A Microvascular Model in Skeletal Muscle Fascia

  • Frank G. Jacobitz
  • Niki L. Yamamura
  • Adam M. Jones
  • Geert W. Schmid-Schönbein

Abstract

This study considers the microcirculation in skelet al muscle fascia. Simulations are performed using a comprehensive approach to the problem with realistic reconstruction of the microvasculature, blood rheology and vessel wall properties, and Stokes flow in the microvessels. The simulation results provide detailed network displays of basic hemodynamic parameters. For example, an approximately normal distribution was found for the hematocrit. High hematocrit values are observed in areas with low blood perfusion, e.g., in the peripheral regions of the network. A range of velocity values was found in the capillary vessels of the network, in contrast to experimental observations which suggest a relative narrow distribution of capillary velocities. This finding points to the need of an improved treatment of mechanisms for the control of vessel diameter. A local mechanism based on the shear stress is proposed for future studies of the microcirculation.

Keywords

Microcirculation Stokes flow Fascia Shear stress Local regulation 

References

  1. Barbee KA, Davies PF, Lal R. Shear stress-induced reorganization of the surface topography of living endothelial cells imaged by atomic force microscopy. Circ Res. 1994;74(1):163–71.PubMedCrossRefGoogle Scholar
  2. Chien S, Usami S, Bertles JF. Abnormal rheology of oxygenated blood in sickle cell anemia. J Clin Invest. 1970;49(4):623–34.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Davis DL. Small blood vessel responses to sympathetic stimulation. Am J Physiol. 1963;205(3):579–84.PubMedGoogle Scholar
  4. Ellis CG, Safranyos RG, Groom AC. Television-computer method for in vivo measurement of capillary diameter, based on the passage of red cells. Microvasc Res. 1983;26(2):139–50.PubMedCrossRefGoogle Scholar
  5. Helmke BP, Bremner SN, Zweifach BW, Skalak R, Schmid-Schönbein GW. Mechanisms for increased blood flow resistance due to leukocytes. Am J Physiol. 1997;273(6 Pt 2):H2884–90.PubMedGoogle Scholar
  6. Hueck IS, Rossiter K, Artmann GM, Schmid-Schönbein GW. Fluid shear attenuates endothelial pseudopodia formation into the capillary lumen. Microcirculation. 2008;15(6):531–42.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Jacobitz FG, Anderson S, Babila E, Gabbard M, Weiss C. A comparison of the microcirculation in rat spinotrapezius muscle and muscle fascia. Marseille: Congrès Français de Méchanique; 2009.Google Scholar
  8. Lee J, Schmid-Schönbein GW. Biomechanics of skelet al muscle capillaries: hemodynamic resistance, endothelial distensibility, and pseudopod formation. Ann Biomed Eng. 1995;23(3): 226–46.PubMedCrossRefGoogle Scholar
  9. Lee S-Y, Schmid-Schönbein GW. Biomechanical model for the myogenic response in the microcirculation: part I. Formulation and initial testing. J Biomech Eng. 1996;118(2):145–51.PubMedCrossRefGoogle Scholar
  10. Lee S-Y, Sutton D, Fenster M, Schmid-Schönbein GW. Biomechanical model for skelet al muscle microcirculation with reference to red and white blood cell perfusion and autoregulation. In: Mow VC, Guilak F, Tran-Son-Tay R, Hochmuth RM, editors. Cell mechanics and cellular engineering. New York: Springer; (1994) ch. 29, pp. 534–64.Google Scholar
  11. Lipowsky HH, Usami S, Chien S. In vivo measurements of “apparent viscosity” and microvessel hematocrit in the mesentery of the cat. Microvasc Res. 1980;19(3):297–319.PubMedCrossRefGoogle Scholar
  12. Makino A, Prossnitz ER, Bünemann M, Wang JM, Yao W, Schmid-Schönbein GW. G Protein-coupled receptors serve as mechanosensors for fluid shear stress in neutrophils. Am J Physiol Cell Physiol. 2006;290(6):C1633–9.PubMedCrossRefGoogle Scholar
  13. Meininger GA, Davis MJ. Cellular mechanisms involved in the vascular myogenic response. Am J Physiol. 1992;263(3 Pt 2):H647–59.PubMedGoogle Scholar
  14. Moazzam F, DeLano FA, Zweifach BW, Schmid-Schönbein GW. The leukocyte response to fluid stress. Proc Natl Acad Sci U S A. 1997;94(1):5338–43.PubMedPubMedCentralCrossRefGoogle Scholar
  15. Pries AR, Secomb TW. Microvascular blood viscosity in vivo and the endothelial surface layer. Am J Physiol Heart Circ Physiol. 2005;289(6):H2657–64.PubMedCrossRefGoogle Scholar
  16. Pries AR, Secomb TW, Gaehtgens P, Gross JF. Blood flow in microvascular networks. Experiments and simulation. Circ Res. 1990;67(4):826–34.PubMedCrossRefGoogle Scholar
  17. Pries AR, Reglin B, Secomb TW. Structural adaptation of microvascular networks: functional roles of adaptive responses. Am J Physiol Heart Circ Physiol. 2001;281(3):H1015–25.PubMedGoogle Scholar
  18. Sato M, Nagayama K, Kataoka N, Sasaki M, Hane K. Local mechanical properties measured by atomic force microscopy for cultured bovine endothelial cells exposed to shear stress. JBiomech. 2000;33(1):127–35.Google Scholar
  19. Scheidler NM. A proposed mechanism for control of capillary network perfusion: the role of endothelial mechanotransduction through nitric oxide signaling and the glycocalyx. Dissertation, University of California, San Diego; 2007.Google Scholar
  20. Schmid-Schönbein GW. A theory of blood flow in skelet al muscle. J Biomech Eng. 1988;110(1):20–6.PubMedCrossRefGoogle Scholar
  21. Schmid-Schönbein GW, Skalak R, Usami S, Chien S. Cell distribution in capillary networks. Microvasc Res. 1980;19(1):18–44.PubMedCrossRefGoogle Scholar
  22. Skalak TC, Schmid-Schönbein GW. The micro-vasculature in skelet al muscle. IV. A model of the capillary network. Microvasc Res. 1986a;32(3):333–47.PubMedCrossRefGoogle Scholar
  23. Skalak TC, Schmid-Schönbein GW. Viscoelastic properties of microvessels in rat spinotrapezius muscle. J Biomech Eng. 1986b;108(3):193–200.PubMedCrossRefGoogle Scholar
  24. Stokke KE. An analysis of the microvasculature and blood flow in rat spinotrapezius muscle fascia. M.S. Thesis, University of California, San Diego; 1999.Google Scholar
  25. Thompson TN, La Celle PL, Cokelet GR. Perturbation of red blood cell flow in small tubes by white blood cells. Pflugers Arch. 1989;413(4):372–7.PubMedCrossRefGoogle Scholar
  26. Tran ED, Yang M, Chen A, DeLano FA, Murfee WL, Schmid-Schönbein GW. Matrix met alloproteinase activity causes VEGFR-2 cleavage and microvascular rarefaction in rat mesentery. Microcirculation. 2011;18(3):228–37.PubMedPubMedCentralCrossRefGoogle Scholar
  27. Tyml K, Cheng L. Heterogeneity of red blood cell velocity in skelet al muscle decreases with increased flow. Microcirculation. 1995;2(2):181–93.PubMedCrossRefGoogle Scholar
  28. Tyml K, Mathieu-Costello O, Budreau CH. Distribution of red blood cell velocity in capillary network, and endothelial ultrastructure, in aged rat skelet al muscle. Microvasc Res. 1992;44(1):1–13.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2016

Authors and Affiliations

  • Frank G. Jacobitz
    • 1
  • Niki L. Yamamura
    • 1
  • Adam M. Jones
    • 1
  • Geert W. Schmid-Schönbein
    • 2
  1. 1.Mechanical Engineering ProgramUniversity of San DiegoSan DiegoUSA
  2. 2.Department of BioengineeringUniversity of California, San DiegoLa JollaUSA

Personalised recommendations