Skip to main content

A Microvascular Model in Skeletal Muscle Fascia

  • Chapter
  • 1511 Accesses

Abstract

This study considers the microcirculation in skelet al muscle fascia. Simulations are performed using a comprehensive approach to the problem with realistic reconstruction of the microvasculature, blood rheology and vessel wall properties, and Stokes flow in the microvessels. The simulation results provide detailed network displays of basic hemodynamic parameters. For example, an approximately normal distribution was found for the hematocrit. High hematocrit values are observed in areas with low blood perfusion, e.g., in the peripheral regions of the network. A range of velocity values was found in the capillary vessels of the network, in contrast to experimental observations which suggest a relative narrow distribution of capillary velocities. This finding points to the need of an improved treatment of mechanisms for the control of vessel diameter. A local mechanism based on the shear stress is proposed for future studies of the microcirculation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Barbee KA, Davies PF, Lal R. Shear stress-induced reorganization of the surface topography of living endothelial cells imaged by atomic force microscopy. Circ Res. 1994;74(1):163–71.

    Article  PubMed  CAS  Google Scholar 

  • Chien S, Usami S, Bertles JF. Abnormal rheology of oxygenated blood in sickle cell anemia. J Clin Invest. 1970;49(4):623–34.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Davis DL. Small blood vessel responses to sympathetic stimulation. Am J Physiol. 1963;205(3):579–84.

    PubMed  CAS  Google Scholar 

  • Ellis CG, Safranyos RG, Groom AC. Television-computer method for in vivo measurement of capillary diameter, based on the passage of red cells. Microvasc Res. 1983;26(2):139–50.

    Article  PubMed  CAS  Google Scholar 

  • Helmke BP, Bremner SN, Zweifach BW, Skalak R, Schmid-Schönbein GW. Mechanisms for increased blood flow resistance due to leukocytes. Am J Physiol. 1997;273(6 Pt 2):H2884–90.

    PubMed  CAS  Google Scholar 

  • Hueck IS, Rossiter K, Artmann GM, Schmid-Schönbein GW. Fluid shear attenuates endothelial pseudopodia formation into the capillary lumen. Microcirculation. 2008;15(6):531–42.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jacobitz FG, Anderson S, Babila E, Gabbard M, Weiss C. A comparison of the microcirculation in rat spinotrapezius muscle and muscle fascia. Marseille: Congrès Français de Méchanique; 2009.

    Google Scholar 

  • Lee J, Schmid-Schönbein GW. Biomechanics of skelet al muscle capillaries: hemodynamic resistance, endothelial distensibility, and pseudopod formation. Ann Biomed Eng. 1995;23(3): 226–46.

    Article  PubMed  CAS  Google Scholar 

  • Lee S-Y, Schmid-Schönbein GW. Biomechanical model for the myogenic response in the microcirculation: part I. Formulation and initial testing. J Biomech Eng. 1996;118(2):145–51.

    Article  PubMed  CAS  Google Scholar 

  • Lee S-Y, Sutton D, Fenster M, Schmid-Schönbein GW. Biomechanical model for skelet al muscle microcirculation with reference to red and white blood cell perfusion and autoregulation. In: Mow VC, Guilak F, Tran-Son-Tay R, Hochmuth RM, editors. Cell mechanics and cellular engineering. New York: Springer; (1994) ch. 29, pp. 534–64.

    Google Scholar 

  • Lipowsky HH, Usami S, Chien S. In vivo measurements of “apparent viscosity” and microvessel hematocrit in the mesentery of the cat. Microvasc Res. 1980;19(3):297–319.

    Article  PubMed  CAS  Google Scholar 

  • Makino A, Prossnitz ER, Bünemann M, Wang JM, Yao W, Schmid-Schönbein GW. G Protein-coupled receptors serve as mechanosensors for fluid shear stress in neutrophils. Am J Physiol Cell Physiol. 2006;290(6):C1633–9.

    Article  PubMed  CAS  Google Scholar 

  • Meininger GA, Davis MJ. Cellular mechanisms involved in the vascular myogenic response. Am J Physiol. 1992;263(3 Pt 2):H647–59.

    PubMed  CAS  Google Scholar 

  • Moazzam F, DeLano FA, Zweifach BW, Schmid-Schönbein GW. The leukocyte response to fluid stress. Proc Natl Acad Sci U S A. 1997;94(1):5338–43.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Pries AR, Secomb TW. Microvascular blood viscosity in vivo and the endothelial surface layer. Am J Physiol Heart Circ Physiol. 2005;289(6):H2657–64.

    Article  PubMed  CAS  Google Scholar 

  • Pries AR, Secomb TW, Gaehtgens P, Gross JF. Blood flow in microvascular networks. Experiments and simulation. Circ Res. 1990;67(4):826–34.

    Article  PubMed  CAS  Google Scholar 

  • Pries AR, Reglin B, Secomb TW. Structural adaptation of microvascular networks: functional roles of adaptive responses. Am J Physiol Heart Circ Physiol. 2001;281(3):H1015–25.

    PubMed  CAS  Google Scholar 

  • Sato M, Nagayama K, Kataoka N, Sasaki M, Hane K. Local mechanical properties measured by atomic force microscopy for cultured bovine endothelial cells exposed to shear stress. JBiomech. 2000;33(1):127–35.

    Google Scholar 

  • Scheidler NM. A proposed mechanism for control of capillary network perfusion: the role of endothelial mechanotransduction through nitric oxide signaling and the glycocalyx. Dissertation, University of California, San Diego; 2007.

    Google Scholar 

  • Schmid-Schönbein GW. A theory of blood flow in skelet al muscle. J Biomech Eng. 1988;110(1):20–6.

    Article  PubMed  Google Scholar 

  • Schmid-Schönbein GW, Skalak R, Usami S, Chien S. Cell distribution in capillary networks. Microvasc Res. 1980;19(1):18–44.

    Article  PubMed  Google Scholar 

  • Skalak TC, Schmid-Schönbein GW. The micro-vasculature in skelet al muscle. IV. A model of the capillary network. Microvasc Res. 1986a;32(3):333–47.

    Article  PubMed  CAS  Google Scholar 

  • Skalak TC, Schmid-Schönbein GW. Viscoelastic properties of microvessels in rat spinotrapezius muscle. J Biomech Eng. 1986b;108(3):193–200.

    Article  PubMed  CAS  Google Scholar 

  • Stokke KE. An analysis of the microvasculature and blood flow in rat spinotrapezius muscle fascia. M.S. Thesis, University of California, San Diego; 1999.

    Google Scholar 

  • Thompson TN, La Celle PL, Cokelet GR. Perturbation of red blood cell flow in small tubes by white blood cells. Pflugers Arch. 1989;413(4):372–7.

    Article  PubMed  CAS  Google Scholar 

  • Tran ED, Yang M, Chen A, DeLano FA, Murfee WL, Schmid-Schönbein GW. Matrix met alloproteinase activity causes VEGFR-2 cleavage and microvascular rarefaction in rat mesentery. Microcirculation. 2011;18(3):228–37.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Tyml K, Cheng L. Heterogeneity of red blood cell velocity in skelet al muscle decreases with increased flow. Microcirculation. 1995;2(2):181–93.

    Article  PubMed  CAS  Google Scholar 

  • Tyml K, Mathieu-Costello O, Budreau CH. Distribution of red blood cell velocity in capillary network, and endothelial ultrastructure, in aged rat skelet al muscle. Microvasc Res. 1992;44(1):1–13.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geert W. Schmid-Schönbein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Jacobitz, F.G., Yamamura, N.L., Jones, A.M., Schmid-Schönbein, G.W. (2016). A Microvascular Model in Skeletal Muscle Fascia. In: Kassab, G., Sacks, M. (eds) Structure-Based Mechanics of Tissues and Organs. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-7630-7_20

Download citation

Publish with us

Policies and ethics