Recommender Systems Handbook pp 309-352 | Cite as
Evaluating Recommender Systems with User Experiments
- 35 Citations
- 9 Mentions
- 12k Downloads
Abstract
Proper evaluation of the user experience of recommender systems requires conducting user experiments. This chapter is a guideline for students and researchers aspiring to conduct user experiments with their recommender systems. It first covers the theory of user-centric evaluation of recommender systems, and gives an overview of recommender system aspects to evaluate. It then provides a detailed practical description of how to conduct user experiments, covering the following topics: formulating hypotheses, sampling participants, creating experimental manipulations, measuring subjective constructs with questionnaires, and statistically evaluating the results.
Keywords
Confirmatory Factor Analysis Recommender System Preference Elicitation Average Variance Extract Situational CharacteristicReferences
- 1.Adomavicius, G., Kwon, Y.: Improving aggregate recommendation diversity using ranking-based techniques. IEEE Transactions on Knowledge and Data Engineering 24(5), 896–911 (2012). DOI 10.1109/TKDE.2011.15 CrossRefGoogle Scholar
- 2.Ajzen, I.: From intentions to actions: A theory of planned behavior. In: P.D.J. Kuhl, D.J. Beckmann (eds.) Action Control, SSSP Springer Series in Social Psychology, pp. 11–39. Springer Berlin Heidelberg (1985).Google Scholar
- 3.Ajzen, I.: The theory of planned behavior. Organizational Behavior and Human Decision Processes 50(2), 179–211 (1991).CrossRefGoogle Scholar
- 4.Ajzen, I., Fishbein, M.: Understanding attitudes and predicting social behaviour. Prentice-Hall, Englewood Cliffs, NJ (1980)Google Scholar
- 5.Amatriain, X., Pujol, J.M., Tintarev, N., Oliver, N.: Rate it again: Increasing recommendation accuracy by user re-rating. In: Proceedings of the Third ACM Conference on Recommender Systems, RecSys ‘09, pp. 173–180. ACM, New York, NY, USA (2009). DOI 10.1145/1639714.1639744
- 6.Basartan, Y.: Amazon versus the shopbot: An experiment about how to improve the shopbots (2001)Google Scholar
- 7.Bennett, J., Lanning, S.: The netflix prize. In: In KDD Cup and Workshop in conjunction with KDD. San Jose, CA, USA (2007). URL http://www.cs.uic.edu/~liub/KDD-cup-2007/proceedings/The-Netflix-Prize-Bennett.pdf
- 8.Bentler, P.M., Bonett, D.G.: Significance tests and goodness of fit in the analysis of covariance structures. Psychological Bulletin 88(3), 588–606 (1980). DOI 10.1037/0033-2909.88.3.588 CrossRefGoogle Scholar
- 9.Bettman, J.R., Luce, M.F., Payne, J.W.: Constructive consumer choice processes. Journal of consumer research 25(3), 187–217 (1998). DOI 10.1086/209535 CrossRefGoogle Scholar
- 10.Bilgic, M., Mooney, R.J.: Explaining recommendations: Satisfaction vs. promotion. In: IUI Workshop: Beyond Personalization. San Diego, CA (2005)Google Scholar
- 11.Blackwelder, W.C.: “Proving the null hypothesis” in clinical trials. Controlled Clinical Trials 3(4), 345–353 (1982). DOI 10.1016/0197-2456(82)90024-1 CrossRefGoogle Scholar
- 12.Bollen, D., Knijnenburg, B.P., Willemsen, M.C., Graus, M.: Understanding choice overload in recommender systems. In: Proceedings of the fourth ACM conference on Recommender systems, pp. 63–70. Barcelona, Spain (2010). DOI 10.1145/1864708.1864724
- 13.Bollen, K.A.: Structural equation models. In: Encyclopedia of Biostatistics. John Wiley & Sons, Ltd (2005)CrossRefGoogle Scholar
- 14.Bostandjiev, S., O’Donovan, J., Höllerer, T.: TasteWeights: a visual interactive hybrid recommender system. In: Proceedings of the Sixth ACM Conference on Recommender Systems, RecSys ‘12, pp. 35–42. ACM, Dublin, Ireland (2012). DOI 10.1145/2365952.2365964
- 15.Cena, F., Vernero, F., Gena, C.: Towards a customization of rating scales in adaptive systems. In: P.D. Bra, A. Kobsa, D. Chin (eds.) User Modeling, Adaptation, and Personalization, no. 6075 in Lecture Notes in Computer Science, pp. 369–374. Springer Berlin Heidelberg (2010). DOI 10.1007/978-3-642-13470-8_34 Google Scholar
- 16.Chen, L., Pu, P.: Interaction design guidelines on critiquing-based recommender systems. User Modeling and User-Adapted Interaction 19(3), 167–206 (2009). DOI 10.1007/s11257-008-9057-x CrossRefGoogle Scholar
- 17.Chen, L., Pu, P.: Experiments on the preference-based organization interface in recommender systems. ACM Transactions on Computer-Human Interaction 17(1), 5:1–5:33 (2010). DOI 10.1145/1721831.1721836
- 18.Chen, L., Pu, P.: Eye-tracking study of user behavior in recommender interfaces. In: P.D. Bra, A. Kobsa, D. Chin (eds.) User Modeling, Adaptation, and Personalization, no. 6075 in Lecture Notes in Computer Science, pp. 375–380. Springer Berlin Heidelberg (2010). DOI 10.1007/978-3-642-13470-8_35 Google Scholar
- 19.Chen, L., Pu, P.: Critiquing-based recommenders: survey and emerging trends. User Modeling and User-Adapted Interaction 22(1–2), 125–150 (2012). DOI 10.1007/s11257-011-9108-6 CrossRefGoogle Scholar
- 20.Chen, L., Tsoi, H.K.: Users’ decision behavior in recommender interfaces: Impact of layout design. In: RecSys’ 11 Workshop on Human Decision Making in Recommender Systems, pp. 21–26. Chicago, IL, USA (2011). URL http://ceur-ws.org/Vol-811/paper4.pdf
- 21.Chin, D.N.: Empirical evaluation of user models and user-adapted systems. User Modeling and User-Adapted Interaction 11(1–2), 181–194 (2001). DOI 10.1023/A:1011127315884 CrossRefzbMATHGoogle Scholar
- 22.Cohen, J.: Statistical power analysis for the behavioral sciences. Psychology Press (1988)Google Scholar
- 23.Cosley, D., Lam, S.K., Albert, I., Konstan, J.A., Riedl, J.: Is seeing believing?: How recommender system interfaces affect users’ opinions. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI ‘03, pp. 585–592. ACM, Ft. Lauderdale, Florida, USA (2003). DOI 10.1145/642611.642713
- 24.Cramer, H., Evers, V., Ramlal, S., Someren, M., Rutledge, L., Stash, N., Aroyo, L., Wielinga, B.: The effects of transparency on trust in and acceptance of a content-based art recommender. User Modeling and User-Adapted Interaction 18(5), 455–496 (2008). DOI 10.1007/s11257-008-9051-3 CrossRefGoogle Scholar
- 25.Cremonesi, P., Garzotto, F., Negro, S., Papadopoulos, A.V., Turrin, R.: Looking for “Good” recommendations: A comparative evaluation of recommender systems. In: P. Campos, N. Graham, J. Jorge, N. Nunes, P. Palanque, M. Winckler (eds.) Human-Computer Interaction – INTERACT 2011, no. 6948 in Lecture Notes in Computer Science, pp. 152–168. Springer Berlin Heidelberg (2011). DOI 10.1007/978-3-642-23765-2_11 Google Scholar
- 26.Davis, F.D.: Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly 13(3), 319–340 (1989). DOI 10.2307/249008 CrossRefGoogle Scholar
- 27.DeVellis, R.F.: Scale development: theory and applications. SAGE, Thousand Oaks, Calif. (2011)Google Scholar
- 28.Dooms, S., De Pessemier, T., Martens, L.: An online evaluation of explicit feedback mechanisms for recommender systems. In: 7th International Conference on Web Information Systems and Technologies (WEBIST-2011), pp. 391–394. Noordwijkerhout, The Netherlands (2011). URL https://biblio.ugent.be/publication/2039743/file/2039745.pdf
- 29.Dooms, S., De Pessemier, T., Martens, L.: A user-centric evaluation of recommender algorithms for an event recommendation system. In: RecSys 2011 Workshop on Human Decision Making in Recommender Systems (Decisions@ RecSys’ 11) and User-Centric Evaluation of Recommender Systems and Their Interfaces-2 (UCERSTI 2) affiliated with the 5th ACM Conference on Recommender Systems (RecSys 2011), pp. 67–73. Chicago, IL, USA (2011). URL http://ceur-ws.org/Vol-811/paper10.pdf
- 30.Downs, J.S., Holbrook, M.B., Sheng, S., Cranor, L.F.: Are your participants gaming the system?: screening mechanical turk workers. In: Proceedings of the 28th SIGCHI conference on Human factors in computing systems, pp. 2399–2402. Atlanta, Georgia, USA (2010). DOI 10.1145/1753326.1753688
- 31.Ekstrand, M.D., Harper, F.M., Willemsen, M.C., Konstan, J.A.: User perception of differences in recommender algorithms. In: Proceedings of the eighth ACM conference on Recommender systems. Foster City, CA (2014). DOI 10.1145/2645710.2645737 CrossRefGoogle Scholar
- 32.Erickson, B.H.: Some problems of inference from chain data. Sociological methodology 10(1), 276–302 (1979)MathSciNetCrossRefGoogle Scholar
- 33.Farzan, R., Brusilovsky, P.: Encouraging user participation in a course recommender system: An impact on user behavior. Computers in Human Behavior 27(1), 276–284 (2011). DOI 10.1016/j.chb.2010.08.005 CrossRefGoogle Scholar
- 34.Fasolo, B., Hertwig, R., Huber, M., Ludwig, M.: Size, entropy, and density: What is the difference that makes the difference between small and large real-world assortments? Psychology and Marketing 26(3), 254–279 (2009). DOI 10.1002/mar.20272 CrossRefGoogle Scholar
- 35.Faul, F., Erdfelder, E., Lang, A.G., Buchner, A.: G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods 39(2), 175–191 (2007). DOI 10.3758/BF03193146 CrossRefGoogle Scholar
- 36.Felfernig, A.: Knowledge-based recommender technologies for marketing and sales. Intl. J. of Pattern Recognition and Artificial Intelligence 21(2), 333–354 (2007). DOI 10.1142/S0218001407005417 CrossRefGoogle Scholar
- 37.Fishbein, M., Ajzen, I.: Belief, attitude, intention, and behavior: an introduction to theory and research. Addison-Wesley Pub. Co., Reading, MA (1975)Google Scholar
- 38.Fisher, R.A.: The design of experiments, vol. xi. Oliver & Boyd, Oxford, England (1935)Google Scholar
- 39.Freyne, J., Jacovi, M., Guy, I., Geyer, W.: Increasing engagement through early recommender intervention. In: Proceedings of the Third ACM Conference on Recommender Systems, RecSys ‘09, pp. 85–92. ACM, New York, NY, USA (2009). DOI 10.1145/1639714.1639730
- 40.Friedrich, G., Zanker, M.: A taxonomy for generating explanations in recommender systems. AI Magazine 32(3), 90–98 (2011). DOI 10.1609/aimag.v32i3.2365
- 41.Gedikli, F., Jannach, D., Ge, M.: How should i explain? a comparison of different explanation types for recommender systems. International Journal of Human-Computer Studies 72(4), 367–382 (2014). DOI 10.1016/j.ijhcs.2013.12.007
- 42.Gena, C., Brogi, R., Cena, F., Vernero, F.: The impact of rating scales on user’s rating behavior. In: D. Hutchison, T. Kanade, J. Kittler, J.M. Kleinberg, F. Mattern, J.C. Mitchell, M. Naor, O. Nierstrasz, C. Pandu Rangan, B. Steffen, M. Sudan, D. Terzopoulos, D. Tygar, M.Y. Vardi, G. Weikum, J.A. Konstan, R. Conejo, J.L. Marzo, N. Oliver (eds.) User Modeling, Adaption and Personalization, vol. 6787, pp. 123–134. Springer, Berlin, Heidelberg (2011). DOI 10.1007/978-3-642-22362-4_11
- 43.Ghose, A., Ipeirotis, P.G., Li, B.: Designing ranking systems for hotels on travel search engines by mining user-generated and crowdsourced content. Marketing Science 31(3), 493–520 (2012). DOI 10.1287/mksc.1110.0700
- 44.Graus, M.P., Willemsen, M.C., Swelsen, K.: Understanding real-life website adaptations by investigating the relations between user behavior and user experience. In: F. Ricci, K. Bontcheva, O. Conlan, S. Lawless (eds.) User Modeling, Adaptation and Personalization, 9146, 350–356. Springer, Berlin, Heidelberg (2015)Google Scholar
- 45.Gregor, S.: The nature of theory in information systems. MIS Quarterly 30(3), 611–642 (2006). URL http://www.jstor.org/stable/25148742
- 46.Hassenzahl, M.: The thing and i: understanding the relationship between user and product. In: M. Blythe, K. Overbeeke, A. Monk, P. Wright (eds.) Funology, From Usability to Enjoyment, pp. 31–42. Kluwer Academic Publishers, Dordrecht, The Netherlands (2005). DOI 10.1007/1-4020-2967-5_4
- 47.Hassenzahl, M.: User experience (UX). In: Proceedings of the 20th International Conference of the Association Francophone d’Interaction Homme-Machine on - IHM ‘08, pp. 11–15. Metz, France (2008). DOI 10.1145/1512714.1512717
- 48.Häubl, G., Trifts, V.: Consumer decision making in online shopping environments: The effects of interactive decision aids. Marketing Science 19(1), 4–21 (2000). URL http://www.jstor.org/stable/193256
- 49.Heckathorn, D.D.: Respondent-driven sampling II: deriving valid population estimates from chain-referral samples of hidden populations. Social problems 49(1), 11–34 (2002). DOI 10.1525/sp.2002.49.1.11
- 50.Herlocker, J.L., Konstan, J.A., Riedl, J.: Explaining collaborative filtering recommendations. In: Proc. of the 2000 ACM conference on Computer supported cooperative work, pp. 241–250. ACM Press, Philadelphia, PA (2000). DOI 10.1145/358916.358995
- 51.Hu, L., Bentler, P.M.: Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling: A Multidisciplinary Journal 6(1), 1–55 (1999). DOI 10.1080/10705519909540118
- 52.Hu, R., Pu, P.: Enhancing recommendation diversity with organization interfaces. In: Proceedings of the 16th International Conference on Intelligent User Interfaces, IUI ‘11, pp. 347–350. ACM, Palo Alto, CA, USA (2011). DOI 10.1145/1943403.1943462
- 53.Iivari, J.: Contributions to the theoretical foundations of systemeering research and the PIOCO model. Ph.D. thesis, University of Oulu, Finland (1983)Google Scholar
- 54.Jacko, J.A.: The human-computer interaction handbook: fundamentals, evolving technologies, and emerging applications. CRC Press, Boca Raton, FL (2012)Google Scholar
- 55.Jackson, D.L.: Revisiting sample size and number of parameter estimates: Some support for the n:q hypothesis. Structural Equation Modeling: A Multidisciplinary Journal 10(1), 128–141 (2003). DOI 10.1207/S15328007SEM1001_6
- 56.Kahneman, D.: Thinking, fast and slow. Macmillan (2011)Google Scholar
- 57.Kammerer, Y., Gerjets, P.: How the interface design influences users’ spontaneous trustworthiness evaluations of web search results: Comparing a list and a grid interface. In: Proceedings of the 2010 Symposium on Eye-Tracking Research & Applications, ETRA ‘10, pp. 299–306. ACM, Austin, TX, USA (2010). DOI 10.1145/1743666.1743736
- 58.Kittur, A., Chi, E.H., Suh, B.: Crowdsourcing user studies with mechanical turk. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 453–456. ACM Press, Florence, Italy (2008). DOI 10.1145/1357054.1357127
- 59.Kline, R.B.: Principles and practice of structural equation modeling. Guilford Press, New York (2011)Google Scholar
- 60.Kluver, D., Nguyen, T.T., Ekstrand, M., Sen, S., Riedl, J.: How many bits per rating? In: Proceedings of the Sixth ACM Conference on Recommender Systems, RecSys ‘12, pp. 99–106. ACM, Dublin, Ireland (2012). DOI 10.1145/2365952.2365974
- 61.Knijnenburg, B.P.: Simplifying privacy decisions: Towards interactive and adaptive solutions. In: Proceedings of the Recsys 2013 Workshop on Human Decision Making in Recommender Systems (Decisions@ RecSys’13), pp. 40–41. Hong Kong, China (2013). URL http://ceur-ws.org/Vol-1050/paper7.pdf
- 62.Knijnenburg, B.P., Bostandjiev, S., O’Donovan, J., Kobsa, A.: Inspectability and control in social recommenders. In: Proceedings of the sixth ACM conference on Recommender systems, RecSys ‘12, pp. 43–50. ACM, Dublin, Ireland (2012). DOI 10.1145/2365952.2365966
- 63.Knijnenburg, B.P., Kobsa, A.: Making decisions about privacy: Information disclosure in context-aware recommender systems. ACM Transactions on Interactive Intelligent Systems 3(3), 20:1–20:23 (2013). DOI 10.1145/2499670
- 64.Knijnenburg, B.P., Kobsa, A., Jin, H.: Dimensionality of information disclosure behavior. International Journal of Human-Computer Studies 71(12), 1144–1162 (2013). DOI 10.1016/j.ijhcs.2013.06.003
- 65.Knijnenburg, B.P., Reijmer, N.J., Willemsen, M.C.: Each to his own: how different users call for different interaction methods in recommender systems. In: Proceedings of the fifth ACM conference on Recommender systems, pp. 141–148. ACM Press, Chicago, IL, USA (2011). DOI 10.1145/2043932.2043960
- 66.Knijnenburg, B.P., Willemsen, M.C.: Understanding the effect of adaptive preference elicitation methods on user satisfaction of a recommender system. In: Proceedings of the third ACM conference on Recommender systems, pp. 381–384. New York, NY (2009). DOI 10.1145/1639714.1639793
- 67.Knijnenburg, B.P., Willemsen, M.C., Gantner, Z., Soncu, H., Newell, C.: Explaining the user experience of recommender systems. User Modeling and User-Adapted Interaction 22(4–5), 441–504 (2012). DOI 10.1007/s11257-011-9118-4
- 68.Knijnenburg, B.P., Willemsen, M.C., Hirtbach, S.: Receiving recommendations and providing feedback: The user-experience of a recommender system. In: F. Buccafurri, G. Semeraro (eds.) E-Commerce and Web Technologies, vol. 61, pp. 207–216. Springer, Berlin, Heidelberg (2010). DOI 10.1007/978-3-642-15208-5_19
- 69.Knijnenburg, B.P., Willemsen, M.C., Kobsa, A.: A pragmatic procedure to support the user-centric evaluation of recommender systems. In: Proceedings of the fifth ACM conference on Recommender systems, RecSys ‘11, pp. 321–324. ACM, Chicago, IL, USA (2011). DOI 10.1145/2043932.2043993
- 70.Kobsa, A., Cho, H., Knijnenburg, B.P.: An attitudinal and behavioral model of personalization at different providers. Journal of the Association for Information Science and Technology. http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)2330-1643/earlyview (In press)
- 71.Köhler, C.F., Breugelmans, E., Dellaert, B.G.C.: Consumer acceptance of recommendations by interactive decision aids: The joint role of temporal distance and concrete versus abstract communications. Journal of Management Information Systems 27(4), 231–260 (2011). DOI 10.2753/MIS0742-1222270408
- 72.Konstan, J., Riedl, J.: Recommender systems: from algorithms to user experience. User Modeling and User-Adapted Interaction 22(1), 101–123 (2012). DOI 10.1007/s11257-011-9112-x
- 73.Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques for recommender systems. Computer 42(8), 30–37 (2009). DOI 10.1109/MC.2009.263
- 74.Koren, Y., Sill, J.: OrdRec: An ordinal model for predicting personalized item rating distributions. In: Proceedings of the Fifth ACM Conference on Recommender Systems, RecSys ‘11, pp. 117–124. ACM, New York, NY, USA (2011). DOI 10.1145/2043932.2043956
- 75.Landsberger, H.A.: Hawthorne revisited: Management and the worker: its critics, and developments in human relations in industry. Cornell University (1958)Google Scholar
- 76.Lathia, N., Hailes, S., Capra, L., Amatriain, X.: Temporal diversity in recommender systems. In: Proceedings of the 33rd International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR ‘10, pp. 210–217. ACM, Geneva, Switzerland (2010). DOI 10.1145/1835449.1835486
- 77.Lee, Y.E., Benbasat, I.: The influence of trade-off difficulty caused by preference elicitation methods on user acceptance of recommendation agents across loss and gain conditions. Information Systems Research 22(4), 867–884 (2011). DOI 10.1287/isre.1100.0334
- 78.Lopes, C.S., Rodrigues, L.C., Sichieri, R.: The lack of selection bias in a snowball sampled case-control study on drug abuse. International journal of epidemiology 25(6), 1267–1270 (1996). DOI 10.1093/ije/25.6.1267
- 79.MacCallum, R.C., Widaman, K.F., Zhang, S., Hong, S.: Sample size in factor analysis. Psychological Methods 4(1), 84–99 (1999). DOI 10.1037/1082-989X.4.1.84
- 80.MacKenzie, I.S.: Human-Computer Interaction: An Empirical Research Perspective, 1st edn. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA (2013)Google Scholar
- 81.Martin, F.J.: Recsys’09 industrial keynote: Top 10 lessons learned developing deploying and operating real-world recommender systems. In: Proceedings of the Third ACM Conference on Recommender Systems, RecSys ‘09, pp. 1–2. ACM, New York, NY, USA (2009). DOI 10.1145/1639714.1639715
- 82.McNee, S.M., Albert, I., Cosley, D., Gopalkrishnan, P., Lam, S.K., Rashid, A.M., Konstan, J.A., Riedl, J.: On the recommending of citations for research papers. In: Proceedings of the 2002 ACM conference on Computer supported cooperative work, pp. 116–125. New Orleans, LA (2002). DOI 10.1145/587078.587096
- 83.McNee, S.M., Riedl, J., Konstan, J.A.: Being accurate is not enough: how accuracy metrics have hurt recommender systems. In: Extended abstracts on Human factors in computing systems, pp. 1097–1101. Montréal, Québec, Canada (2006). DOI 10.1145/1125451.1125659
- 84.McNee, S.M., Riedl, J., Konstan, J.A.: Making recommendations better: An analytic model for human-recommender interaction. In: Extended Abstracts on Human Factors in Computing Systems, CHI EA ‘06, pp. 1103–1108. ACM, Montréal, Québec, Canada (2006). DOI 10.1145/1125451.1125660
- 85.Mogilner, C., Rudnick, T., Iyengar, S.S.: The mere categorization effect: How the presence of categories increases choosers’ perceptions of assortment variety and outcome satisfaction. Journal of Consumer Research 35(2), 202–215 (2008). DOI 10.1086/586908
- 86.Neter, J., Kutner, M.H., Nachtsheim, C.J., Wasserman, W.: Applied linear statistical models, vol. 4. Irwin Chicago (1996)Google Scholar
- 87.Nguyen, T.T., Kluver, D., Wang, T.Y., Hui, P.M., Ekstrand, M.D., Willemsen, M.C., Riedl, J.: Rating support interfaces to improve user experience and recommender accuracy. In: Proceedings of the 7th ACM Conference on Recommender Systems, RecSys ‘13, pp. 149–156. ACM, Hong Kong, China (2013). DOI 10.1145/2507157.2507188
- 88.Nuzzo, R.: Scientific method: Statistical errors. Nature 506(7487), 150–152 (2014). DOI 10.1038/506150a
- 89.Oestreicher-Singer, G., Sundararajan, A.: Recommendation networks and the long tail of electronic commerce. Management Information Systems Quarterly 36(1), 65–83 (2012). URL http://aisel.aisnet.org/misq/vol36/iss1/7
- 90.Oestreicher-Singer, G., Sundararajan, A.: The visible hand? demand effects of recommendation networks in electronic markets. Management Science 58(11), 1963–1981 (2012). DOI 10.1287/mnsc.1120.1536
- 91.Orne, M.T.: On the social psychology of the psychological experiment: With particular reference to demand characteristics and their implications. American Psychologist 17(11), 776–783 (1962). DOI 10.1037/h0043424
- 92.Paolacci, G., Chandler, J., Ipeirotis, P.: Running experiments on amazon mechanical turk. Judgment and Decision Making 5(5), 411–419 (2010). URL http://www.sjdm.org/journal/10/10630a/jdm10630a.pdf
- 93.Podsakoff, P.M., MacKenzie, S.B., Lee, J.Y., Podsakoff, N.P.: Common method biases in behavioral research: A critical review of the literature and recommended remedies. Journal of Applied Psychology 88(5), 879–903 (2003). DOI 10.1037/0021-9010.88.5.879
- 94.Pu, P., Chen, L.: Trust-inspiring explanation interfaces for recommender systems. Knowledge-Based Systems 20(6), 542–556 (2007). DOI 10.1016/j.knosys.2007.04.004
- 95.Pu, P., Chen, L., Hu, R.: A user-centric evaluation framework for recommender systems. In: Proceedings of the Fifth ACM Conference on Recommender Systems, RecSys ‘11, pp. 157–164. ACM, Chicago, IL, USA (2011). DOI 10.1145/2043932.2043962
- 96.Pu, P., Chen, L., Hu, R.: Evaluating recommender systems from the user’s perspective: survey of the state of the art. User Modeling and User-Adapted Interaction 22(4), 317–355 (2012). DOI 10.1007/s11257-011-9115-7
- 97.Purchase, H.C.: Experimental Human-Computer Interaction: A Practical Guide with Visual Examples, 1st edn. Cambridge University Press, New York, NY, USA (2012)Google Scholar
- 98.Randall, T., Terwiesch, C., Ulrich, K.T.: User design of customized products. Marketing Science 26(2), 268–280 (2007). DOI 10.1287/mksc.1050.0116
- 99.Said, A., Fields, B., Jain, B.J., Albayrak, S.: User-centric evaluation of a k-furthest neighbor collaborative filtering recommender algorithm. In: Proceedings of the 2013 Conference on Computer Supported Cooperative Work, CSCW ‘13, pp. 1399–1408. ACM, New York, NY, USA (2013). DOI 10.1145/2441776.2441933
- 100.Said, A., Jain, B.J., Narr, S., Plumbaum, T., Albayrak, S., Scheel, C.: Estimating the magic barrier of recommender systems: A user study. In: Proceedings of the 35th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR ‘12, pp. 1061–1062. ACM, Portland, Oregon (2012). DOI 10.1145/2348283.2348469
- 101.Salganik, M.J., Heckathorn, D.D.: Sampling and estimation in hidden populations using respondent-driven sampling. Sociological Methodology 34(1), 193–240 (2004). DOI 10.1111/j.0081-1750.2004.00152.x
- 102.Schaeffer, N.C., Presser, S.: The science of asking questions. Annual Review of Sociology 29(1), 65–88 (2003). DOI 10.1146/annurev.soc.29.110702.110112
- 103.Scheibehenne, B., Greifeneder, R., Todd, P.M.: Can there ever be too many options? a Meta-Analytic review of choice overload. Journal of Consumer Research 37(3), 409–425 (2010). DOI 10.1086/651235
- 104.Sinha, R., Swearingen, K.: Comparing recommendations made by online systems and friends. In: In Proceedings of the DELOS-NSF Workshop on Personalization and Recommender Systems in Digital Libraries (2001)Google Scholar
- 105.Smith, N.C., Goldstein, D.G., Johnson, E.J.: Choice without awareness: Ethical and policy implications of defaults. Journal of Public Policy & Marketing 32(2), 159–172 (2013). DOI 10.1509/jppm.10.114
- 106.Sparling, E.I., Sen, S.: Rating: How difficult is it? In: Proceedings of the Fifth ACM Conference on Recommender Systems, RecSys ‘11, pp. 149–156. ACM, Chicago, IL, USA (2011). DOI 10.1145/2043932.2043961
- 107.Steele-Johnson, D., Beauregard, R.S., Hoover, P.B., Schmidt, A.M.: Goal orientation and task demand effects on motivation, affect, and performance. Journal of Applied Psychology 85(5), 724–738 (2000). DOI 10.1037/0021-9010.85.5.724
- 108.Symeonidis, P., Nanopoulos, A., Manolopoulos, Y.: Providing justifications in recommender systems. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans 38(6), 1262–1272 (2008). DOI 10.1109/TSMCA.2008.2003969
- 109.Tam, K.Y., Ho, S.Y.: Web personalization: is it effective? IT Professional 5(5), 53–57 (2003). DOI 10.1109/MITP.2003.1235611
- 110.Tintarev, N., Masthoff, J.: A survey of explanations in recommender systems. In: Data Engineering Workshop, pp. 801–810. IEEE, Istanbul, Turkey (2007). DOI 10.1109/ICDEW.2007.4401070
- 111.Tintarev, N., Masthoff, J.: Evaluating the effectiveness of explanations for recommender systems. User Modeling and User-Adapted Interaction 22(4–5), 399–439 (2012). DOI 10.1007/s11257-011-9117-5
- 112.Torres, R., McNee, S.M., Abel, M., Konstan, J.A., Riedl, J.: Enhancing digital libraries with TechLens+. In: Proceedings of the 2004 joint ACM/IEEE conference on Digital libraries - JCDL ‘04, pp. 228–236. Tuscon, AZ, USA (2004). DOI 10.1145/996350.996402
- 113.Utts, J.: Seeing Through Statistics. Cengage Learning (2004)Google Scholar
- 114.Van Velsen, L., Van Der Geest, T., Klaassen, R., Steehouder, M.: User-centered evaluation of adaptive and adaptable systems: a literature review. The Knowledge Engineering Review 23(03), 261–281 (2008). DOI 10.1017/S0269888908001379
- 115.Vargas, S., Castells, P.: Rank and relevance in novelty and diversity metrics for recommender systems. In: Proceedings of the Fifth ACM Conference on Recommender Systems, RecSys ‘11, pp. 109–116. ACM, Chicago, IL, USA (2011). DOI 10.1145/2043932.2043955
- 116.Venkatesh, V., Morris, M.G., Davis, G.B., Davis, F.D.: User acceptance of information technology: Toward a unified view. MIS Quarterly 27(3), 425–478 (2003). URL http://www.jstor.org/stable/30036540
- 117.Vig, J., Sen, S., Riedl, J.: Tagsplanations: Explaining recommendations using tags. In: Proceedings of the 14th International Conference on Intelligent User Interfaces, IUI ‘09, pp. 47–56. ACM, Sanibel Island, Florida, USA (2009). DOI 10.1145/1502650.1502661
- 118.Wang, H.C., Doong, H.S.: Argument form and spokesperson type: The recommendation strategy of virtual salespersons. International Journal of Information Management 30(6), 493–501 (2010). DOI 10.1016/j.ijinfomgt.2010.03.006
- 119.Wang, W., Benbasat, I.: Recommendation agents for electronic commerce: Effects of explanation facilities on trusting beliefs. Journal of Management Information Systems 23(4), 217–246 (2007). DOI 10.2753/MIS0742-1222230410
- 120.Willemsen, M.C., Graus, M.P., Knijnenburg, B.P.: Understanding the role of latent feature diversification on choice difficulty and satisfaction (manuscript, under review)Google Scholar
- 121.Willemsen, M.C., Knijnenburg, B.P., Graus, M.P., Velter-Bremmers, L.C., Fu, K.: Using latent features diversification to reduce choice difficulty in recommendation lists. In: RecSys’11 Workshop on Human Decision Making in Recommender Systems, CEUR-WS, vol. 811, pp. 14–20. Chicago, IL (2011). URL http://ceur-ws.org/Vol-811/paper3.pdf
- 122.Xiao, B., Benbasat, I.: E-commerce product recommendation agents: Use, characteristics, and impact. Mis Quarterly 31(1), 137–209 (2007). URL http://www.jstor.org/stable/25148784
- 123.Xiao, B., Benbasat, I.: Research on the use, characteristics, and impact of e-commerce product recommendation agents: A review and update for 2007–2012. In: F.J. Martínez-López (ed.) Handbook of Strategic e-Business Management, Progress in IS, pp. 403–431. Springer Berlin Heidelberg (2014). DOI 10.1007/978-3-642-39747-9_18
- 124.Zhang, M., Hurley, N.: Avoiding monotony: Improving the diversity of recommendation lists. In: Proceedings of the 2008 ACM Conference on Recommender Systems, RecSys ‘08, pp. 123–130. ACM, Lausanne, Switzerland (2008). DOI 10.1145/1454008.1454030
- 125.Zhou, T., Kuscsik, Z., Liu, J.G., Medo, M., Wakeling, J.R., Zhang, Y.C.: Solving the apparent diversity-accuracy dilemma of recommender systems. Proceedings of the National Academy of Sciences 107(10), 4511–4515 (2010). DOI 10.1073/pnas.1000488107
- 126.Ziegler, C.N., McNee, S.M., Konstan, J.A., Lausen, G.: Improving recommendation lists through topic diversification. In: Proceedings of the 14th international conference on World Wide Web - WWW ‘05, pp. 22–32. Chiba, Japan (2005). DOI 10.1145/1060745.1060754