Skip to main content

The Biomechanics of Fat: From Tissue to a Cell Scale

  • Chapter

Abstract

Adipose tissues are weight-bearing biological structures that are involved in central medical problems such as obesity, diabetes and their comorbidities. Their biomechanical properties are relevant in several fields such as cosmetics, acute and chronic wound treatments, implantable drug delivery systems, and plastic surgery. In this chapter, we relate the mechanical behavior of the adipose tissue continuum to the biological activities of adipocytes. We demonstrate that first, at a macroscopic scale, the mechanical behavior of adipose tissues depends on the anatomical site and hence on physiological function. At a microscopic scale, mechanical function such as cell stiffness properties depends on the triglyceride contents that in turn depend on the level of differentiation, which has recently been shown to be regulated by mechanical loading. Hence, based on the empirical data, we propose a novel hypothesis regarding structure–function–adaptation processes and relationships in fat, which might open new research paths for studying adipose-related diseases from a biomechanical point of view, involving the mechanotransduction and structure–function–adaptation concepts that are well known to exist for other tissues but were so far very poorly studied in fat.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Avram AS, Avram MM, James WD. Subcutaneous fat in normal and diseased states: 2. Anatomy and physiology of white and brown adipose tissue. J Am Acad Dermatol. 2005;53:671–83.

    Article  PubMed  Google Scholar 

  • Case N, Xie Z, Sen B, Styner M, Zou M, O’Conor C, Horowitz M, Rubin J. Mechanical activation of β-catenin regulates phenotype in adult murine marrow-derived mesenchymal stem cells. JOrthop Res. 2010;28:1531–8.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Christiaens V, Lijnen HR. Angiogenesis and development of adipose tissue. Mol Cell Endocrinol. 2010;318:2–9.

    Article  PubMed  CAS  Google Scholar 

  • Darling EM, Topel M, Zauscher S, Vail TP, Guilak F. Viscoelastic properties of human mesenchymally-derived stem cells and primary osteoblasts, chondrocytes, and adipocytes. JBiomech. 2008;41:454–64.

    Article  PubMed  PubMed Central  Google Scholar 

  • David V, Martin A, Lafage-Proust MH, Malaval L, Peyroche S, Jones DB, Vico L, Guignandon A. Endocrinology. 2007;148:2553–62.

    Article  PubMed  CAS  Google Scholar 

  • Geerligs M, Peters GW, Ackermans PA, Oomens CW, Baaijens FP. Linear viscoelastic behavior of subcutaneous adipose tissue. Biorheology. 2008;45:677–88.

    PubMed  Google Scholar 

  • Geerligs M, Peters GW, Ackermans PA, Oomens CW, Baaijens FP. Does subcutaneous adipose tissue behave as an (anti-)thixotropic material? J Biomech. 2010;43:1153–9.

    Article  PubMed  Google Scholar 

  • Gefen A, Haberman E. Viscoelastic properties of ovine adipose tissue covering the gluteus muscles. J Biomech Eng. 2007;129:924–30.

    Article  PubMed  Google Scholar 

  • Gefen A, Megido-Ravid M, Itzchak Y. In vivo biomechanical behavior of the human heel pad during the stance phase of gait. J Biomech. 2001;34:1661.

    Article  PubMed  CAS  Google Scholar 

  • Hara Y, Wakino S, Tanabe Y, Saito M, Tokuyama H, Washida N, Tatematsu S, Yoshioka K, Homma K, Hasegawa K, Minakuchi H, Fujimura K, Hosoya K, Hayashi K, Nakayama K, Itoh H. Rho and Rho-kinase activity in adipocytes contributes to a vicious cycle in obesity that may involve mechanical stretch. Sci Signal. 2011;4:ra3.

    Article  PubMed  Google Scholar 

  • Hossain MG, Iwata T, Mizusawa N, Shima SW, Okutsu T, Ishimoto K, Yoshimoto K. Compressive force inhibits adipogenesis through COX-2-mediated down-regulation of PPARgamma2 and C/EBPalpha. J Biosci Bioeng. 2010;109:297–303.

    Article  PubMed  CAS  Google Scholar 

  • Huang SC, Wu TC, Yu HC, Chen MR, Liu CM, Chiang WS, Lin KM. Mechanical strain modulates age-related changes in the proliferation and differentiation of mouse adipose-derived stromal cells. BMC Cell Biol. 2010;10:11–8.

    Google Scholar 

  • Iatridis JC, Wu J, Yandow JA, Langevin HM. Subcutaneous tissue mechanical behavior is linear and viscoelastic under uniaxial tension. Connect Tissue Res. 2003;44:208–17.

    Article  PubMed  Google Scholar 

  • Kato H, Suga H, Eto H, Araki J, Aoi N, Doi K, Iida T, Tabata Y, Yoshimura K. Reversible adipose tissue enlargement induced by external tissue suspension: possible contribution of basic fibroblast growth factor in the preservation of enlarged tissue. Tissue Eng Part A. 2010;16:2029–40.

    Article  PubMed  CAS  Google Scholar 

  • Krouskop TA, Wheeler TM, Kallel F, Garra BS, Hall T. Elastic moduli of breast and prostate tissues under compression. Ultrason Imaging. 1998;20:260–74.

    Article  PubMed  CAS  Google Scholar 

  • Levy A, Enzer S, Shoham N, Zaretsky U, Gefen A. Large, but not small sustained tensile strains stimulate adipogenesis in culture. Ann Biomed Eng. 2011;40(5):1052–60. doi:10.1007/s10439-011-0496-x.

    Article  PubMed  Google Scholar 

  • Linder-Ganz E, Shabshin N, Itzchak Y, Gefen A. Assessment of mechanical conditions in sub-dermal tissues during sitting: a combined experimental-MRI and finite element approach. JBiomech. 2007;40:1443–54.

    Article  PubMed  Google Scholar 

  • Linder-Ganz E, Shabshin N, Itzchak Y, Yizhar Z, Siev-Ner I, Gefen A. Strains and stresses in sub-dermal tissues of the buttocks are greater in paraplegics than in healthy during sitting. JBiomech. 2008;41:567–80.

    Article  PubMed  Google Scholar 

  • Luu YK, Capilla E, Rosen CJ, Gilsanz V, Pessin JE, Judex S, Rubin CT. Mechanical stimulation of mesenchymal stem cell proliferation and differentiation promotes osteogenesis while preventing dietary-induced obesity. J Bone Miner Res. 2009;24:50–61.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Maddalozzo GF, Iwaniec UT, Turner RT, Rosen CJ, Widrick JJ. Whole-body vibration slows the acquisition of fat in mature female rats. Int J Obes (Lond). 2008;32:1348–54.

    Article  CAS  Google Scholar 

  • Marques MA, Combes M, Roussel B, Vidal-Dupont L, Thalamas C, Lafontan M, Viguerie N. Impact of a mechanical massage on gene expression profile and lipid mobilization in female gluteofemoral adipose tissue. Obes Facts. 2011;4:121–9.

    Article  PubMed  CAS  Google Scholar 

  • Monteux C, Lafontan M. Use of the microdialysis technique to assess lipolytic responsiveness of femoral adipose tissue after 12 sessions of mechanical massage technique. J Eur Acad Dermatol Venereol. 2008;22:1465–70.

    Article  PubMed  CAS  Google Scholar 

  • Or-Tzadikario S, Gefen A. Confocal-based cell-specific finite element modeling extended to study variable cell shapes and intracellular structures: the example of the adipocyte. J Biomech. 2011;44:567–73.

    Article  PubMed  Google Scholar 

  • Or-Tzadikario S, Sopher R, Gefen A. Quantitative monitoring of lipid accumulation over time in cultured adipocytes as function of culture conditions: toward controlled adipose tissue engineering. Tissue Eng Part C Methods. 2010;16:1167–81.

    Article  PubMed  CAS  Google Scholar 

  • Ozcivici E, Luu YK, Rubin CT, Judex S. Low-level vibrations retain bone marrow’s osteogenic potential and augment recovery of trabecular bone during reambulation. PLoS One. 2010;5:e11178.

    Article  PubMed  PubMed Central  Google Scholar 

  • Park Y, Best CA, Badizadegan K, Dasari RR, Feld MS, Kuriabova T, Henle ML, Levine AJ, Popescu G. Measurement of red blood cell mechanics during morphological changes. Proc Natl Acad Sci U S A. 2010;107:6731–6.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Rubin CT, Capilla E, Luu YK, Busa B, Crawford H, Nolan DJ, Mittal V, Rosen CJ, Pessin JE, Judex S. Adipogenesis is inhibited by brief, daily exposure to high-frequency, extremely low-magnitude mechanical signals. Proc Natl Acad Sci U S A. 2007;104:17879–84.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Samani A, Zubovits J, Plewes D. Elastic moduli of normal and pathological human breast tissues: an inversion-technique-based investigation of 169 samples. Phys Med Biol. 2007;52:1565–76.

    Article  PubMed  Google Scholar 

  • Sen B, Xie Z, Case N, Ma M, Rubin C, Rubin J. Mechanical strain inhibits adipogenesis in mesenchymal stem cells by stimulating a durable beta-catenin signal. Endocrinology. 2008;149:6065–75.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Sen B, Styner M, Xie Z, Case N, Rubin CT, Rubin J. Mechanical loading regulates NFATc1 and beta-catenin signaling through a GSK3beta control node. J Biol Chem. 2009;284:34607–17.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Sen B, Xie Z, Case N, Styner M, Rubin CT, Rubin J. Mechanical signal influence on mesenchymal stem cell fate is enhanced by incorporation of refractory periods into the loading regimen. JBiomech. 2011;44:593–9.

    Article  PubMed  PubMed Central  Google Scholar 

  • Shaked NT, Satterwhite LL, Rinehart MT, Wax A. Quantitative analysis of biological cells using digital holographic microscopy. In: Rosen J, editor. Holography, research and technologies. Rijeka: InTech; 2011.

    Google Scholar 

  • Shoham N, Gefen A. Mechanotransduction in adipocytes. J Biomech. 2012a;45:1–8.

    Article  PubMed  Google Scholar 

  • Shoham N, Gefen A. The influence of mechanical stretching on mitosis, growth, and adipose conversion in adipocyte cultures. Biomech Model Mechanobiol. 2012b;11(7):1029–45. doi:10.1007/s10237-011-0371-6.

    Article  PubMed  Google Scholar 

  • Shoham N, Girshovitz P, Shaked NT, Gefen A (2012a) Evaluating stiffness distributions of differentiating adipocytes using a wide-field digital interferometric method. In: Proceedings of the 10th international symposium on computer methods in biomechanics and biomedical engineering, Berlin, Germany, 11–14 April 2012.

    Google Scholar 

  • Shoham N, Gottlieb R, Sharabani-Yosef O, Zaretsky U, Benayahu D, Gefen A. Static mechanical stretching accelerates lipid production in 3T3-L1 adipocytes by activating the MEK signaling pathway. Am J Physiol Cell Physiol. 2012b;302:C429–41.

    Article  PubMed  CAS  Google Scholar 

  • Sinkus R, Tanter M, Xydeas T, Catheline S, Bercoff J, Fink M. Viscoelastic shear properties of in vivo breast lesions measured by MR elastography. Magn Reson Imaging. 2005;23:159–65.

    Article  PubMed  Google Scholar 

  • Tanabe Y, Koga M, Saito M, Matsunaga Y, Nakayama K. Inhibition of adipocyte differentiation by mechanical stretching through ERK-mediated downregulation of PPARgamma2. J Cell Sci. 2004;117:3605–14.

    Article  PubMed  CAS  Google Scholar 

  • Tanabe Y, Matsunaga Y, Saito M, Nakayama K. Involvement of cyclooxygenase-2 in synergistic effect of cyclic stretching and eicosapentaenoic acid on adipocyte differentiation. J Pharmacol Sci. 2008;106:478–84.

    Article  PubMed  CAS  Google Scholar 

  • Tirkkonen L, Halonen H, Hyttinen J, Kuokkanen H, Sievänen H, Koivisto AM, Mannerström B, Sándor GK, Suuronen R, Miettinen S, Haimi S. The effects of vibration loading on adipose stem cell number, viability and differentiation towards bone-forming cells. J R Soc Interface. 2011;8:1736–47.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Turner NJ, Jones HS, Davies JE, Canfield AE. Cyclic stretch-induced TGFbeta1/Smad signaling inhibits adipogenesis in umbilical cord progenitor cells. Biochem Biophys Res Commun. 2008;377:1147–51.

    Article  PubMed  CAS  Google Scholar 

  • Vissers D, Verrijken A, Mertens I, Van Gils C, Van de Sompel A, Truijen S, Van Gaal L. Effect of long-term whole body vibration training on visceral adipose tissue: a preliminary report. Obes Facts. 2010;3:93–100.

    Article  PubMed  Google Scholar 

  • Weaver JB, Doyley M, Cheung Y, Kennedy F, Madsen EL, Van Houten EE, Paulsen K. Imaging the shear modulus of the heel fat pads. Clin Biomech (Bristol, Avon). 2005;20:312–9.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit Gefen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Shoham, N., Gefen, A. (2016). The Biomechanics of Fat: From Tissue to a Cell Scale. In: Kassab, G., Sacks, M. (eds) Structure-Based Mechanics of Tissues and Organs. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-7630-7_5

Download citation

Publish with us

Policies and ethics