Mechanical Modeling of Skin

  • Cees OomensEmail author
  • Gerrit Peters


The chapter describes the work that was performed in the soft tissue biomechanics laboratory at Eindhoven University of Technology on the biomechanics of skin. A rationale is given for the changes from standard testing methods to inverse methods, from in vitro to in vivo and back to in vitro testing and for the more detailed studies on individual skin layers of the last decade. The chapter tries to explain how our vision on testing methods and modeling changed over the years and why the pursuit towards a complete constitutive model is still ongoing.


Optical Coherence Tomography Stratum Corneum Digital Image Correlation Inverse Method Biaxial Test 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Alistair A, Young ZAF. Right ventricular midwall surface motion and deformation using magnetic resonance tagging. Am J Physiol. 1996;270:281.Google Scholar
  2. Cox MAJ, Gawlitta D, Driessen NJB, Oomens CWJ, Baaijens FPT. The non-linear mechanical properties of soft engineered biological tissues determined by finite spherical indentation. Comput Methods Biomech Biomed Engin. 2008;11(5):585–92.PubMedCrossRefGoogle Scholar
  3. Distefano N. Nonlinear processes in engineering. New York: Academic; 1974.Google Scholar
  4. Geerligs M. Skin layer mechanics (Ph.D. thesis). Eindhoven: T. U. Eindhoven, 2010.Google Scholar
  5. Geerligs M, van Breemen LCA, Peters GWM, Ackermans PAJ, Baaijens FPT, Oomens CWJ. In vitro indentation to determine the mechanical properties of epidermis. J Biomech. 2011a;44:1176–81.PubMedCrossRefGoogle Scholar
  6. Geerligs M, Oomens CWJ, Ackermans PAJ, Baaijens FPT, Peters GWM. Linear shear response of the upper skin layers. Biorheology. 2011b;48(3–4):229–45.PubMedGoogle Scholar
  7. Gerhardt LC, Schmidt J, Sanz-Herrera JA, Baaijens FP, Ansari T, Peters GW, Oomens CW. A novel method for visualising and quantifying through-plane skin layer deformations. J Mech Behav Biomed Mater. 2012;14:199–207.PubMedCrossRefGoogle Scholar
  8. Hendriks FM. Mechanical behaviour of human epidermal and dermal layers (PhD-thesis). Eindhoven: Eindhoven University of Technology, 2005.Google Scholar
  9. Hendriks FM, Brokken D, van Eemeren J, Oomens CWJ, Baaijens FPT, Horsten JBAM. Anumerical-experimental method to characterize the non-linear mechanical behaviour of human skin. Skin Res Technol. 2003;9:274–83.Google Scholar
  10. Hendriks FM, Brokken D, Oomens CWJ, Bader DL, Baaijens FPT. The relative contributions of different skin layers to the mechanical behaviour of human skin in vivo using suction experiments. Med Eng Phys. 2006;28(3):259–66.PubMedCrossRefGoogle Scholar
  11. Hrapko M, van Dommelen JA, Peters GW, Wismans JS. The mechanical behavior of brain tissue: large strain response and constitutive modeling. Biorheology. 2006;43:623–36.PubMedGoogle Scholar
  12. Kavanagh KT. Extension of classical experimental techniques for characterizing composite material behavior. Exp Tech. 1972;12:55–6.Google Scholar
  13. Lanir Y. Constitutive equations for fibrous connective tissues. J Biomech. 1983;16(1):1–12.PubMedCrossRefGoogle Scholar
  14. Lanir Y, Fung YC. Two-dimensional mechanical properties of rabbit skin—I. Experimental system. J Biomech. 1974a;7:29–34.PubMedCrossRefGoogle Scholar
  15. Lanir Y, Fung YC. Two-dimensional mechanical properties of rabbit skin II: experimental results. J Biomech. 1974b;7:171–82.PubMedCrossRefGoogle Scholar
  16. Meijer R, Douven LFA, Oomens CWJ. Characterisation of anisotropic and non-linear behaviour in human skin in-vivo. Comput Methods Biomech Biomed Engin. 1999;1:13–27.CrossRefGoogle Scholar
  17. Oliver WC, Pharr GM. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res. 1992;7:1564–83.CrossRefGoogle Scholar
  18. Oomens CWJ, Ratingen MRV, Janssen JD, Kok JJ, Hendriks MAN. A numerical-experimental method for a mechanical characterization of biological materials. J Biomech. 1993;26(4/5):617–21.PubMedCrossRefGoogle Scholar
  19. Op den Camp OMGC, Oomens CWJ, Veldpaus FE, Janssen JD. An efficient algorithm to estimate material parameters of biphasic mixtures. Int J Numer Methods Eng. 1999;45:1315–31.CrossRefGoogle Scholar
  20. Peters GWM. Tools for the measurement of stress and strain fields in soft tissue (PhD-thesis) Limburg: University of Limburg, 1987.Google Scholar
  21. Pister KS. Constitutive modeling and numerical solution of field problems. Nucl Eng Des. 1974;28:137–46.CrossRefGoogle Scholar
  22. Sutton MA, Cheng M, Peters WH, Chao YJ, McNeill SR. Application of an optimized digital correlation method to planar deformation analysis. Image Vis Comput. 1986;4:143–50.CrossRefGoogle Scholar
  23. Van Dam EA. Morphology and mechanical properties of abdominal aortic aneurysms (PhD-thesis). Eindhoven: T. U. Eindhoven, 2007.Google Scholar
  24. Van Dam EA, Dams SD, Peters GW, Rutten MC, Schurink GW, Buth J, van de Vosse FN. Determination of linear viscoelastic behavior of abdominal aortic magnitude physiologically relevant shear. Biorheology. 2006;43:695–707.PubMedGoogle Scholar
  25. van Turnhout M, Peters G, Stekelenburg A, Oomens C. Passive transverse mechanical properties as a function of temperature of rat skeletal muscle in vivo. Biorheology. 2005;42:193–207.PubMedGoogle Scholar
  26. Yettram AL, Vinson CA. Orthoptropic elastic moduli for left ventricular mechanical behavior. JBiomech. 1979;12:841–50.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2016

Authors and Affiliations

  1. 1.Eindhoven University of TechnologyEindhovenThe Netherlands

Personalised recommendations