LL, Filbin MT, Tuszynski MH. Combinatorial therapy with neurotrophins and cAMP promotes axonal regeneration beyond sites of spinal cord injury. J Neurosci. 2004;24:6402–9.PubMedCrossRefGoogle Scholar
  139. 139.
    Neumann S, Bradke F, Tessier-Lavigne M, Basbaum AI. Regeneration of sensory axons within the injured spinal cord induced by intraganglionic cAMP elevation. Neuron. 2002;34:885–93.PubMedCrossRefGoogle Scholar
  140. 140.
    Gao Y, Nikulina E, Mellado W, Filbin MT. Neurotrophins elevate cAMP to reach a threshold required to overcome inhibition by MAG through extracellular signal-regulated kinase-dependent inhibition of phosphodiesterase. J Neurosci. 2003;23:11770–7.PubMedGoogle Scholar
  141. 141.
    Gao Y, Deng K, Hou J, Bryson JB, Barco A, Nikulina E, et al. Activated CREB is sufficient to overcome inhibitors in myelin and promote spinal axon regeneration in vivo. Neuron. 2004;44:609–21.PubMedCrossRefGoogle Scholar
  142. 142.
    Seijffers R, Mills CD, Woolf CJ. ATF3 increases the intrinsic growth state of DRG neurons to enhance peripheral nerve regeneration. J Neurosci. 2007;27:7911–20.PubMedCrossRefGoogle Scholar
  143. 143.
    Seijffers R, Allchorne AJ, Woolf CJ. The transcription factor ATF-3 promotes neurite outgrowth. Mol Cell Neurosci. 2006;32:143–54.PubMedCrossRefGoogle Scholar
  144. 144.
    Qiu J, Cafferty WB, McMahon SB, Thompson SW. Conditioning injury-induced spinal axon regeneration requires signal transducer and activator of transcription 3 activation. J Neurosci. 2005;25:1645–53.PubMedCrossRefGoogle Scholar
  145. 145.
    Cafferty WB, Gardiner NJ, Das P, Qiu J, McMahon SB, Thompson SW. Conditioning injury-induced spinal axon regeneration fails in interleukin-6 knock-out mice. J Neurosci. 2004;24:4432–43.PubMedCrossRefGoogle Scholar
  146. 146.
    Cao Z, Gao Y, Bryson JB, Hou J, Chaudhry N, Siddiq M, et al. The cytokine interleukin-6 is sufficient but not necessary to mimic the peripheral conditioning lesion effect on axonal growth. J Neurosci. 2006;26:5565–73.PubMedCrossRefGoogle Scholar
  147. 147.
    Wu D, Zhang Y, Bo X, Huang W, Xiao F, Zhang X, et al. Actions of neuropoietic cytokines and cyclic AMP in regenerative conditioning of rat primary sensory neurons. Exp Neurol. 2006;204:66–76.PubMedCrossRefGoogle Scholar
  148. 148.
    Parikh P, Hao Y, Hosseinkhani M, Patil SB, Huntley GW, Tessier-Lavigne M, et al. Regeneration of axons in injured spinal cord by activation of bone morphogenetic protein/Smad1 signaling pathway in adult neurons. Proc Natl Acad Sci U S A. 2011;108:E99–107.PubMedPubMedCentralCrossRefGoogle Scholar
  149. 149.
    Wong LF, Yip PK, Battaglia A, Grist J, Corcoran J, Maden M, et al. Retinoic acid receptor beta2 promotes functional regeneration of sensory axons in the spinal cord. Nat Neurosci. 2006;9:243–50.PubMedCrossRefGoogle Scholar
  150. 150.
    Yip PK, Wong LF, Pattinson D, Battaglia A, Grist J, Bradbury EJ, et al. Lentiviral vector expressing retinoic acid receptor beta2 promotes recovery of function after corticospinal tract injury in the adult rat spinal cord. Hum Mol Genet. 2006;15:3107–18.PubMedCrossRefGoogle Scholar
  151. 151.
    Yip PK, Wong LF, Sears TA, Yanez-Munoz RJ, McMahon SB. Cortical overexpression of neuronal calcium sensor-1 induces functional plasticity in spinal cord following unilateral pyramidal tract injury in rat. PLoS Biol. 2010;8:e1000399.PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    Liu K, Lu Y, Lee JK, Samara R, Willenberg R, Sears-Kraxberger I, et al. PTEN deletion enhances the regenerative ability of adult corticospinal neurons. Nat Neurosci. 2010;13:1075–81.PubMedPubMedCentralCrossRefGoogle Scholar
  153. 153.
    Lewandowski G, Steward O. AAVshRNA-mediated suppression of PTEN in adult rats in combination with salmon fibrin administration enables regenerative growth of corticospinal axons and enhances recovery of voluntary motor function after cervical spinal cord injury. J Neurosci. 2014;34:9951–62.PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Sun F, Park KK, Belin S, Wang D, Lu T, Chen G, et al. Sustained axon regeneration induced by co-deletion of PTEN and SOCS3. Nature. 2011;480:372–5.PubMedPubMedCentralCrossRefGoogle Scholar
  155. 155.
    Popovich P, McTigue D. Damage control in the nervous system: beware the immune system in spinal cord injury. Nat Med. 2009;15:736–7.PubMedCrossRefGoogle Scholar
  156. 156.
    Thompson CD, Zurko JC, Hanna BF, Hellenbrand DJ, Hanna A. The therapeutic role of interleukin-10 after spinal cord injury. J Neurotrauma. 2013;30:1311–24.PubMedCrossRefGoogle Scholar
  157. 157.
    Zhou Z, Peng X, Insolera R, Fink DJ, Mata M. IL-10 promotes neuronal survival following spinal cord injury. Exp Neurol. 2009;220:183–90.PubMedPubMedCentralCrossRefGoogle Scholar
  158. 158.
    Lau D, Harte SE, Morrow TJ, Wang S, Mata M, Fink DJ. Herpes simplex virus vector-mediated expression of interleukin-10 reduces below-level central neuropathic pain after spinal cord injury. Neurorehabil Neural Repair. 2012;26:889–97.PubMedPubMedCentralCrossRefGoogle Scholar
  159. 159.
    Milligan ED, Langer SJ, Sloane EM, He L, Wieseler-Frank J, O'Connor K, et al. Controlling pathological pain by adenovirally driven spinal production of the anti-inflammatory cytokine, interleukin-10. Eur J Neurosci. 2005;21:2136–48.PubMedCrossRefGoogle Scholar
  160. 160.
    Silver J, Miller JH. Regeneration beyond the glial scar. Nat Rev Neurosci. 2004;5:146–56.PubMedCrossRefGoogle Scholar
  161. 161.
    Xie F, Zheng B. White matter inhibitors in CNS axon regeneration failure. Exp Neurol. 2008;209:302–12.PubMedPubMedCentralCrossRefGoogle Scholar
  162. 162.
    Massey JM, Amps J, Viapiano MS, Matthews RT, Wagoner MR, Whitaker CM, et al. Increased chondroitin sulfate proteoglycan expression in denervated brainstem targets following spinal cord injury creates a barrier to axonal regeneration overcome by chondroitinase ABC and neurotrophin-3. Exp Neurol. 2008;209:426–45.PubMedPubMedCentralCrossRefGoogle Scholar
  163. 163.
    Hunanyan AS, Petrosyan HA, Alessi V, Arvanian VL. Combination of chondroitinase ABC and AAV-NT3 promotes neural plasticity at descending spinal pathways after thoracic contusion in rats. J Neurophysiol. 2013;110:1782–92.PubMedCrossRefGoogle Scholar
  164. 164.
    Bartus K, James ND, Didangelos A, Bosch KD, Verhaagen J, Yanez-Munoz RJ, et al. Large-scale chondroitin sulfate proteoglycan digestion with chondroitinase gene therapy leads to reduced pathology and modulates macrophage phenotype following spinal cord contusion injury. J Neurosci. 2014;34:4822–36.PubMedPubMedCentralCrossRefGoogle Scholar
  165. 165.
    Zhao RR, Muir EM, Alves JN, Rickman H, Allan AY, Kwok JC, et al. Lentiviral vectors express chondroitinase ABC in cortical projections and promote sprouting of injured corticospinal axons. J Neurosci Methods. 2011;201:228–38.PubMedPubMedCentralCrossRefGoogle Scholar
  166. 166.
    Zhang Y, Zhang X, Wu D, Verhaagen J, Richardson PM, Yeh J, et al. Lentiviral-mediated expression of polysialic acid in spinal cord and conditioning lesion promote regeneration of sensory axons into spinal cord. Mol Ther. 2007;15:1796–804.PubMedCrossRefGoogle Scholar
  167. 167.
    Andrews MR, Czvitkovich S, Dassie E, Vogelaar CF, Faissner A, Blits B, et al. Alpha9 integrin promotes neurite outgrowth on tenascin-C and enhances sensory axon regeneration. J Neurosci. 2009;29:5546–57.PubMedCrossRefGoogle Scholar
  168. 168.
    White RE, Rao M, Gensel JC, McTigue DM, Kaspar BK, Jakeman LB. Transforming growth factor alpha transforms astrocytes to a growth-supportive phenotype after spinal cord injury. J Neurosci. 2011;31:15173–87.PubMedPubMedCentralCrossRefGoogle Scholar
  169. 169.
    Su Z, Niu W, Liu ML, Zou Y, Zhang CL. In vivo conversion of astrocytes to neurons in the injured adult spinal cord. Nat Commun. 2014;5:3338.PubMedPubMedCentralGoogle Scholar
  170. 170.
    Liu Y, Figley S, Spratt SK, Lee G, Ando D, Surosky R, et al. An engineered transcription factor which activates VEGF-A enhances recovery after spinal cord injury. Neurobiol Dis. 2010;37:384–93.PubMedCrossRefGoogle Scholar
  171. 171.
    McTigue DM, Horner PJ, Stokes BT, Gage FH. Neurotrophin-3 and brain-derived neurotrophic factor induce oligodendrocyte proliferation and myelination of regenerating axons in the contused adult rat spinal cord. J Neurosci. 1998;18:5354–65.PubMedGoogle Scholar
  172. 172.
    Ohori Y, Yamamoto S, Nagao M, Sugimori M, Yamamoto N, Nakamura K, et al. Growth factor treatment and genetic manipulation stimulate neurogenesis and oligodendrogenesis by endogenous neural progenitors in the injured adult spinal cord. J Neurosci. 2006;26:11948–60.PubMedCrossRefGoogle Scholar
  173. 173.
    Boyce VS, Park J, Gage FH, Mendell LM. Differential effects of brain-derived neurotrophic factor and neurotrophin-3 on hindlimb function in paraplegic rats. Eur J Neurosci. 2012;35:221–32.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Spinal Cord Injury CenterHeidelberg University HospitalHeidelbergGermany

Personalised recommendations