Advertisement

Neural Stem Cells for Spinal Cord Injury

Chapter

Abstract

Neural stem cells (NSCs) are potentially attractive cell sources for reconstruction of injured spinal cord circuits. Recent studies demonstrate that NSCs can survive grafting into sites of severe spinal cord injury (SCI) and extend very large numbers of axons over substantial distances, forming synapses with host neurons below sites of injury. Reciprocally, host axons regenerate into the stem cell grafts and form synapses. New synaptic relays are thereby formed across the lesion site, improving functional outcomes even after severe SCI. Additional studies are in progress to establish long-term safety and to scale up grafting methods to the larger primate system. Accordingly, this work is on a translational path.

Keywords

Neural stem cells Spinal cord injury Axonal growth Synaptic connection Neuronal relay 

Notes

Acknowledgements

This work was funded by grants from the Veterans Administration, NIH (NS042291 and EB014986), the Craig H. Neilsen Foundation, the Dr. Miriam and Sheldon G. Adelson Medical Research Foundation, and the California Institute for Regenerative Medicine.

References

  1. 1.
    Ramon Y Cajal S. Degeneration and regeneration of the nerve system. New York: Hafner; 1928.Google Scholar
  2. 2.
    Gage FH, Temple S. Neural stem cells: generating and regenerating the brain. Neuron. 2013;80:588–601.CrossRefPubMedGoogle Scholar
  3. 3.
    Gage FH. Mammalian neural stem cells. Science. 2000;287:1433–8.CrossRefPubMedGoogle Scholar
  4. 4.
    Martello G, Smith A. The nature of embryonic stem cells. Annu Rev Cell Dev Biol. 2014;30:647–75.CrossRefPubMedGoogle Scholar
  5. 5.
    Mayer-Proschel M, Kalyani AJ, Mujtaba T, Rao MS. Isolation of lineage-restricted neuronal precursors from multipotent neuroepithelial stem cells. Neuron. 1997;19:773–85.CrossRefPubMedGoogle Scholar
  6. 6.
    Rao MS, Mayer-Proschel M. Glial-restricted precursors are derived from multipotent neuroepithelial stem cells. Dev Biol. 1997;188:48–63.CrossRefPubMedGoogle Scholar
  7. 7.
    Kim JH, Auerbach JM, Rodríguez-Gómez JA, Velasco I, Gavin D, Lumelsky N, Lee SH, Nguyen J, Sánchez-Pernaute R, Bankiewicz K, McKay R. Dopamine neurons derived from embryonic stem cells function in an animal model of Parkinson's disease. Nature. 2002;418(6893):50–6.CrossRefPubMedGoogle Scholar
  8. 8.
    Liste I, García-García E, Martínez-Serrano A. The generation of dopaminergic neurons by human neural stem cells is enhanced by Bcl-XL, both in vitro and in vivo. J Neurosci. 2004;24:10786–95.CrossRefPubMedGoogle Scholar
  9. 9.
    Fragkouli A, van Wijk NV, Lopes R, Kessaris N, Pachnis V. LIM homeodomain transcription factor-dependent specification of bipotential MGE progenitors into cholinergic and GABAergic striatal interneurons. Development. 2009;136:3841–51.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Gaspard N, Bouschet T, Herpoel A, Naeije G, van den Ameele J, Vanderhaeghen P. Generation of cortical neurons from mouse embryonic stem cells. Nat Protoc. 2009;4:1454–63.CrossRefPubMedGoogle Scholar
  11. 11.
    Bonner JF, Connors TM, Silverman WF, Kowalski DP, Lemay MA, Fischer I. Grafted neural progenitors integrate and restore synaptic connectivity across the injured spinal cord. J Neurosci. 2011;31:4675–86.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Cummings BJ, Uchida N, Tamaki SJ, Salazar DL, Hooshmand M, Summers R, Gage FH, Anderson AJ. Human neural stem cells differentiate and promote locomotor recovery in spinal cord-injured mice. Proc Natl Acad Sci U S A. 2005;102:14069–74.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Lu P, Wang Y, Graham L, McHale K, Gao M, Wu D, Brock J, Blesch A, Rosenzweig ES, Havton LA, Zheng B, Conner JM, Marsala M, Tuszynski MH. Long-distance growth and connectivity of neural stem cells after severe spinal cord injury. Cell. 2012;150:1264–73.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Keirstead HS, Nistor G, Bernal G, Totoiu M, Cloutier F, Sharp K, et al. Human embryonic stem cell-derived oligodendrocyte progenitor cell transplants remyelinate and restore locomotion after spinal cord injury. J Neurosci. 2005;25:4694–705.CrossRefPubMedGoogle Scholar
  15. 15.
    Lu P, Jones LL, Snyder EY, Tuszynski MH. Neural stem cells constitutively secrete neurotrophic factors and promote extensive host axonal growth after spinal cord injury. Exp Neurol. 2003;181:115–29.CrossRefPubMedGoogle Scholar
  16. 16.
    Nori S, Okada Y, Yasuda A, Tsuji O, Takahashi Y, Kobayashi Y, et al. Grafted human-induced pluripotent stem-cell-derived neurospheres promote motor functional recovery after spinal cord injury in mice. Proc Natl Acad Sci U S A. 2011;108:16825–30.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Bregman BS, McAtee M, Dai HN, Kuhn PL. Neurotrophic factors increase axonal growth after spinal cord injury and transplantation in the adult rat. Exp Neurol. 1997;148:475–94.CrossRefPubMedGoogle Scholar
  18. 18.
    Jakeman LB, Reier PJ, Bregman BS, Wade EB, Dailey M, Kastner RJ, Himes BT, Tessler A. Differentiation of substantia gelatinosa-like regions in intraspinal and intracerebral transplants of embryonic spinal cord tissue in the rat. Exp Neurol. 1989;103:17–33.CrossRefPubMedGoogle Scholar
  19. 19.
    Stokes BT, Reier PJ. Fetal grafts alter chronic behavioral outcome after contusion damage to the adult rat spinal cord. Exp Neurol. 1992;116:1–12.CrossRefPubMedGoogle Scholar
  20. 20.
    Bibel M, Richter J, Schrenk K, Tucker KL, Staiger V, Korte M, Goetz M, Barde YA. Differentiation of mouse embryonic stem cells into a defined neuronal lineage. Nat Neurosci. 2004;7(9):1003–9.CrossRefPubMedGoogle Scholar
  21. 21.
    Conti L, Pollard SM, Gorba T, Reitano E, Toselli M, Biella G, Sun Y, Sanzone S, Ying QL, Cattaneo E, Smith A. Niche-independent symmetrical self-renewal of a mammalian tissue stem cell. PLoS Biol. 2005;3(9):e283.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Koch P, Kokaia Z, Lindvall O, Brüstle O. Emerging concepts in neural stem cell research: autologous repair and cell-based disease modelling. Lancet Neurol. 2009;8(9):819–29.CrossRefPubMedGoogle Scholar
  23. 23.
    Lee G, Kim H, Elkabetz Y, Al Shamy G, Panagiotakos G, Barberi T, Tabar V, Studer L. Isolation and directed differentiation of neural crest stem cells derived from human embryonic stem cells. Nat Biotechnol. 2007;25(12):1468–75.CrossRefPubMedGoogle Scholar
  24. 24.
    Li W, Sun W, Zhang Y, Wei W, Ambasudhan R, Xia P, Talantova M, Lin T, Kim J, Wang X, Kim WR, Lipton SA, Zhang K, Ding S. Rapid induction and long-term self-renewal of primitive neural precursors from human embryonic stem cells by small molecule inhibitors. Proc Natl Acad Sci U S A. 2011;108(20):8299–304.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Tropepe V, Hitoshi S, Sirard C, Mak TW, Rossant J, van der Kooy D. Direct neural fate specification from embryonic stem cells: a primitive mammalian neural stem cell stage acquired through a default mechanism. Neuron. 2001;30(1):65–78.CrossRefPubMedGoogle Scholar
  26. 26.
    Castano J, Menendez P, Bruzos-Cidon C, Straccia M, Sousa A, Zabaleta L, Vazquez N, Zubiarrain A, Sonntag KC, Ugedo L, Carvajal-Vergara X, Canals JM, Torrecilla M, Sanchez-Pernaute R, Giorgetti A. Fast and efficient neural conversion of human hematopoietic cells. Stem Cell Rep. 2014;3:1118–31.CrossRefGoogle Scholar
  27. 27.
    Han DW, Tapia N, Hermann A, Hemmer K, Hoing S, Arauzo-Bravo MJ, Zaehres H, Wu G, Frank S, Moritz S, Greber B, Yang JH, Lee HT, Schwamborn JC, Storch A, Scholer HR. Direct reprogramming of fibroblasts into neural stem cells by defined factors. Cell Stem Cell. 2012;10:465–72.CrossRefPubMedGoogle Scholar
  28. 28.
    Kim J, Efe JA, Zhu S, Talantova M, Yuan X, Wang S, Lipton SA, Zhang K, Ding S. Direct reprogramming of mouse fibroblasts to neural progenitors. Proc Natl Acad Sci U S A. 2011;108:7838–43.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Ring KL, Tong LM, Balestra ME, Javier R, Andrews-Zwilling Y, Li G, Walker D, Zhang WR, Kreitzer AC, Huang Y. Direct reprogramming of mouse and human fibroblasts into multipotent neural stem cells with a single factor. Cell Stem Cell. 2012;11:100–9.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Thier M, Worsdorfer P, Lakes YB, Gorris R, Herms S, Opitz T, Seiferling D, Quandel T, Hoffmann P, Nothen MM, Brustle O, Edenhofer F. Direct conversion of fibroblasts into stably expandable neural stem cells. Cell Stem Cell. 2012;10:473–9.CrossRefPubMedGoogle Scholar
  31. 31.
    Mujtaba T, Piper DR, Kalyani A, Groves AK, Lucero MT, Rao MS. Lineage-restricted neural precursors can be isolated from both the mouse neural tube and cultured ES cells. Dev Biol. 1999;214:113–27.CrossRefPubMedGoogle Scholar
  32. 32.
    Alaynick WA, Jessell TM, Pfaff SL. SnapShot: spinal cord development. Cell. 2011;146(1):178–e1.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Diez del Corral R, Storey KG. Markers in vertebrate neurogenesis. Nat Rev Neurosci. 2001;2:835–9.CrossRefPubMedGoogle Scholar
  34. 34.
    Levine AJ, Hinckley CA, Hilde KL, Driscoll SP, Poon TH, Montgomery JM, Pfaff SL. Identification of a cellular node for motor control pathways. Nat Neurosci. 2014;17:586–93.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Yan J, Xu L, Welsh AM, Hatfield G, Hazel T, Johe K, Koliatsos VE. Extensive neuronal differentiation of human neural stem cell grafts in adult rat spinal cord. PLoS Med. 2007;4:e39.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Liu S, Qu Y, Stewart TJ, Howard MJ, Chakrabortty S, Holekamp TF, et al. Embryonic stem cells differentiate into oligodendrocytes and myelinate in culture and after spinal cord transplantation. Proc Natl Acad Sci U S A. 2000;97:6126–31.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Zeng X, Rao MS. Human embryonic stem cells: long term stability, absence of senescence and a potential cell source for neural replacement. Neuroscience. 2007;145:1348–58.CrossRefPubMedGoogle Scholar
  38. 38.
    Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126:663–76.CrossRefPubMedGoogle Scholar
  39. 39.
    Chin MT. Reprogramming cell fate: a changing story. Front Cell Dev Biol. 2014;2:46.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Vierbuchen T, Ostermeier A, Pang ZP, Kokubu Y, Sudhof TC, Wernig M. Direct conversion of fibroblasts to functional neurons by defined factors. Nature. 2010;463:1035–41.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Hu Z, Li T, Zhang X, Chen Y. Hepatocyte growth factor enhances the generation of high-purity oligodendrocytes from human embryonic stem cells. Differentiation. 2009;78:177–84.CrossRefPubMedGoogle Scholar
  42. 42.
    Broughton SK, Chen H, Riddle A, Kuhn SE, Nagalla S, Roberts Jr CT, Back SA. Large-scale generation of highly enriched neural stem-cell-derived oligodendroglial cultures: maturation-dependent differences in insulin-like growth factor-mediated signal transduction. J Neurochem. 2007;100:628–38.CrossRefPubMedGoogle Scholar
  43. 43.
    Fernandez M, Pirondi S, Manservigi M, Giardino L, Calzà L. Thyroid hormone participates in the regulation of neural stem cells and oligodendrocyte precursor cells in the central nervous system of adult rat. Eur J Neurosci. 2004;20:2059–70.CrossRefPubMedGoogle Scholar
  44. 44.
    Sundberg M, Hyysalo A, Skottman H, Shin S, Vemuri M, Suuronen R, Narkilahti S. A xeno-free culturing protocol for pluripotent stem cell-derived oligodendrocyte precursor cell production. Regen Med. 2011;6(4):449–60.CrossRefPubMedGoogle Scholar
  45. 45.
    Himes BT, Goldberger ME, Tessler A. Grafts of fetal central nervous system tissue rescue axotomized Clarke’s nucleus neurons in adult and neonatal operates. J Comp Neurol. 1994;339:117–31.CrossRefPubMedGoogle Scholar
  46. 46.
    Baska KM, Manandhar G, Feng D, Agca Y, Tengowski MW, Sutovsky M, Yi YJ, Sutovsky P. Mechanism of extracellular ubiquitination in the mammalian epididymis. J Cell Physiol. 2008;215:684–96.CrossRefPubMedGoogle Scholar
  47. 47.
    Gaillard A, Prestoz L, Dumartin B, Cantereau A, Morel F, Roger M, Jaber M. Reestablishment of damaged adult motor pathways by grafted embryonic cortical neurons. Nat Neurosci. 2007;10:1294–9.CrossRefPubMedGoogle Scholar
  48. 48.
    Lu P, Blesch A, Graham L, Wang Y, Samara R, Banos K, Haringer V, Havton L, Weishaupt N, Bennett D, Fouad K, Tuszynski MH. Motor axonal regeneration after partial and complete spinal cord transection. J Neurosci. 2012;32:8208–18.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Blesch A, Tuszynski MH. Spinal cord injury: plasticity, regeneration and the challenge of translational drug development. Trends Neurosci. 2009;32:41–7.CrossRefPubMedGoogle Scholar
  50. 50.
    Liu K, Lu Y, Lee JK, Samara R, Willenberg R, Sears-Kraxberger I, Tedeschi A, Park KK, Jin D, Cai B, Xu B, Connolly L, Steward O, Zheng B, He Z. PTEN deletion enhances the regenerative ability of adult corticospinal neurons. Nat Neurosci. 2010;13:1075–81.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Tuszynski MH, Steward O. Concepts and methods for the study of axonal regeneration in the CNS. Neuron. 2012;74:777–91.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Cowan CA, Klimanskaya I, McMahon J, Atienza J, Witmyer J, Zucker JP, Wang S, Morton CC, McMahon AP, Powers D, et al. Derivation of embryonic stem-cell lines from human blastocysts. N Engl J Med. 2004;350:1353–6.CrossRefPubMedGoogle Scholar
  53. 53.
    Lu P, Woodruff G, Wang Y, Graham L, Hunt M, Wu D, Boehle E, Ahmad R, Poplawski G, Brock J, Goldstein LSB, Tuszynski MH. Long-distance axonal growth from human induced pluripotent stem cells after spinal cord injury. Neuron. 2014;83:789–96.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Schomberg D, Miranpuri G, Duellman T, Crowell A, Vemuganti R, Resnick D. Spinal cord injury induced neuropathic pain: molecular targets and therapeutic approaches. Metab Brain Dis. 2015;30:645–58.CrossRefPubMedGoogle Scholar
  55. 55.
    Krassioukov A, Eng JJ, Claxton G, Sakakibara BM, Shum S. Neurogenic bowel management after spinal cord injury: a systematic review of the evidence. Spinal Cord. 2010;48:718–33.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Simpson LA, Eng JJ, Hsieh JT, Wolfe DL. Spinal cord injury rehabilitation evidence scire research team. The health and life priorities of individuals with spinal cord injury: a systematic review. J Neurotrauma. 2012;29:1548–55.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Gunduz H, Binak DF. Autonomic dysreflexia: an important cardiovascular complication in spinal cord injury patients. Cardiol J. 2012;19:215–9.CrossRefPubMedGoogle Scholar
  58. 58.
    Semple BD, Blomgren K, Gimlin K, Ferriero DM, Noble-Haeusslein LJ. Brain development in rodents and humans: identifying benchmarks of maturation and vulnerability to injury across species. Prog Neurobiol. 2013;106–107:1–16.CrossRefPubMedGoogle Scholar
  59. 59.
    Choi HW, Kim JS, Choi S, Hong YJ, Kim MJ, Seo HG, Do JT. Neural stem cells differentiated from iPS cells spontaneously regain pluripotency. Stem Cells. 2014;32:2596–604.CrossRefPubMedGoogle Scholar
  60. 60.
    Koyanagi-Aoi M, Ohnuki M, Takahashi K, Okita K, Noma H, Sawamura Y, Teramoto I, Narita M, Sato Y, Ichisaka T, Amano N, Watanabe A, Morizane A, Yamada Y, Sato T, Takahashi J, Yamanaka S. Differentiation-defective phenotypes revealed by large-scale analyses of human pluripotent stem cells. Proc Natl Acad Sci U S A. 2013;110:20569–74.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Nori S, Okada Y, Nishimura S, Sasaki T, Itakura G, Kobayashi Y, Renault-Mihara F, Shimizu A, Koya I, Yoshida R, Kudoh J, Koike M, Uchiyama Y, Ikeda E, Toyama Y, Nakamura M, Okano H. Long-term safety issues of iPSC-based cell therapy in a spinal cord injury model: oncogenic transformation with epithelial-mesenchymal transition. Stem Cell Rep. 2015;4:360–73.CrossRefGoogle Scholar
  62. 62.
    Oliveira PH, da Silva CL, Cabral JM. Concise review: genomic instability in human stem cells: current status and future challenges. Stem Cells. 2014;32:2824–32.CrossRefPubMedGoogle Scholar
  63. 63.
    Cummings BJ, Uchida N, Tamaki SJ, Anderson AJ. Human neural stem cell differentiation following transplantation into spinal cord injured mice: association with recovery of locomotor function. Neurol Res. 2006;28:474–81.CrossRefPubMedGoogle Scholar
  64. 64.
    Marsala M, Kakinohana O, Yaksh TL, Tomori Z, Marsala S, Cizkova D. Spinal implantation of hNT neurons and neuronal precursors: graft survival and functional effects in rats with ischemic spastic paraplegia. Eur J Neurosci. 2004;20:2401–14.CrossRefPubMedGoogle Scholar
  65. 65.
    Sakai K, Yamamoto A, Matsubara K, Nakamura S, Naruse M, Yamagata M, Sakamoto K, Tauchi R, Wakao N, Imagama S, Hibi H, Kadomatsu K, Ishiguro N, Ueda M. Human dental pulp-derived stem cells promote locomotor recovery after complete transection of the rat spinal cord by multiple neuro-regenerative mechanisms. J Clin Invest. 2012;122:80–90.PubMedPubMedCentralGoogle Scholar
  66. 66.
    Fawcett JW, Curt A, Steeves JD, Coleman WP, Tuszynski MH, Lammertse D, Bartlett PF, Blight AR, Dietz V, Ditunno J, Dobkin BH, Havton LA, Ellaway PH, Fehlings MG, Privat A, Grossman R, Guest JD, Kleitman N, Nakamura M, Gaviria M, Short D. Guidelines for the conduct of clinical trials for spinal cord injury as developed by the ICCP panel: spontaneous recovery after spinal cord injury and statistical power needed for therapeutic clinical trials. Spinal Cord. 2007;45:190–205.CrossRefPubMedGoogle Scholar
  67. 67.
    Silva NA, Sousa N, Reis RL, Salgado AJ. From basics to clinical: a comprehensive review on spinal cord injury. Prog Neurobiol. 2014;114:25–57.CrossRefPubMedGoogle Scholar
  68. 68.
    Guest JD, Hiester ED, Bunge RP. Demyelination and Schwann cell responses adjacent to injury epicenter cavities following chronic human spinal cord injury. Exp Neurol. 2005;192:384–93.CrossRefPubMedGoogle Scholar
  69. 69.
    Gao M, Lu P, Bednark B, Lynam D, Conner JM, Sakamoto J, Tuszynski MH. Templated agarose scaffolds for the support of motor axon regeneration into sites of complete spinal cord transection. Biomaterials. 2013;34:1529–36.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Gros T, Sakamoto JS, Blesch A, Havton LA, Tuszynski MH. Regeneration of long-tract axons through sites of spinal cord injury using templated agarose scaffolds. Biomaterials. 2010;31:6719–29.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of NeuroscienceVA-San Diego Healthcare SystemSan DiegoUSA
  2. 2.Department of NeurosciencesUniversity of California at San DiegoLa JollaUSA
  3. 3.Translational Neuroscience InstituteUniversity of California-San Diego, Veterans Administration Medical CenterLa JollaUSA

Personalised recommendations