Fibers to Organs: How Collagen Fiber Properties Modulate the Closing Behavior of the Mitral Valve


We developed a micro- and macro anatomically accurate MV finite element model by incorporating actual fiber microstructural architecture and a realistic structure-based constitutive model. Comparative and parametric studies were conducted to identify essential model fidelity and information for achieving desirable accuracy. More importantly, for the first time, the interrelationship between the local fiber ensemble behavior and the organ-level MV closing behavior was investigated using a computational simulation. These novel results indicated not only the appropriate parameter ranges, but also the importance of the microstructural tuning (i.e., straightening and reorientation) of the collagen/elastin fiber networks at the microscopic tissue level for facilitating the proper coaptation and natural functioning of the MV apparatus under physiological loading at the organ level. The proposed computational model would serve as a logical first step toward our long-term modeling goal—facilitating simulation-guided design of optimal surgical repair strategies for treating diseased MVs with significantly enhanced durability.


Mapped fiber microstructural architecture Image-based FE simulation Simplified structural constitutive model Affine fiber kinematics In vitro validations 



Support from the National Institutes of Health (NIH) grants R01 HL119297 is greatly acknowledged. Dr. Chung-Hao Lee was supported in part by the American Heart Association (AHA) Postdoctoral Fellowship (14POST18160013) and a UT Austin ICES Postdoctoral Fellowship.

Conflict of Interest: None of the authors have a conflict of interest with the present work.


  1. Adams DH, Rosenhek R, Falk V. Degenerative mitral valve regurgitation: best practice revolution. Eur Heart J. 2010;31(16):1958–66. doi: 10.1093/eurheartj/ehq222. pii: ehq222. PubMed PMID: 20624767; PubMed Central PMCID: PMC2921508. Epub 2010/07/14.PubMedPubMedCentralCrossRefGoogle Scholar
  2. Braunberger E, Deloche A, Berrebi A, Abdallah F, Celestin JA, Meimoun P, et al. Very long-term results (more than 20 years) of valve repair with carpentier’s techniques in nonrheumatic mitral valve insufficiency. Circulation. 2001;104(12 Suppl 1):I8–11. PubMed PMID: 11568021.PubMedGoogle Scholar
  3. Carpentier A. Cardiac valve surgery--the “French correction∞”. J Thorac Cardiovasc Surg. 1983;86(3):323–37. PubMed PMID: 6887954.Google Scholar
  4. Carpentier A, Chauvaud S, Fabiani JN, Deloche A, Relland J, Lessana A, et al. Reconstructive surgery of mitral valve incompetence: ten-year appraisal. J Thorac Cardiovasc Surg. 1980;79(3):338–48. PubMed PMID: 7354634.PubMedGoogle Scholar
  5. Choi A, Rim Y, Mun JS, Kim H. A novel finite element-based patient-specific mitral valve repair: virtual ring annuloplasty. Bio-Med Mater Eng. 2014;24(1):341–7.Google Scholar
  6. Dal-Bianco JP, Aikawa E, Bischoff J, Guerrero JL, Handschumacher MD, Sullivan S, et al. Active adaptation of the tethered mitral valve: insights into a compensatory mechanism for functional mitral regurgitation. Circulation. 2009;120(4):334–42. doi: 10.1161/CIRCULATIONAHA.108.846782. Epub 2009/07/15. PubMed PMID: 19597052; PubMed Central PMCID: PMC2752046.PubMedPubMedCentralCrossRefGoogle Scholar
  7. David TE. The Toronto SPV bioprosthesis: clinical and hemodynamic results at 6 years. Ann Thorac Surg. 1999;68(3 Suppl):S9–13.PubMedCrossRefGoogle Scholar
  8. David TE, Ivanov J, Armstrong S, Christie D, Rakowski H. A comparison of outcomes of mitral valve repair for degenerative disease with posterior, anterior, and bileaflet prolapse. J Thorac Cardiovasc Surg. 2005;130(5):1242–9.PubMedCrossRefGoogle Scholar
  9. Fan R, Sacks MS. Simulation of planar soft tissues using a structural constitutive model: finite element implementation and validation. J Biomech. 2014;47:2043–54.PubMedPubMedCentralCrossRefGoogle Scholar
  10. Flameng W, Herijgers P, Bogaerts K. Recurrence of mitral valve regurgitation after mitral valve repair in degenerative valve disease. Circulation. 2003;107(12):1609–13. PubMed PMID: 12668494.PubMedCrossRefGoogle Scholar
  11. Flameng W, Meuris B, Herijgers P, Herregods M-C. Durability of mitral valve repair in Barlow disease versus fibroelastic deficiency. J Thorac Cardiovas Surg. 2008;135(2):274–82.CrossRefGoogle Scholar
  12. Frater R, Vetter H, Zussa C, Dahm M. Chordal replacement in mitral valve repair. Circulation. 1990;82(5 Suppl):IV125–30.PubMedGoogle Scholar
  13. Fung YC. Biomechanics: mechanical properties of living tissues. 2nd ed. New York: Springer; 1993. p. 568.CrossRefGoogle Scholar
  14. Gillinov AM, Blackstone EH, Nowicki ER, Slisatkorn W, Al-Dossari G, Johnston DR, et al. Valve repair versus valve replacement for degenerative mitral valve disease. J Thorac Cardiovas Surg. 2008;135(4):885–93.e2.CrossRefGoogle Scholar
  15. Gorman III JH, Gorman RC. Mitral valve surgery for heart failure: a failed innovation? Semin Thorac Cardiovasc Surg. 2006;18(2):135–8. doi: 10.1053/j.semtcvs.2006.07.003. Epub 2006/12/13.PubMedCrossRefGoogle Scholar
  16. Grande-Allen KJ, Borowski AG, Troughton RW, Houghtaling PL, Dipaola NR, Moravec CS, et al. Apparently normal mitral valves in patients with heart failure demonstrate biochemical and structural derangements: an extracellular matrix and echocardiographic study. J Am Coll Cardiol. 2005;45(1):54–61. PubMed PMID: 15629373.PubMedCrossRefGoogle Scholar
  17. Grashow JS, Yoganathan AP, Sacks MS. Biaxial stress-stretch behavior of the mitral valve anterior leaflet at physiologic strain rates. Ann Biomed Eng. 2006;34(2):315–25. PubMed PMID: 16450193.PubMedCrossRefGoogle Scholar
  18. Jassar AS, Minakawa M, Shuto T, Robb JD, Koomalsingh KJ, Levack MM, et al. Posterior leaflet augmentation in ischemic mitral regurgitation increases leaflet coaptation and mobility. Ann Thorac Surg. 2012;94(5):1438–45.PubMedPubMedCentralCrossRefGoogle Scholar
  19. Jensen MO, Jensen H, Levine RA, Yoganathan AP, Andersen NT, Nygaard H, et al. Saddle-shaped mitral valve annuloplasty rings improve leaflet coaptation geometry. J Thorac Cardiovasc Surg. 2011;142(3):697–703. doi: 10.1016/j.jtcvs.2011.01.022. Epub 2011/02/19. PubMed PMID: 21329946; PubMed Central PMCID: PMC3224846.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Kincaid EH, Riley RD, Hines MH, Hammon JW, Kon ND. Anterior leaflet augmentation for ischemic mitral regurgitation. Ann Thorac Surg. 2004;78(2):564–8. doi: 10.1016/j.athoracsur.2004.02.040; discussion 8. Epub 2004/07/28. PubMed PMID: 15276520.PubMedCrossRefGoogle Scholar
  21. Komeda M, Glasson JR, Bolger AF, Daughters II G, MacIsaac A, Oesterle S, et al. Geometric determinants of ischemic mitral regurgitation. Circulation. 1997;96(9 Suppl):II-128–33.Google Scholar
  22. Lanir Y. Constitutive equations for fibrous connective tissues. J Biomech. 1983;16:1–12.PubMedCrossRefGoogle Scholar
  23. Lee CH, Carruthers CA, Ayoub S, Gorman RC, Gorman 3rd JH, Sacks MS. J Theor Biol. 2015;373:26–9. doi: 10.1016/j.jtbi.2015.03.004.PubMedCrossRefGoogle Scholar
  24. Lee CH, Amini R, Yusuke S, Carruthers CA, Ankush A, Gorman RC, et al. Mitral valves: a computational framework. In: Suvranu D, Kuhl E, Hwang W, editors. Multiscale modeling in biomechanics and mechanobiology. London: Springer; 2015.Google Scholar
  25. Mahmood F, Gorman III JH, Subramaniam B, Gorman RC, Panzica PJ, Hagberg RC, et al. Changes in mitral valve annular geometry after repair: saddle-shaped versus flat annuloplasty rings. Ann Thorac Surg. 2010;90(4):1212–20. doi: 10.1016/j.athoracsur.2010.03.119. Epub 2010/09/28. pii: S0003-4975(10)00938-0. PubMed.PubMedPubMedCentralCrossRefGoogle Scholar
  26. Mansi T, Voigt I, Georgescu B, Zheng X, Mengue EA, Hackl M, et al. An integrated framework for finite-element modeling of mitral valve biomechanics from medical images: application to MitralClip intervention planning. Med Image Anal. 2012;16(7):1330–46.PubMedCrossRefGoogle Scholar
  27. Rabkin-Aikawa E, Farber M, Aikawa M, Schoen FJ. Dynamic and reversible changes of interstitial cell phenotype during remodeling of cardiac valves. J Heart Valve Dis. 2004;13(5):841–7. PubMed PMID: 15473488.PubMedGoogle Scholar
  28. Ritchie J, Jimenez J, He Z, Sacks MS, Yoganathan AP. The material properties of the native porcine mitral valve chordae tendineae: An in vitro investigation. J Biomech. 2006;39(6):1129–35. PubMed PMID: 16549101.PubMedCrossRefGoogle Scholar
  29. Robb JD, Minakawa M, Koomalsingh KJ, Shuto T, Jassar AS, Ratcliffe SJ, et al. Posterior leaflet augmentation improves leaflet tethering in repair of ischemic mitral regurgitation. Eur J Cardiothorac Surg. 2011;40(6):1501–7. doi: 10.1016/j.ejcts.2011.02.079. PubMed PMID: 21546260: Epub 2011/05/07.PubMedPubMedCentralGoogle Scholar
  30. Sacks MS. Incorporation of experimentally-derived fiber orientation into a structural constitutive model for planar collagenous tissues. J Biomech Eng. 2003;125(2):280–7. PubMed PMID: 12751291.PubMedCrossRefGoogle Scholar
  31. Sacks MS, Smith DB, Hiester ED. A small angle light scattering device for planar connective tissue microstructural analysis. Ann Biomed Eng. 1997;25(4):678–89.PubMedCrossRefGoogle Scholar
  32. Schoen FJ, Levy RJ. Calcification of tissue heart valve substitutes: progress toward understanding and prevention. Ann Thorac Surg. 2005;79(3):1072–80. PubMed PMID: 15734452.PubMedCrossRefGoogle Scholar
  33. Shuhaiber J, Anderson RJ. Meta-analysis of clinical outcomes following surgical mitral valve repair or replacement. Eur J Cardiothorac Surg. 2007;31(2):267–75.PubMedCrossRefGoogle Scholar
  34. Stevanella M, Maffessanti F, Conti CA, Votta E, Arnoldi A, Lombardi M, et al. Mitral valve patient-specific finite element modeling from cardiac MRI: application to an annuloplasty procedure. Cardiovas Eng Tech. 2011;2(2):66–76.CrossRefGoogle Scholar
  35. Vassileva CM, Boley T, Markwell S, Hazelrigg S. Meta-analysis of short-term and long-term survival following repair versus replacement for ischemic mitral regurgitation. Eur J Cardiothorac Surg. 2011;39(3):295–303.PubMedCrossRefGoogle Scholar
  36. Votta E, Caiani E, Veronesi F, Soncini M, Montevecchi FM, Redaelli A. Mitral valve finite-element modelling from ultrasound data: a pilot study for a new approach to understand mitral function and clinical scenarios. Philos Transact A Math Phys Eng Sci. 2008;366(1879): 3411–34. doi: 10.1098/rsta.2008.0095. Epub 2008/07/08. PubMed PMID: 18603525.CrossRefGoogle Scholar
  37. Wang Q, Sun W. Finite element modeling of mitral valve dynamic deformation using patient-specific multi-slices computed tomography scans. Ann Biomed Eng. 2013;41(1):142–53. doi: 10.1007/s10439-012-0620-6.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2016

Authors and Affiliations

  1. 1.Center for Cardiovascular Simulation, Department of Biomedical EngineeringInstitute for Computational Engineering and Sciences (ICES), The University of Texas at AustinAustinUSA

Personalised recommendations