Skip to main content

Rehabilitation Strategies for Restorative Approaches After Stroke and Neurotrauma

  • Chapter
  • First Online:
Translational Neuroscience

Abstract

For acute, subacute, or chronic stroke, and neurotrauma, a range of rehabilitation strategies will be essential to optimize possible benefits of molecular, cellular, and novel pharmacological restorative approaches. The neurorehabilitation strategies must be chosen to engage the targeted networks of these novel approaches, drawing upon studies of motor and cognitive learning-related neural adaptations that accompany progressive practice. Regulatory agencies and the pharma/biotech industry will need to keep an open mind about the likely synergy that will come from interleaving repair strategies and rehabilitation interventions.

For clinical trials aimed at motor restoration, outcome measurement tools should be relevant to the anticipated targets of repair-enhanced rehabilitation. Most outcomes to date have been drawn from disease-specific and rehabilitation toolboxes. In studies that include participants who are more than a few weeks beyond acquiring profound impairments and disabilities, outcome measures will likely have to go beyond off-the-shelf tools that were not designed to detect modest clinical evidence of sensorimotor system repair. This chapter describes specific rehabilitation strategies and outcome assessments in the context of interfacing them with neurorestoration approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Starkey M, Schwab M. How plastic is the brain after a stroke? Neuroscientist. 2014;20:359–71.

    Article  PubMed  Google Scholar 

  2. Fawcett J. Recovery from spinal cord injury: regeneration, plasticity and rehabilitation. Brain. 2009;132:1417–8.

    Article  PubMed  Google Scholar 

  3. Lima C, Escada P, Pratas-Vital J, Branco C, Arcangeli C, Lazzeri G, Maia C, Capucho C, Hasse-Ferreira A, Peduzzi J. Olfactory mucosal autografts and rehabilitation for chronic traumatic spinal cord injury. Neurorehab Neural Repair. 2010;24:10–22.

    Article  Google Scholar 

  4. Allred R, Kim S, Jones T. Use it or lose it – experience effects on brain remodeling across time after stroke. Front Hum Neurosci. 2014;8:379.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Carmichael ST. Themes and strategies for studying the biology of stroke recovery in the poststroke epoch. Stroke. 2008;39:1380–8.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Dobkin BH. Behavioral, temporal, and spatial targets for cellular transplants as adjuncts to rehabilitation for stroke. Stroke. 2007;38:832–9.

    Article  PubMed  Google Scholar 

  7. Herrmann D, Chopp M. Promoting brain remodelling and plasticity for stroke recovery: therapeutic promise and potential pitfalls of clinical translation. Lancet Neurol. 2012;11:369–80.

    Article  Google Scholar 

  8. Merzenich M, Van Fleet T, Nahum M. Brain plasticity-based therapeutics. Front Hum Neurosci. 2014;8:385.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Cicerone K, Langenbahn D, Braden C, Malec J, Kalmar K, Fraas M, Ashman T. Evidence-based cognitive rehabilitation: updated review of the literature from 2003 through 2008. Arch Phys Med Rehabil. 2011;92:519–30.

    Article  PubMed  Google Scholar 

  10. Dobkin B, Dorsch A. New evidence for therapies in stroke rehabilitation. Curr Atheroscler Rep. 2013;15:331–40.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Dobkin BH. Training and exercise to drive poststroke recovery. Nat Clin Pract Neurol. 2008;4:76–85.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Langhorne P, Bernhardt J, Kwakkel G. Stroke rehabilitation. Lancet. 2011;377:1693–702.

    Article  PubMed  Google Scholar 

  13. Dong Y, Dobkin BH, Cen SY, Wu AD, Winstein CJ. Motor cortex activation during treatment may predict therapeutic gains in paretic hand function after stroke. Stroke. 2006;37:1552–5.

    Article  PubMed  Google Scholar 

  14. Dong Y, Holly L, Albistegui-Dubois R, Yan X, Marehbian J, Newton J, Dobkin B. Compensatory cerebral adaptations before and evolving changes after surgical decompression in cervical spondylotic myelopathy. J Neurosurg Spine. 2008;9:538–51.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Geranmayeh F, Brownsett S, Wise R. Task-induced brain activity in aphasic patients: what is driving recovery? Brain. . 2014;137:2632-48

    Google Scholar 

  16. Ward N, Newton J, Swayne O, Lee L, Thompson A, Greenwood R, Rothwell J, Frackowiak R. Motor system activation after subcortical stroke depends on corticospinal system integrity. Brain. 2006;129:809–19.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Plow E, Cunningham D, Varnerin N, Machado A. Rethinking stimulation of the brain in stroke rehabilitation: why higher motor areas might be better alternatives for patients with greater impairments. Neuroscientist. 2014. Epub. doi:10.1177/1073858414537381

    Google Scholar 

  18. Dobkin B. Motor rehabilitation after stroke, traumatic brain, and spinal cord injury: common denominators within recent clinical trials. Curr Opin Neurol. 2009;22:563–9.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Cotman CW, Berchtold NC, Christie LA. Exercise builds brain health: key roles of growth factor cascades and inflammation. Trends Neurosci. 2007;30:464–72.

    Article  CAS  PubMed  Google Scholar 

  20. Voss M, Erickson K, Prakash R, Chaddock L, Kim J, Alves H, Kramer A. Neurobiological markers of exercise-related brain plasticity in older adults. Brain Behav Immun. 2013;28:90–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Veerbeek J, Van Wegen E, Van Peppen R, Van Der Wees P, Hendriks E, Rietberg M, Kwakkel G. What is the evidence for physical therapy poststroke? A systematic review and meta-analysis. PLoS One. 2014;9:E87987.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Wolf SL, Winstein CJ, Miller JP, Taub E, Uswatte G, Morris D, Giuliani C, Light KE, Nichols-Larsen D. Effect of constraint-induced movement therapy on upper extremity function 3 to 9 months after stroke: the excite randomized clinical trial. JAMA. 2006;296:2095–104.

    Article  CAS  PubMed  Google Scholar 

  23. Smania N, Goandolfi M, Paolucci S, Iosa M. Reduced intensity modified constraint-induced movement therapy versus conventional therapy for upper extremity rehabilitation after stroke. Neurorehabil Neural Repair. 2012;26:1035–45.

    Article  PubMed  Google Scholar 

  24. Mehrholz J, Elsner B, Werner C, Kugler J, Pohl M. Electromechanical-assisted training for walking after stroke: updated evidence. Cochrane Database Syst Rev. 2013;7:Cd006185.

    PubMed  Google Scholar 

  25. Mehrholz J, Hadrich A, Platz T, Kugler J, Pohl M. Electromechanical and robot-assisted arm training for improving generic activities of daily living, arm function, and arm muscle strength after stroke. Cochrane Database Syst Rev. 2012;6:Cd006876.

    PubMed  Google Scholar 

  26. Lo A, Guarino P, Richards L, Haselkorn J, Wittenberg G, Federman D, Ringer R, Peduzzi P. Robot-assisted therapy for long-term upper-limb impairment after stroke. N Engl J Med. 2010;362:1772–83.

    Article  CAS  PubMed  Google Scholar 

  27. Dobkin B, Barbeau H, Deforge D, Ditunno J, Elashoff R, Apple D, Basso M, Behrman A, Harkema S, Saulino M, Scott M. The evolution of walking-related outcomes over the first 12 weeks of rehabilitation for incomplete traumatic spinal cord injury: the multicenter randomized spinal cord injury locomotor trial. Neurorehabil Neural Repair. 2007;21:25–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Perry J, Garrett M, Gronley JK, Mulroy SJ. Classification of walking handicap in the stroke population. Stroke. 1995;26:982–9.

    Article  CAS  PubMed  Google Scholar 

  29. Waters R, Yakura J, Adkins R, Barnes G. Determinants of gait performance following spinal cord injury. Arch Phys Med Rehabil. 1989;70:811–8.

    CAS  PubMed  Google Scholar 

  30. Duncan P, Sullivan K, Behrman A, Azen S, Dobkin B, FTLI Team, et al. Body-weight-supported treadmill rehabilitation program after stroke. N Engl J Med. 2011;364:2026–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Dobkin B, Apple D, Barbeau H, Basso M, Behrman A, Deforge D, Ditunno J, Dudley G, Elashoff R, Fugate L, Harkema S, Saulino M, Scott M, Spinal Cord Injury Locomotor Trial Group. Weight-supported treadmill vs over-ground training for walking after acute incomplete SCI. Neurology. 2006;66:484–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Harkema S, Schmidt-Read M, Lorenz D, Edgerton V, Behrman A. Balance and ambulation improvements in individuals with chronic incomplete spinal cord injury using locomotor training-based rehabilitation. Arch Phys Med Rehabil. 2012;93:1508–17.

    Article  PubMed  Google Scholar 

  33. Dobkin B, Duncan P. Should body weight-supported treadmill training and robotic-assistive steppers for locomotor training trot back to the starting gate? Neurorehabil Neural Repair. 2012;26:308–17.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Elsner B, Kugler J, Pohl M, Mehrholz J. Transcranial direct current stimulation for activities after stroke. Cochrane Database Syst Rev. 2013;11:Cd009645.

    PubMed  Google Scholar 

  35. Hao Z, Wang D, Zeng Y, Liu M. Repetitive transcranial magnetic stimulation for improving function after stroke. Cochrane Database Syst Rev. 2013;5:Cd008862.

    PubMed  Google Scholar 

  36. Lindenberg R, Renga V, Zhu L, Nair D, Schlaug G. Bihemispheric brain stimulation facilitates motor recovery in chronic stroke patients. Neurology. 2010;75:2176–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Massie C, Tracey B, Malcolm M. Functional repetitive transcranial magnetic stimulation increases motor excitability in survivors of stroke. Clin Neurophysiol. 2013;124:371–8.

    Article  PubMed  Google Scholar 

  38. Carmel J, Kimura H, Martin J. Electrical stimulation of motor cortex in the uninjured hemisphere after chronic unilateral injury promotes recovery of skilled locomotion through ipsilateral control. J Neurosci. 2014;34:462–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Dobkin B. Do electrically stimulated sensory inputs and movements lead to long-term plasticity and rehabilitation gains? Curr Opin Neurol. 2003;16:685–92.

    Article  PubMed  Google Scholar 

  40. Angeli C, Edgerton V, Gerasimenko Y, Harkema S. Altering spinal cord excitability enables voluntary movements after complete paralysis in humans. Brain. 2014;137:1394–409.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Thakor N. Trnslating the brain-machine interface. Sci Translat Med. 2013;5:1–7.

    Article  Google Scholar 

  42. Ramos-Murguialday A, Broetz D, Rea M, Laer L, Yilmaz O, Cohen L, Birbaumer N. Brain-machine interface in chronic stroke rehabilitation: a controlled study. Ann Neurol. 2013;74:100–8.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Huang H, Wolf S, He J. Recent developments of biofeedback for neuromotor rehabilitation. J Neuroeng Rehabil. 2006;3.

    Google Scholar 

  44. Subramanian S, Lourenco C, Chilingaryan G, Sveistrup H, Levin M. Arm recovery using a virtual reality intervention in chronic stroke. Neurorehabil Neural Repair. 2012;27:13–23.

    Article  PubMed  Google Scholar 

  45. Thieme H, Mehrholz J, Pohl M, Behrens J, Dohle C. Mirror therapy for improving motor function after stroke. Cochrane Database Syst Rev. 2012;3:Cd008449.

    PubMed  Google Scholar 

  46. Webster D, Celik O. Systematic review of kinect applications in elderly care and stroke rehabilitation. J Neuroeng Rehabil. 2014;11:108.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Wriessnegger S, Steyrl D, Koschutnig K, Muller-Putz G. Short time sports exercise boosts motor imagery patterns: implications of mental practice in rehabilitation programs. Front Hum Neurosci. 2014;8:469.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Chollet F, Tardy J, Albucher J, Thalamas C, Berard E, Lamy C, Pariente J, Loubinoux I. Fluoxetine for motor recovery after acute ischemic stroke (flame): a randomised placebo-controlled trial. Lancet Neurol. 2011;10:123–30.

    Article  CAS  PubMed  Google Scholar 

  49. Wang L, Fink G, Diekhoff S, Rehme A, Eickhoff S, Grefkes C. Noradrenergic enhancement improves motor network connectivity in stroke patients. Ann Neurol. 2011;69:375–88.

    Article  PubMed  Google Scholar 

  50. Cramer S, Bh D, Noser E, Rodriguez R, Enney L. Randomized, placebo-controlled, double-blind study of ropinirole in chronic stroke. Stroke. 2009;40:3034–8.

    Article  CAS  PubMed  Google Scholar 

  51. Sidhu I. Role of catecholaminergic and cholinergic drugs in management of cognitive deficits in adults with traumatci brain injury. J Neurol Neurosurg Psychiat. 2014;85. doi:10.1136/Jnnp-2014-308883.28

    Google Scholar 

  52. Dobkin B, Dorsch A. the promise of mHealth: daily activity monitoring and outcome assessments by wearable sensors. Neurorehabil Neural Repair. 2011;25:788–98.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Dobkin B. Wearable motion sensors to continuously measure real-world activities. Curr Opin Neurol. 2013;26:602–8.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Levin M, Kleim J, Wolf S. What do motor “recovery” and “compensation” mean in patients following stroke? Neurorehabil Neural Repair. 2009;23:313–9.

    Article  CAS  PubMed  Google Scholar 

  55. Dobkin BH. Progressive staging of pilot studies to improve phase iii trials for motor interventions. Neurorehabil Neural Repair. 2009;23:197–206.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Wechsler L, Steindler D, Borlongan C, The Steps Participants. Stem cell therapies as an emerging paradigm in stroke. Stroke. 2009;40:510–5.

    Article  Google Scholar 

  57. Wahl A-S, Schwab M. Finding an optimal rehabilitation paradigm after stroke: enhancing fiber growth and training of the brain at the right moment. Front Hum Neurosci. 2014;8:1–13.

    Article  Google Scholar 

  58. Cramer S, Koroshetz W, Finklestein S. The case for modality-specific outcome measures in clinical trials of stroke recovery-promoting agents. Stroke. 2007;38:1393–5.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce H. Dobkin MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Dobkin, B.H. (2016). Rehabilitation Strategies for Restorative Approaches After Stroke and Neurotrauma. In: Tuszynski, M. (eds) Translational Neuroscience. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-7654-3_28

Download citation

Publish with us

Policies and ethics