Skip to main content

Voltage-Gated Ion Channels as Molecular Targets for Pain

  • Chapter
  • First Online:
Book cover Translational Neuroscience

Abstract

Pain signaling is critically dependent on voltage-gated ion channels that shape the action potential firing properties of peripheral afferents including pain-signaling dorsal root ganglion (DRG) neurons. Dysregulated expression of these critically important ion channels following nerve injury and in response to inflammation and gain-of-function changes in the channels due to mutations produce hyperexcitability which underlies pain. Thus, a major theme in translational research on pain has focused on the search for pharmacological modulators of ion channels, with an emphasis on development of modulators of peripheral channels that do not play major roles in the CNS or heart. This chapter summarizes recent advances on voltage-gated sodium, calcium, and potassium channels that are being explored as molecular targets for the treatment of pain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bourinet E, Altier C, Hildebrand ME, Trang T, Salter MW, Zamponi GW. Calcium-permeable ion channels in pain signaling. Physiol Rev. 2014;94(1):81–140.

    Article  CAS  PubMed  Google Scholar 

  2. Waxman SG, Dib-Hajj S, Cummins TR, Black JA. Sodium channels and pain. Proc Natl Acad Sci U S A. 1999;96(14):7635–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Dib-Hajj SD, Yang Y, Black JA, Waxman SG. The Na(V)1.7 sodium channel: from molecule to man. Nat Rev Neurosci. 2013;14(1):49–62.

    Article  CAS  PubMed  Google Scholar 

  4. Faber CG, Lauria G, Merkies IS, Cheng X, Han C, Ahn HS, et al. Gain-of-function Nav1.8 mutations in painful neuropathy. Proc Natl Acad Sci U S A. 2012;109(47):19444–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Huang JY, Han CY, Estacion M, Vasylyev D, Hoeijmakers JGJ, Gerrits MM, et al. Gain-of-function mutations in sodium channel Na(V)1.9 in painful neuropathy. Brain. 2014;137(Pt 6):1627–42.

    Article  PubMed  Google Scholar 

  6. Waxman SG, Zamponi GW. Regulating excitability of peripheral afferents: emerging ion channel targets. Nat Neurosci. 2014;17(2):153–63.

    Article  CAS  PubMed  Google Scholar 

  7. Toledo-Aral JJ, Moss BL, He ZJ, Koszowski AG, Whisenand T, Levinson SR, et al. Identification of PN1, a predominant voltage-dependent sodium channel expressed principally in peripheral neurons. Proc Natl Acad Sci U S A. 1997;94(4):1527–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rush AM, Dib-Hajj SD, Liu S, Cummins TR, Black JA, Waxman SG. A single sodium channel mutation produces hyper- or hypoexcitability in different types of neurons. Proc Natl Acad Sci U S A. 2006;103(21):8245–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Nassar MA, Stirling LC, Forlani G, Baker MD, Matthews EA, Dickenson AH, et al. Nociceptor-specific gene deletion reveals a major role for Nav1.7 (PN1) in acute and inflammatory pain. Proc Natl Acad Sci U S A. 2004;101(34):12706–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Shields SD, Cheng X, Uceyler N, Sommer C, Dib-Hajj SD, Waxman SG. Sodium channel Na(v)1.7 is essential for lowering heat pain threshold after burn injury. J Neurosci. 2012;32(32):10819–32.

    Article  CAS  PubMed  Google Scholar 

  11. Black JA, Nikolajsen L, Kroner K, Jensen TS, Waxman SG. Multiple sodium channel isoforms and mitogen-activated protein kinases are present in painful human neuromas. Ann Neurol. 2008;64(6):644–53.

    Article  PubMed  Google Scholar 

  12. Minett MS, Nassar MA, Clark AK, Passmore G, Dickenson AH, Wang F, et al. Distinct Nav1.7-dependent pain sensations require different sets of sensory and sympathetic neurons. Nat Commun. 2012;3:791.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Yang Y, Wang Y, Li S, Xu Z, Li H, Ma L, et al. Mutations in SCN9A, encoding a sodium channel alpha subunit, in patients with primary erythermalgia. J Med Genet. 2004;41(3):171–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cummins TR, Dib-Hajj SD, Waxman SG. Electrophysiological properties of mutant Nav1.7 sodium channels in a painful inherited neuropathy. J Neurosci. 2004;24(38):8232–6.

    Article  CAS  PubMed  Google Scholar 

  15. Fertleman CR, Baker MD, Parker KA, Moffatt S, Elmslie FV, Abrahamsen B, et al. SCN9A mutations in paroxysmal extreme pain disorder: allelic variants underlie distinct channel defects and phenotypes. Neuron. 2006;52(5):767–74.

    Article  CAS  PubMed  Google Scholar 

  16. Cox JJ, Reimann F, Nicholas AK, Thornton G, Roberts E, Springell K, et al. An SCN9A channelopathy causes congenital inability to experience pain. Nature. 2006;444(7121):894–8.

    Article  CAS  PubMed  Google Scholar 

  17. Ahmad S, Dahllund L, Eriksson AB, Hellgren D, Karlsson U, Lund PE, et al. A stop codon mutation in SCN9A causes lack of pain sensation. Hum Mol Genet. 2007;16(17):2114–21.

    Article  CAS  PubMed  Google Scholar 

  18. Goldberg YP, MacFarlane J, MacDonald ML, Thompson J, Dube MP, Mattice M, et al. Loss-of-function mutations in the Nav1.7 gene underlie congenital indifference to pain in multiple human populations. Clin Genet. 2007;71(4):311–9.

    Article  CAS  PubMed  Google Scholar 

  19. Estacion M, Harty TP, Choi JS, Tyrrell L, Dib-Hajj SD, Waxman SG. A sodium channel gene SCN9A polymorphism that increases nociceptor excitability. Ann Neurol. 2009;66(6):862–6.

    Article  CAS  PubMed  Google Scholar 

  20. Reimann F, Cox JJ, Belfer I, Diatchenko L, Zaykin DV, McHale DP, et al. Pain perception is altered by a nucleotide polymorphism in SCN9A. Proc Natl Acad Sci U S A. 2010;107(11):5148–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Faber CG, Hoeijmakers JG, Ahn HS, Cheng X, Han C, Choi JS, et al. Gain of function Nav1.7 mutations in idiopathic small fiber neuropathy. Ann Neurol. 2012;71(1):26–39.

    Article  CAS  PubMed  Google Scholar 

  22. Goldberg YP, Price N, Namdari R, Cohen CJ, Lamers MH, Winters C, et al. Treatment of Na(v)1.7-mediated pain in inherited erythromelalgia using a novel sodium channel blocker. Pain. 2012;153(1):80–5.

    Article  CAS  PubMed  Google Scholar 

  23. Weiss J, Pyrski M, Jacobi E, Bufe B, Willnecker V, Schick B, et al. Loss-of-function mutations in sodium channel Nav1.7 cause anosmia. Nature. 2011;472(7342):186–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Black JA, Hoeijmakers JG, Faber CG, Merkies IS, Waxman SG. NaV1.7: stress-induced changes in immunoreactivity within magnocellular neurosecretory neurons of the supraoptic nucleus. Mol Pain. 2013;9:39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yang Y, Dib-Hajj SD, Zhang J, Zhang Y, Tyrrell L, Estacion M, et al. Structural modelling and mutant cycle analysis predict pharmacoresponsiveness of a Na(V)1.7 mutant channel. Nat Commun. 2012;3:1186.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Fischer TZ, Gilmore ES, Estacion M, Eastman E, Taylor S, Melanson M, et al. A novel Nav1.7 mutation producing carbamazepine-responsive erythromelalgia. Ann Neurol. 2009;65(6):733–41.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Akopian AN, Sivilotti L, Wood JN. A tetrodotoxin-resistant voltage-gated sodium channel expressed by sensory neurons. Nature. 1996;379(6562):257–62.

    Article  CAS  PubMed  Google Scholar 

  28. Renganathan M, Cummins TR, Waxman SG. Contribution of Na(v)1.8 sodium channels to action potential electrogenesis in DRG neurons. J Neurophysiol. 2001;86(2):629–40.

    CAS  PubMed  Google Scholar 

  29. Binshtok AM, Wang H, Zimmermann K, Amaya F, Vardeh D, Shi L, et al. Nociceptors are interleukin-1beta sensors. J Neurosci. 2008;28(52):14062–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hudmon A, Choi JS, Tyrrell L, Black JA, Rush AM, Waxman SG, et al. Phosphorylation of sodium channel Na(v)1.8 by p38 mitogen-activated protein kinase increases current density in dorsal root ganglion neurons. J Neurosci. 2008;28(12):3190–201.

    Article  CAS  PubMed  Google Scholar 

  31. Akopian AN, Souslova V, England S, Okuse K, Ogata N, Ure J, et al. The tetrodotoxin-resistant sodium channel SNS has a specialized function in pain pathways. Nat Neurosci. 1999;2(6):541–8.

    Article  CAS  PubMed  Google Scholar 

  32. Jarvis MF, Honore P, Shieh CC, Chapman M, Joshi S, Zhang XF, et al. A-803467, a potent and selective Nav1.8 sodium channel blocker, attenuates neuropathic and inflammatory pain in the rat. Proc Natl Acad Sci U S A. 2007;104(20):8520–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lai J, Gold MS, Kim CS, Bian D, Ossipov MH, Hunter JC, et al. Inhibition of neuropathic pain by decreased expression of the tetrodotoxin-resistant sodium channel, NaV1.8. Pain. 2002;95(1–2):143–52.

    Article  CAS  PubMed  Google Scholar 

  34. Dib-Hajj S, Black JA, Cummins TR, Waxman SG. NaN/Nav1.9: a sodium channel with unique properties. Trends Neurosci. 2002;25(5):253–9.

    Article  CAS  PubMed  Google Scholar 

  35. Baker MD, Chandra SY, Ding Y, Waxman SG, Wood JN. GTP-induced tetrodotoxin-resistant Na + current regulates excitability in mouse and rat small diameter sensory neurones. J Physiol. 2003;548(Pt 2):373–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Herzog RI, Cummins TR, Waxman SG. Persistent TTX-resistant Na + current affects resting potential and response to depolarization in simulated spinal sensory neurons. J Neurophysiol. 2001;86(3):1351–64.

    CAS  PubMed  Google Scholar 

  37. Ostman JA, Nassar MA, Wood JN, Baker MD. GTP up-regulated persistent Na + current and enhanced nociceptor excitability require NaV1.9. J Physiol. 2008;586(4):1077–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Rush AM, Waxman SG. PGE2 increases the tetrodotoxin-resistant Nav1.9 sodium current in mouse DRG neurons via G-proteins. Brain Res. 2004;1023(2):264–71.

    Article  CAS  PubMed  Google Scholar 

  39. Amaya F, Wang H, Costigan M, Allchorne AJ, Hatcher JP, Egerton J, et al. The voltage-gated sodium channel Na(v)1.9 is an effector of peripheral inflammatory pain hypersensitivity. J Neurosci. 2006;26(50):12852–60.

    Article  CAS  PubMed  Google Scholar 

  40. Priest BT, Murphy BA, Lindia JA, Diaz C, Abbadie C, Ritter AM, et al. Contribution of the tetrodotoxin-resistant voltage-gated sodium channel NaV1.9 to sensory transmission and nociceptive behavior. Proc Natl Acad Sci U S A. 2005;102(26):9382–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Craner MJ, Klein JP, Renganathan M, Black JA, Waxman SG. Changes of sodium channel expression in experimental painful diabetic neuropathy. Ann Neurol. 2002;52(6):786–92.

    Article  CAS  PubMed  Google Scholar 

  42. Zhang XY, Wen J, Yang W, Wang C, Gao L, Zheng LH, et al. Gain-of-function mutations in SCN11A cause familial episodic pain. Am J Hum Genet. 2013;93(5):957–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Black JA, Cummins TR, Plumpton C, Chen YH, Hormuzdiar W, Clare JJ, et al. Upregulation of a silent sodium channel after peripheral, but not central, nerve injury in DRG neurons. J Neurophysiol. 1999;82(5):2776–85.

    CAS  PubMed  Google Scholar 

  44. Waxman SG, Kocsis JD, Black JA. Type III sodium channel mRNA is expressed in embryonic but not adult spinal sensory neurons, and is reexpressed following axotomy. J Neurophysiol. 1994;72(1):466–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Cummins TR, Aglieco F, Renganathan M, Herzog RI, Dib-Hajj SD, Waxman SG. Nav1.3 sodium channels: rapid repriming and slow closed-state inactivation display quantitative differences after expression in a mammalian cell line and in spinal sensory neurons. J Neurosci. 2001;21(16):5952–61.

    CAS  PubMed  Google Scholar 

  46. Hains BC, Saab CY, Klein JP, Craner MJ, Waxman SG. Altered sodium channel expression in second-order spinal sensory neurons contributes to pain after peripheral nerve injury. J Neurosci. 2004;24(20):4832–9.

    Article  CAS  PubMed  Google Scholar 

  47. Lindia JA, Kohler MG, Martin WJ, Abbadie C. Relationship between sodium channel NaV1.3 expression and neuropathic pain behavior in rats. Pain. 2005;117(1-2):145–53.

    Article  CAS  PubMed  Google Scholar 

  48. Nassar MA, Baker MD, Levato A, Ingram R, Mallucci G, McMahon SB, et al. Nerve injury induces robust allodynia and ectopic discharges in Nav1.3 null mutant mice. Mol Pain. 2006;2:33.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Samad OA, Tan AM, Cheng X, Foster E, Dib-Hajj SD, Waxman SG. Virus-mediated shRNA knockdown of Na(v)1.3 in rat dorsal root ganglion attenuates nerve injury-induced neuropathic pain. Mol Ther. 2013;21(1):49–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Simms BA, Zamponi GW. Neuronal voltage-gated calcium channels: structure, function, and dysfunction. Neuron. 2014;82(1):24–45.

    Article  CAS  PubMed  Google Scholar 

  51. Wheeler DB, Sather WA, Randall A, Tsien RW. Distinctive properties of a neuronal calcium channel and its contribution to excitatory synaptic transmission in the central nervous system. Adv Second Messenger Phosphoprotein Res. 1994;29:155–71.

    Article  CAS  PubMed  Google Scholar 

  52. Perez-Reyes E. Molecular physiology of low-voltage-activated t-type calcium channels. Physiol Rev. 2003;83(1):117–61.

    Article  CAS  PubMed  Google Scholar 

  53. Catterall WA, Striessnig J, Snutch TP, Perez-Reyes E, International Union of Pharmacology. International Union of Pharmacology. XL. Compendium of voltage-gated ion channels: calcium channels. Pharmacol Rev. 2003;55(4):579–81.

    Article  CAS  PubMed  Google Scholar 

  54. Sheng ZH, Rettig J, Takahashi M, Catterall WA. Identification of a syntaxin-binding site on N-type calcium channels. Neuron. 1994;13(6):1303–13.

    Article  CAS  PubMed  Google Scholar 

  55. Wong FK, Li Q, Stanley EF. Synaptic vesicle capture by CaV2.2 calcium channels. Front Cell Neurosci. 2013;7:101.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Bell TJ, Thaler C, Castiglioni AJ, Helton TD, Lipscombe D. Cell-specific alternative splicing increases calcium channel current density in the pain pathway. Neuron. 2004;41(1):127–38.

    Article  CAS  PubMed  Google Scholar 

  57. Lipscombe D, Raingo J. Alternative splicing matters: N-type calcium channels in nociceptors. Channels (Austin). 2007;1(4):225–7.

    Article  Google Scholar 

  58. Altier C, Dale CS, Kisilevsky AE, Chapman K, Castiglioni AJ, Matthews EA, et al. Differential role of N-type calcium channel splice isoforms in pain. J Neurosci. 2007;27(24):6363–73.

    Article  CAS  PubMed  Google Scholar 

  59. Tedford HW, Zamponi GW. Direct G protein modulation of Cav2 calcium channels. Pharmacol Rev. 2006;58(4):837–62.

    Article  CAS  PubMed  Google Scholar 

  60. Patil PG, de Leon M, Reed RR, Dubel S, Snutch TP, Yue DT. Elementary events underlying voltage-dependent G-protein inhibition of N-type calcium channels. Biophys J. 1996;71(5):2509–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kondo I, Marvizon JC, Song B, Salgado F, Codeluppi S, Hua XY, et al. Inhibition by spinal mu- and delta-opioid agonists of afferent-evoked substance P release. J Neurosci. 2005;25(14):3651–60.

    Article  CAS  PubMed  Google Scholar 

  62. Mizoguchi H, Watanabe C, Sakurada T, Sakurada S. New vistas in opioid control of pain. Curr Opin Pharmacol. 2012;12(1):87–91.

    Article  CAS  PubMed  Google Scholar 

  63. Field MJ, Carnell AJ, Gonzalez MI, McCleary S, Oles RJ, Smith R, et al. Enadoline, a selective kappa-opioid receptor agonist shows potent antihyperalgesic and antiallodynic actions in a rat model of surgical pain. Pain. 1999;80(1–2):383–9.

    Article  CAS  PubMed  Google Scholar 

  64. Mika J, Przewlocki R, Przewlocka B. The role of delta-opioid receptor subtypes in neuropathic pain. Eur J Pharmacol. 2001;415(1):31–7.

    Article  CAS  PubMed  Google Scholar 

  65. Courteix C, Coudore-Civiale MA, Privat AM, Pelissier T, Eschalier A, Fialip J. Evidence for an exclusive antinociceptive effect of nociceptin/orphanin FQ, an endogenous ligand for the ORL1 receptor, in two animal models of neuropathic pain. Pain. 2004;110(1–2):236–45.

    Article  CAS  PubMed  Google Scholar 

  66. Callaghan B, Haythornthwaite A, Berecki G, Clark RJ, Craik DJ, Adams DJ. Analgesic alpha-conotoxins Vc1.1 and Rg1A inhibit N-type calcium channels in rat sensory neurons via GABAB receptor activation. J Neurosci. 2008;28(43):10943–51.

    Article  CAS  PubMed  Google Scholar 

  67. Frater RA, Moores MA, Parry P, Hanning CD. Analgesia-induced respiratory depression: comparison of meptazinol and morphine in the postoperative period. Br J Anaesth. 1989;63(3):260–5.

    Article  CAS  PubMed  Google Scholar 

  68. Smith TH, Grider JR, Dewey WL, Akbarali HI. Morphine decreases enteric neuron excitability via inhibition of sodium channels. PLoS One. 2012;7(9), e45251.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Adams ME, Myers RA, Imperial JS, Olivera BM. Toxityping rat brain calcium channels with omega-toxins from spider and cone snail venoms. Biochemistry. 1993;32(47):12566–70.

    Article  CAS  PubMed  Google Scholar 

  70. Lewis RJ, Nielsen KJ, Craik DJ, Loughnan ML, Adams DA, Sharpe IA, et al. Novel omega-conotoxins from Conus catus discriminate among neuronal calcium channel subtypes. J Biol Chem. 2000;275(45):35335–44.

    Article  CAS  PubMed  Google Scholar 

  71. Feng ZP, Hamid J, Doering C, Bosey GM, Snutch TP, Zamponi GW. Residue Gly1326 of the N-type calcium channel alpha 1B subunit controls reversibility of omega-conotoxin GVIA and MVIIA block. J Biol Chem. 2001;276(19):15728–35.

    Article  CAS  PubMed  Google Scholar 

  72. Xiao WH, Bennett GJ. Synthetic omega-conopeptides applied to the site of nerve injury suppress neuropathic pains in rats. J Pharmacol Exp Ther. 1995;274(2):666–72.

    CAS  PubMed  Google Scholar 

  73. Miljanich GP. Ziconotide: neuronal calcium channel blocker for treating severe chronic pain. Curr Med Chem. 2004;11(23):3029–40.

    Article  CAS  PubMed  Google Scholar 

  74. Staats PS, Yearwood T, Charapata SG, Presley RW, Wallace MS, Byas-Smith M, et al. Intrathecal ziconotide in the treatment of refractory pain in patients with cancer or AIDS: a randomized controlled trial. JAMA. 2004;291(1):63–70.

    Article  CAS  PubMed  Google Scholar 

  75. Schmidtko A, Lotsch J, Freynhagen R, Geisslinger G. Ziconotide for treatment of severe chronic pain. Lancet. 2010;375(9725):1569–77.

    Article  CAS  PubMed  Google Scholar 

  76. Rauck RL, Wallace MS, Burton AW, Kapural L, North JM. Intrathecal ziconotide for neuropathic pain: a review. Pain Pract. 2009;9(5):327–37.

    Article  PubMed  Google Scholar 

  77. Penn RD, Paice JA. Adverse effects associated with the intrathecal administration of ziconotide. Pain. 2000;85(1–2):291–6.

    Article  CAS  PubMed  Google Scholar 

  78. Pajouhesh H, Feng ZP, Zhang L, Pajouhesh H, Jiang X, Hendricson A, et al. Structure-activity relationships of trimethoxybenzyl piperazine N-type calcium channel inhibitors. Bioorg Med Chem Lett. 2012;22(12):4153–8.

    Article  CAS  PubMed  Google Scholar 

  79. Pajouhesh H, Feng ZP, Ding Y, Zhang L, Pajouhesh H, Morrison JL, et al. Structure-activity relationships of diphenylpiperazine N-type calcium channel inhibitors. Bioorg Med Chem Lett. 2010;20(4):1378–83.

    Article  CAS  PubMed  Google Scholar 

  80. Zamponi GW, Feng ZP, Zhang L, Pajouhesh H, Ding Y, Belardetti F, et al. Scaffold-based design and synthesis of potent N-type calcium channel blockers. Bioorg Med Chem Lett. 2009;19(22):6467–72.

    Article  CAS  PubMed  Google Scholar 

  81. Subasinghe NL, Wall MJ, Winters MP, Qin N, Lubin ML, Finley MF, et al. A novel series of pyrazolylpiperidine N-type calcium channel blockers. Bioorg Med Chem Lett. 2012;22(12):4080–3.

    Article  CAS  PubMed  Google Scholar 

  82. Callaghan B, Adams DJ. Analgesic alpha-conotoxins Vc1.1 and RgIA inhibit N-type calcium channels in sensory neurons of alpha9 nicotinic receptor knockout mice. Channels (Austin). 2010;4(1):51–4.

    Article  CAS  Google Scholar 

  83. Napier IA, Klimis H, Rycroft BK, Jin AH, Alewood PF, Motin L, et al. Intrathecal alpha-conotoxins Vc1.1, AuIB and MII acting on distinct nicotinic receptor subtypes reverse signs of neuropathic pain. Neuropharmacology. 2012;62(7):2202–7.

    Article  CAS  PubMed  Google Scholar 

  84. Hendrich J, Van Minh AT, Heblich F, Nieto-Rostro M, Watschinger K, Striessnig J, et al. Pharmacological disruption of calcium channel trafficking by the alpha2delta ligand gabapentin. Proc Natl Acad Sci U S A. 2008;105(9):3628–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Field MJ, Li Z, Schwarz JB. Ca2+ channel alpha2-delta ligands for the treatment of neuropathic pain. J Med Chem. 2007;50(11):2569–75.

    Article  CAS  PubMed  Google Scholar 

  86. Hendrich J, Bauer CS, Dolphin AC. Chronic pregabalin inhibits synaptic transmission between rat dorsal root ganglion and dorsal horn neurons in culture. Channels (Austin). 2012;6(2):124–32.

    Article  CAS  Google Scholar 

  87. Field MJ, Cox PJ, Stott E, Melrose H, Offord J, Su TZ, et al. Identification of the alpha2-delta-1 subunit of voltage-dependent calcium channels as a molecular target for pain mediating the analgesic actions of pregabalin. Proc Natl Acad Sci U S A. 2006;103(46):17537–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Iftinca MC, Zamponi GW. Regulation of neuronal T-type calcium channels. Trends Pharmacol Sci. 2009;30(1):32–40.

    Article  CAS  PubMed  Google Scholar 

  89. Yue J, Liu L, Liu Z, Shu B, Zhang Y. Upregulation of T-type Ca2+ channels in primary sensory neurons in spinal nerve injury. Spine (Phila Pa 1976). 2013;38(6):463–70.

    Article  Google Scholar 

  90. Jacus MO, Uebele VN, Renger JJ, Todorovic SM. Presynaptic Cav3.2 channels regulate excitatory neurotransmission in nociceptive dorsal horn neurons. J Neurosci. 2012;32(27):9374–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Jagodic MM, Pathirathna S, Joksovic PM, Lee W, Nelson MT, Naik AK, et al. Upregulation of the T-type calcium current in small rat sensory neurons after chronic constrictive injury of the sciatic nerve. J Neurophysiol. 2008;99(6):3151–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Marger F, Gelot A, Alloui A, Matricon J, Ferrer JF, Barrere C, et al. T-type calcium channels contribute to colonic hypersensitivity in a rat model of irritable bowel syndrome. Proc Natl Acad Sci U S A. 2011;108(27):11268–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Jagodic MM, Pathirathna S, Nelson MT, Mancuso S, Joksovic PM, Rosenberg ER, et al. Cell-specific alterations of T-type calcium current in painful diabetic neuropathy enhance excitability of sensory neurons. J Neurosci. 2007;27(12):3305–16.

    Article  CAS  PubMed  Google Scholar 

  94. Bourinet E, Alloui A, Monteil A, Barrere C, Couette B, Poirot O, et al. Silencing of the Cav3.2 T-type calcium channel gene in sensory neurons demonstrates its major role in nociception. EMBO J. 2005;24(2):315–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Choi S, Na HS, Kim J, Lee J, Lee S, Kim D, et al. Attenuated pain responses in mice lacking Ca(V)3.2 T-type channels. Genes Brain Behav. 2007;6(5):425–31.

    Article  CAS  PubMed  Google Scholar 

  96. Latham JR, Pathirathna S, Jagodic MM, Choe WJ, Levin ME, Nelson MT, et al. Selective T-type calcium channel blockade alleviates hyperalgesia in ob/ob mice. Diabetes. 2009;58(11):2656–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Choe W, Messinger RB, Leach E, Eckle VS, Obradovic A, Salajegheh R, et al. TTA-P2 is a potent and selective blocker of T-type calcium channels in rat sensory neurons and a novel antinociceptive agent. Mol Pharmacol. 2011;80(5):900–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Francois A, Kerckhove N, Meleine M, Alloui A, Barrere C, Gelot A, et al. State-dependent properties of a new T-type calcium channel blocker enhance Ca(V)3.2 selectivity and support analgesic effects. Pain. 2013;154(2):283–93.

    Article  CAS  PubMed  Google Scholar 

  99. Chemin J, Monteil A, Perez-Reyes E, Nargeot J, Lory P. Direct inhibition of T-type calcium channels by the endogenous cannabinoid anandamide. EMBO J. 2001;20(24):7033–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Chemin J, Nargeot J, Lory P. Chemical determinants involved in anandamide-induced inhibition of T-type calcium channels. J Biol Chem. 2007;282(4):2314–23.

    Article  CAS  PubMed  Google Scholar 

  101. Gadotti VM, You H, Petrov RR, Berger ND, Diaz P, Zamponi GW. Analgesic effect of a mixed T-type channel inhibitor/CB2 receptor agonist. Mol Pain. 2013;9:32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. You H, Gadotti VM, Petrov RR, Zamponi GW, Diaz P. Functional characterization and analgesic effects of mixed cannabinoid receptor/T-type channel ligands. Mol Pain. 2011;7:89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Barbara G, Alloui A, Nargeot J, Lory P, Eschalier A, Bourinet E, et al. T-type calcium channel inhibition underlies the analgesic effects of the endogenous lipoamino acids. J Neurosci. 2009;29(42):13106–14.

    Article  CAS  PubMed  Google Scholar 

  104. Bladen C, Zamponi GW. Common mechanisms of drug interactions with sodium and T-type calcium channels. Mol Pharmacol. 2012;82(3):481–7.

    Article  CAS  PubMed  Google Scholar 

  105. Santi CM, Cayabyab FS, Sutton KG, McRory JE, Mezeyova J, Hamming KS, et al. Differential inhibition of T-type calcium channels by neuroleptics. J Neurosci. 2002;22(2):396–403.

    CAS  PubMed  Google Scholar 

  106. Bladen C, Gunduz MG, Simsek R, Safak C, Zamponi GW. Synthesis and evaluation of 1,4-dihydropyridine derivatives with calcium channel blocking activity. Pflugers Arch. 2014;466(7):1355–63.

    Article  CAS  PubMed  Google Scholar 

  107. Kumar PP, Stotz SC, Paramashivappa R, Beedle AM, Zamponi GW, Rao AS. Synthesis and evaluation of a new class of nifedipine analogs with T-type calcium channel blocking activity. Mol Pharmacol. 2002;61(3):649–58.

    Article  CAS  PubMed  Google Scholar 

  108. Maljevic S, Lerche H. Potassium channels: a review of broadening therapeutic possibilities for neurological diseases. J Neurol. 2013;260(9):2201–11.

    Article  CAS  PubMed  Google Scholar 

  109. Li Y, Um SY, Mcdonald TV. Voltage-gated potassium channels: regulation by accessory subunits. Neuroscientist. 2006;12(3):199–210.

    Article  CAS  PubMed  Google Scholar 

  110. Barghaan J, Tozakidou M, Ehmke H, Bahring R. Role of N-terminal domain and accessory subunits in controlling deactivation-inactivation coupling of Kv4.2 channels. Biophys J. 2008;94(4):1276–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Nockemann D, Rouault M, Labuz D, Hublitz P, McKnelly K, Reis FC, et al. The K channel GIRK2 is both necessary and sufficient for peripheral opioid-mediated analgesia. EMBO Mol Med. 2013;5(8):1263–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Cao XH, Byun HS, Chen SR, Cai YQ, Pan HL. Reduction in voltage-gated K+ channel activity in primary sensory neurons in painful diabetic neuropathy: role of brain-derived neurotrophic factor. J Neurochem. 2010;114(5):1460–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Rasband MN, Park EW, Vanderah TW, Lai J, Porreca F, Trimmer JS. Distinct potassium channels on pain-sensing neurons. Proc Natl Acad Sci U S A. 2001;98(23):13373–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Tsantoulas C, Zhu L, Shaifta Y, Grist J, Ward JP, Raouf R, et al. Sensory neuron downregulation of the Kv9.1 potassium channel subunit mediates neuropathic pain following nerve injury. J Neurosci. 2012;32(48):17502–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Zheng Q, Fang D, Liu M, Cai J, Wan Y, Han JS, et al. Suppression of KCNQ/M (Kv7) potassium channels in dorsal root ganglion neurons contributes to the development of bone cancer pain in a rat model. Pain. 2013;154(3):434–48.

    Article  CAS  PubMed  Google Scholar 

  116. Klein CJ, Lennon VA, Aston PA, McKeon A, Pittock SJ. Chronic pain as a manifestation of potassium channel-complex autoimmunity. Neurology. 2012;79(11):1136–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Zhao X, Tang Z, Zhang H, Atianjoh FE, Zhao JY, Liang L, et al. A long noncoding RNA contributes to neuropathic pain by silencing Kcna2 in primary afferent neurons. Nat Neurosci. 2013;16(8):1024–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Xu W, Wu Y, Bi Y, Tan L, Gan Y, Wang K. Activation of voltage-gated KCNQ/Kv7 channels by anticonvulsant retigabine attenuates mechanical allodynia of inflammatory temporomandibular joint in rats. Mol Pain. 2010;6:49.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Dib-Hajj SD, Rush AM, Cummins TR, Hisama FM, Novella S, Tyrrell L, et al. Gain-of-function mutation in Na(v)1.7 in familial erythromelalgia induces bursting of sensory neurons. Brain. 2005;128(Pt 8):1847–54.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

GWZ is a Canada Research Chair and is supported from grants from the Canadian Institutes of Health Research. SGW is the Bridget M. Flaherty Professor of Neurology, Neurobiology and Pharmacology at Yale and is supported by grants from the Rehabilitation Research Service and Biomedical Laboratory Research Service, Department of Veterans Affairs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen G. Waxman MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Zamponi, G.W., Han, C., Waxman, S.G. (2016). Voltage-Gated Ion Channels as Molecular Targets for Pain. In: Tuszynski, M. (eds) Translational Neuroscience. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-7654-3_22

Download citation

Publish with us

Policies and ethics