Glaucoma and Structure-Based Mechanics of the Lamina Cribrosa at Multiple Scales

  • Rafael Grytz
  • Günther Meschke
  • Jost B. Jonas
  • J. Crawford Downs

Abstract

Glaucoma is among the leading causes of blindness worldwide. The disease involves damage to the retinal ganglion cell axons that transmit visual information from the eye to the brain. Experimental evidence indicates that biomechanical mechanisms at different length scales are involved in pathophysiology of glaucoma, where chronic intraocular pressure (IOP) elevation at the organ level initiates axonal insult at the level of the lamina cribrosa. The lamina cribrosa consists of a porous collagen structure through which the axons of retinal ganglion cells (RGCs) pass on their path from the retina to the brain. The extent to which the structural mechanics of the lamina cribrosa contribute to the axonal insult remains unclear. In this book chapter, we give a short review of the present understanding of the structural mechanics of the lamina cribrosa and its role in glaucoma. The main aim is to present a first computationally coupled two-scale analysis of the lamina cribrosa that translates the IOP load at the macroscale to the mechanical insult of the axons within the mesostructure of the lamina cribrosa. The numerical results of two-scale analysis suggest that the collagen structures of the lamina cribrosa and its surrounding peripapillary sclera effectively provide mechanical support to the axons by protecting them from high tensile stresses even at elevated IOP levels. However, in-plane shear stresses in the axonal tissue may increase with increasing IOP at the posterior lamina insertion region and contribute to a mechanical insult of the RGC axons in glaucoma.

Keywords

Glaucoma Lamina cribrosa Homogenization Localization Axonal insult 

References

  1. Aghamohammadzadeh H, Newton R, Meek K. X-ray scattering used to map the preferred collagen orientation in the human cornea and limbus. Structure. 2004;12:249–56.PubMedCrossRefGoogle Scholar
  2. Ambrosi D, Ateshian GA, Arruda EM, Cowin SC, Dumais J, Goriely A, Holzapfel GA, Humphrey JD, Kemkemer R, Kuhl E, Olberding JE, Taber LA, Garikipati K. Perspectives on biological growth and remodeling. J Mech Phys Solids. 2011;59:863–83.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Anderson DR. Ultrastructure of human and monkey lamina cribrosa and optic nerve head. Arch Ophthalmol. 1969;82:800–14.PubMedCrossRefGoogle Scholar
  4. Anderson DR, Hendrickson A. Effect of intraocular pressure on rapid axoplasmic transport in monkey optic nerve. Invest Ophthalmol. 1974;13:771–83.PubMedGoogle Scholar
  5. Bain A, Meaney D. Tissue-level thresholds for axonal damage in an experimental model of central nervous system white matter injury. J Biomech Eng. 2000;122:615–22.PubMedCrossRefGoogle Scholar
  6. Bain A, Shreiber D, Meaney D. Modeling of microstructural kinematics during simple elongation of central nervous system tissue. J Biomech Eng. 2003;125:798–804.PubMedCrossRefGoogle Scholar
  7. Balaratnasingam C, Morgan WH, Bass L, Matich G, Cringle SJ, Yu DY. Axonal transport and cytoskeletal changes in the laminar regions after elevated intraocular pressure. Invest Ophthalmol Vis Sci. 2007;48:3632–44.PubMedCrossRefGoogle Scholar
  8. Balzani D, Schröder J, Brands D. FE 2-simulation of microheterogeneous steels based on statistically similar RVEs. In: IUTAM symposium on variational concepts with applications to the mechanics of materials. Springer; 2010. pp. 15–28.Google Scholar
  9. Başar Y, Grytz R. Incompressibility at large strains and finite-element implementation. Acta Mechanica. 2004;168:75–101.CrossRefGoogle Scholar
  10. Bellezza A, Rintalan C, Thompson H, Downs J, Hart R, Burgoyne C. Deformation of the lamina cribrosa and anterior scleral canal wall in early experimental glaucoma. Invest Ophthalmol Vis Sci. 2003;44:623–37.PubMedCrossRefGoogle Scholar
  11. Burgoyne CF, Downs JC, Bellezza AJ, Hart RT. Three-dimensional reconstruction of normal and early glaucoma monkey optic nerve head connective tissues. Invest Ophthalmol Vis Sci. 2004;45:4388–99.PubMedCrossRefGoogle Scholar
  12. Chen H, Liu Y, Zhao X, Lanir Y, Kassab G. A micromechanics finite-strain constitutive model of fibrous tissue. J Mech Phys Solids. 2011;59(9):1823–37.PubMedPubMedCentralCrossRefGoogle Scholar
  13. Dongqi H, Zeqin R. A biomathematical model for pressure-dependent lamina cribrosa behavior. JBiomech. 1999;32:579–84.PubMedCrossRefGoogle Scholar
  14. Downs JC, Suh JK, Thomas KA, Bellezza AJ, Hart RT, Burgoyne CF. Viscoelastic material properties of the peripapillary sclera in normal and early-glaucoma monkey eyes. Invest Ophthalmol Vis Sci. 2005;46:540–6.PubMedCrossRefGoogle Scholar
  15. Downs JC, Roberts MD, Burgoyne CF. Mechanical environment of the optic nerve head in glaucoma. Optom Vis Sci. 2008;85:425–35.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Downs J, Roberts M, Burgoyne C, Hart R. Multiscale finite element modeling of the lamina cribrosa microarchitecture in the eye. In: Engineering in Medicine and Biology Society, IEEE; 2009. p. 4277–80.Google Scholar
  17. Downs JC, Burgoyne CF, Seigfreid WP, Reynaud JF, Strouthidis NG, Sallee V. 24-hour IOP telemetry in the nonhuman primate: implant system performance and initial characterization of IOP at multiple timescales. Invest Ophthalmol Vis Sci. 2011;52:7365–75.PubMedPubMedCentralCrossRefGoogle Scholar
  18. Feyel F, Chaboche JL. FE2 multiscale approach for modeling the elastoviscoplastic behavior of long fiber SiC/Ti composite material. Comput Meth Appl Mech Eng. 2000;183:309–30.CrossRefGoogle Scholar
  19. Gaasterland D, Tanishima T, Kuwabara T. Axoplasmic flow during chronic experimental glaucoma. 1. Light and electron microscopic studies of the monkey optic nervehead during development of glaucomatous cupping. Invest Ophthalmol Vis Sci. 1978;17:838–46.PubMedGoogle Scholar
  20. Girard MJA, Downs JC, Bottlang M, Burgoyne CF, Suh JF. Peripapillary and posterior scleral mechanics—part II: experimental and inverse finite element characterization. J Biomech Eng. 2009a;131:051012.PubMedPubMedCentralCrossRefGoogle Scholar
  21. Girard MJA, Downs JC, Burgoyne CF, Suh JF. Peripapillary and posterior scleral mechanics—part I: development of an anisotropic hyperelastic constitutive model. J Biomech Eng. 2009b;131:051011.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Girard MJA, Suh JKF, Bottlang M, Burgoyne CF, Downs JC. Biomechanical changes in the sclera of monkey eyes exposed to chronic IOP elevations. Invest Ophthalmol Vis Sci. 2011;52:5656–69.PubMedPubMedCentralCrossRefGoogle Scholar
  23. Goldbaum MH, Jeng SY, Logemann R, Weinreb RN. The extracellular matrix of the human optic nerve. Arch Ophthalmol. 1989;107:1225–31.PubMedCrossRefGoogle Scholar
  24. Grytz R, Meschke G. Consistent micro-macro transitions at large objective strains in curvilinear convective coordinates. Int J Numer Meth Eng. 2008;73:805–24.CrossRefGoogle Scholar
  25. Grytz R, Meschke G. Constitutive modeling of crimped collagen fibrils in soft tissues. J Mech Behav Biomed Mater. 2009;2:522–33.PubMedCrossRefGoogle Scholar
  26. Grytz R, Meschke G. A computational remodeling approach to predict the physiological architecture of the collagen fibril network in corneo-scleral shells. Biomech Model Mechanobiol. 2010;9:225–35.PubMedCrossRefGoogle Scholar
  27. Grytz R, Meschke G, Jonas JB. The collagen fibril architecture in the lamina cribrosa and peripapillary sclera predicted by a computational remodeling approach. Biomech Model Mechanobiol. 2011a;10:371–82.PubMedCrossRefGoogle Scholar
  28. Grytz R, Sigal IA, Ruberti JW, Meschke G, Downs JC. Lamina cribrosa thickening in early glaucoma predicted by a microstructure motivated growth and remodeling approach. Mech Mater. 2011b;44:99–109.CrossRefGoogle Scholar
  29. Hernandez MR. Ultrastructural immunocytochemical analysis of elastin in the human lamina cribrosa. changes in elastic fibers in primary open-angle glaucoma. Invest Ophthalmol Vis Sci. 1992;33:2891–903.PubMedGoogle Scholar
  30. Hernandez MR, Luo XX, Igoe F, Neufeld AH. Extracellular matrix of the human lamina cribrosa. Am J Ophthalmol. 1987;104:567–76.PubMedCrossRefGoogle Scholar
  31. Hollander Y, Durban D, Lu X, Kassab GS, Lanir Y. Experimentally validated microstructural 3D constitutive model of coronary arterial media. J Biomech Eng. 2011;133:031007.PubMedPubMedCentralCrossRefGoogle Scholar
  32. Hund A, Ramm E. Locality constraints within multiscale model for non-linear material behaviour. Int J Numer Meth Eng. 2007;70:1613–32.CrossRefGoogle Scholar
  33. Kouznetsova V, Geers M, Brekelmans W. Multi-scale second-order computational homogenization of multi-phase materials: a nested finite element solution strategy. Comput Meth Appl Mech Eng. 2004;193:5525–50.CrossRefGoogle Scholar
  34. Lampert PW, Vogel MH, Zimmerman LE. Pathology of the optic nerve in experimental acute glaucoma. Invest Ophthalmol. 1968;7:199–213.PubMedGoogle Scholar
  35. Lanir Y. A structural theory for the homogeneous biaxial stress-strain relationship in flat collagenous tissues. J Biomech. 1979;12:423–36.PubMedCrossRefGoogle Scholar
  36. Lanir Y. Constitutive equations for fibrous connective tissues. J Biomech. 1983;16:1–12.PubMedCrossRefGoogle Scholar
  37. Lanir Y. Mechanisms of residual stress in soft tissues. J Biomech Eng. 2009;131:044506.PubMedCrossRefGoogle Scholar
  38. Lanir Y. Osmotic swelling and residual stress in cardiovascular tissues. J Biomech. 2012;45:780–9.PubMedCrossRefGoogle Scholar
  39. Löhnert S, Wriggers P. Homogenisation of microheterogeneous materials considering interfacial delamination at finite strains. Tech Mechanik. 2003;23:167–77.Google Scholar
  40. Lokshin O, Lanir Y. Micro and macro rheology of planar tissues. Biomaterials. 2009;30:3118–27.PubMedCrossRefGoogle Scholar
  41. Meaney DF. Relationship between structural modeling and hyperelastic material behavior: application to CNS white matter. Biomech Model Mechanobiol. 2003;1:279–93.PubMedCrossRefGoogle Scholar
  42. Miehe C. Numerical computation of algorithmic (consistent) tangent moduli in large-strain computational inelasticity. Comput Meth Appl Mech Eng. 1996;134:223–40.CrossRefGoogle Scholar
  43. Miehe C. Computational micro-to-macro transitions for discretized micro-structures of heterogeneous materials at finite stains based on the minimization of averaged incremental energy. Comput Meth Appl Mech Eng. 2003;192:559–91.CrossRefGoogle Scholar
  44. Miehe C, Bayreuther C. On multiscale FE analyses of heterogeneous structures: from homogenization to multigrid solvers. Int J Numer Meth Eng. 2007;71:1135–80.CrossRefGoogle Scholar
  45. Miehe C, Schotte J, Schröder J. Computational micro-macro transitions and overall moduli in the analysis of polycrystals at large strains. Comput Mater Sci. 1999a;16:372–82.CrossRefGoogle Scholar
  46. Miehe C, Schröder J, Schotte J. Computational homogenization analysis in finite plasticity simulation of texture development in polycrystalline materials. Comput Meth Appl Mech. 1999b;171:387–418.CrossRefGoogle Scholar
  47. Minckler DS. The organization of nerve fiber bundles in the primate optic nerve head. Arch Ophthalmol. 1980;98:1630–6.PubMedCrossRefGoogle Scholar
  48. Minckler DS, McLean IW, Tso MO. Distribution of axonal and glial elements in the rhesus optic nerve head studied by electron microscopy. Am J Ophthalmol. 1976;82:179–87.PubMedCrossRefGoogle Scholar
  49. Minckler DS, Bunt AH, Johanson GW. Orthograde and retrograde axoplasmic transport during acute ocular hypertension in the monkey. Invest Ophthalmol Vis Sci. 1977;16:426–41.PubMedGoogle Scholar
  50. Morrison JC, L’Hernault NL, Jerdan JA, Quigley HA. Ultrastructural location of extracellular matrix components in the optic nerve head. Arch Ophthalmol. 1989;107:123–9.PubMedCrossRefGoogle Scholar
  51. Petsche SJ, Chernyak D, Martiz J, Levenston ME, Pinsky PM. Depth-dependent transverse shear properties of the human corneal stroma. Invest Ophthalmol Vis Sci. 2012;53:873–80.PubMedPubMedCentralCrossRefGoogle Scholar
  52. Pinsky PM, Datye DV. A microstructurally-based finite element model of the incised human cornea. J Biomech. 1991;24:907–22.PubMedCrossRefGoogle Scholar
  53. Pinsky PM, van der Heide D, Chernyak D. Computational modeling of the mechanical anisotropy in the cornea and sclera. J Cataract Refract Surg. 2005;31:136–45.PubMedCrossRefGoogle Scholar
  54. Quigley HA, Addicks EM. Chronic experimental glaucoma in primates. II. Effect of extended intraocular pressure elevation on optic nerve head and axonal transport. Invest Ophthalmol Vis Sci. 1980;19:137–52.PubMedGoogle Scholar
  55. Quigley HA, Addicks EM. Regional differences in the structure of the lamina cribrosa and their reaction to glaucomatous nerve damage. Arch Ophthalmol. 1981;99:137–43.PubMedCrossRefGoogle Scholar
  56. Quigley HA, Anderson DR. The dynamics and location of axonal transport blockade by acute intraocular pressure elevation in primate optic nerve. Invest Ophthalmol. 1976;15:606–16.PubMedGoogle Scholar
  57. Quigley HA, Addicks EM, Green WR, Maumenee AE. Optic nerve damage in human glaucoma. II. The site of injury and susceptibility to damage. Arch Ophthalmol. 1981;99:635–49.PubMedCrossRefGoogle Scholar
  58. Radius RL, Anderson DR. The course of axons through the retina and optic nerve head. Arch Ophthalmol. 1979a;97:1154–8.PubMedCrossRefGoogle Scholar
  59. Radius RL, Anderson DR. The histology of retinal nerve fiber layer bundles and bundle defects. Arch Ophthalmol. 1979b;97:948–50.PubMedCrossRefGoogle Scholar
  60. Radius RL, Anderson DR. Rapid axonal transport in primate optic nerve. Distribution of pressure-induced interruption. Arch Ophthalmol. 1981;99:650–9.PubMedCrossRefGoogle Scholar
  61. Raz E, Lanir Y. Recruitment viscoelasticity of the tendon. J Biomech Eng. 2009;131:111008.CrossRefGoogle Scholar
  62. Rehnberg M, Ammitzböll T, Tengroth B. Collagen distribution in the lamina cribrosa and the trabecular meshwork of the human eye. Br J Ophthalmol. 1987;71:886–92.PubMedPubMedCentralCrossRefGoogle Scholar
  63. Roberts MD, Grau V, Grimm J, Reynaud J, Bellezza AJ, Burgoyne CF, Downs JC. Remodeling of the connective tissue microarchitecture of the lamina cribrosa in early experimental glaucoma. Invest Ophthalmol Vis Sci. 2009;50:681–90.PubMedPubMedCentralCrossRefGoogle Scholar
  64. Roberts MD, Liang Y, Sigal IA, Grimm J, Reynaud J, Bellezza A, Burgoyne CF, Downs JC. Correlation between local stress and strain and lamina cribrosa connective tissue volume fraction in normal monkey eyes. Invest Ophthalmol Vis Sci. 2010a;51:295–307.PubMedPubMedCentralCrossRefGoogle Scholar
  65. Roberts MD, Sigal IA, Liang Y, Burgoyne CF, Downs JC. Changes in the biomechanical response of the optic nerve head in early experimental glaucoma. Invest Ophthalmol Vis Sci. 2010b;51:5675–84.PubMedPubMedCentralCrossRefGoogle Scholar
  66. Sigal IA, Flanagan JG, Ethier CR. Factors influencing optic nerve head biomechanics. Invest Ophthalmol Vis Sci. 2005;46:4189–99.PubMedCrossRefGoogle Scholar
  67. Sigal IA, Flanagan JG, Tertinegg I, Ethier CR. Predicted extension, compression and shearing of optic nerve head tissues. Exp Eye Res. 2007;85:312–22.PubMedCrossRefGoogle Scholar
  68. Sigal IA, Flanagan JG, Tertinegg I, Ethier CR. Modeling individual-specific human optic nerve head biomechanics. Part I: IOP-induced deformations and influence of geometry. Biomech Model Mechanobiol. 2009a;8:85–98.PubMedCrossRefGoogle Scholar
  69. Sigal IA, Flanagan JG, Tertinegg I, Ethier CR. Modeling individual-specific human optic nerve head biomechanics. Part II: influence of material properties. Biomech Model Mechanobiol. 2009b;8:99–109.PubMedCrossRefGoogle Scholar
  70. Sigal IA, Yang H, Roberts MD, Burgoyne CF, Downs JC. IOP-induced lamina cribrosa displacement and scleral canal expansion: an analysis of factor interactions using parameterized eye-specific models. Invest Ophthalmol Vis Sci. 2011a;52:1896–907.PubMedPubMedCentralCrossRefGoogle Scholar
  71. Sigal IA, Yang H, Roberts MD, Grimm JL, Burgoyne CF, Demirel S, Downs JC. IOP-induced lamina cribrosa deformation and scleral canal expansion: independent or related? Invest Ophthalmol Vis Sci. 2011b;52:9023–32.PubMedPubMedCentralCrossRefGoogle Scholar
  72. Sverdlik A, Lanir Y. Time-dependent mechanical behavior of sheep digital tendons, including the effects of preconditioning. J Biomech Eng. 2002;124:78–84.PubMedCrossRefGoogle Scholar
  73. Taber LA, Humphrey JD. Stress-modulated growth, residual stress, and vascular heterogeneity. JBiomech Eng. 2001;123:528–35.PubMedCrossRefGoogle Scholar
  74. Terada K, Kikuchi N. A class of general algorithms for multi-scale analyses of heterogeneous media. Comput Meth Appl Mech Eng. 2001;190:5427–64.CrossRefGoogle Scholar
  75. Winkler M, Jester B, Nien-Shy C, Massei S, Minckler DS, Jester JV, Brown DJ. High resolution three dimensional reconstruction of the collagenous matrix of the human optic nerve head. Brain Res Bull. 2010;81:339–48.PubMedPubMedCentralCrossRefGoogle Scholar
  76. Woo SL, Kobayashi AS, Schlegel WA, Lawrence C. Nonlinear material properties of intact cornea and sclera. Exp Eye Res. 1972;14:29–39.PubMedCrossRefGoogle Scholar
  77. Yang H, Downs JC, Girkin C, Sakata L, Bellezza A, Thompson H, Burgoyne CF. 3-D histomorphometry of the normal and early glaucomatous monkey optic nerve head: lamina cribrosa and peripapillary scleral position and thickness. Invest Ophthalmol Vis Sci. 2007;48:4597–607.PubMedPubMedCentralCrossRefGoogle Scholar
  78. Yang H, Williams G, Downs JC, Sigal IA, Roberts MD, Thompson H, Burgoyne CF. Posterior (outward) migration of the lamina cribrosa and early cupping in monkey experimental glaucoma. Invest Ophthalmol Vis Sci. 2011;52:7109–21.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2016

Authors and Affiliations

  • Rafael Grytz
    • 1
  • Günther Meschke
    • 2
  • Jost B. Jonas
    • 3
  • J. Crawford Downs
    • 1
  1. 1.Department of OphthalmologyUniversity of Alabama at BirminghamBirminghamAlabama
  2. 2.Institute for Structural MechanicsRuhr-University BochumBochumGermany
  3. 3.Department of OpthalmologyMedical Faculty Mannheim, Ruprecht-Karls-University HeidelbergMannheimGermany

Personalised recommendations