Advertisement

Structural-Based Models of Ventricular Myocardium

  • Lik Chuan Lee
  • Jonathan Wenk
  • Doron Klepach
  • Ghassan S. KassabEmail author
  • Julius M. Guccione

Abstract

Ventricular wall stress is an important determinant of myocardial oxygenconsumption (Sarnoff et~al. 1958; Strauer et~al. 1977), ventricular remodeling, and hypertrophy (Grossman 1980), and is necessary for an understanding of both physiological and pathological ventricular mechanics (Yin 1981). Despite recent advancement in measurement techniques and computational modeling, a detailed knowledge of ventricular wall stress (particularly in patients diagnosed with heart disease) remains elusive.

Keywords

Constitutive Model Collagen Fiber Strain Energy Function Biaxial Testing Left Ventricle Wall 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Costa KD, Holmes JW, McCulloch AD. Modeling cardiac mechanical properties in three dimensions. Philos Trans R Soc Lond A. 2001;359:1233–50.CrossRefGoogle Scholar
  2. Frank JS, Langer GA. The myocardial interstitium: its structure and its role in ionic exchange. J Cell Biol. 1974;60:596–601.CrossRefGoogle Scholar
  3. Fung YC. Elasticity of soft tissues in simple elongation. Am J Physiology–Legacy Content 1967;213(6):1532–1544.Google Scholar
  4. Greenbaum RA, Ho SY, Gibson DG, Becker AE, Anderson RH. Left ventricular fibre architecture in man. Br Heart J. 1981;45(3):248–63.PubMedPubMedCentralCrossRefGoogle Scholar
  5. Grossman W. Cardiac hypertrophy: useful adaption or pathologic process? Am J Med. 1980;69(4):576–84.PubMedCrossRefGoogle Scholar
  6. Guccione JM, McCulloch AD, Waldman LK. Passive material properties of intact ventricular myocardium determined from a cylindrical model. J Biomech Eng. 1991;113:42–55.PubMedCrossRefGoogle Scholar
  7. Hanley PJ, Young AA, LeGrice IJ, Edgar SG, Loiselle DS. 3-Dimensional configurations of permysial collagen fibres in rat cardiac muscle at resting and extended sarcomere lengths. J Physiol. 1999;517:831–7.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Holzapfel GA, Odgen RW. Constitutive modelling of passive myocardium: a structurally based framework for material characterization. Philos Trans R Soc Lond A. 2009;367:3445–75.CrossRefGoogle Scholar
  9. Horowitz A, Sheinman I, Lanir Y, Perl M, Sideman S. Nonlinear incompressible finite element for simulating loading of cardiac tissue–part I: two dimensional formulation for thin myocardial strips. J Biomech Eng. 1988a;110(1):57–61.PubMedCrossRefGoogle Scholar
  10. Horowitz A, Sheinman I, Lanir Y. Nonlinear incompressible finite element for simulating loading of cardiac tissue–part II: three dimensional formulation for thick ventricular wall segments. J Biomech Eng. 1988b;110(1):62–8.PubMedCrossRefGoogle Scholar
  11. Horowitz A, Lanir Y, Yin FCP, Perl M, Sheinman I, Strumpf RK. Structural three-dimensional constitutive law for the passive myocardium. J Biomech Eng. 1988c;110(3):200–7.PubMedCrossRefGoogle Scholar
  12. Huisman RM, Elzinga G, Westerhof N, Sipkema P. Measurement of left ventricular wall stress. Cardiovasc Res. 1980;14:142–53.PubMedCrossRefGoogle Scholar
  13. Humphrey JD, Yin FC. On constitutive relations and finite deformations of passive cardiac tissue: I. A pseudostrain-energy function. J Biomech Eng. 1987;109(4):298–304.PubMedCrossRefGoogle Scholar
  14. Humphrey JD, Strumpf RK, Yin FCP. Determination of a constitutive relation for passive myocardium: I a new functional form. J Biomech Eng. 1990;112:333–9.PubMedCrossRefGoogle Scholar
  15. Hunter PJ, Nash MP, Sands GB. Computational electromechanics of the heart. In: Panfilov AV, Holden AV, editors. Computational biology of the heart. Chichester: Wiley; 1997. p. 345–407.Google Scholar
  16. Ingels Jr NB. Myocardial fiber architecture and left ventricular function. Technol Health Care. 1997;5(1–2):45–52.PubMedGoogle Scholar
  17. Janz RF. Estimation of local myocardial stress. Am J Physiol. 1982;242(5):H875–81.PubMedGoogle Scholar
  18. Lanir Y. A structural theory for the homogeneous biaxial stress-strain relationship in flat collagenous tissues. J Biomech. 1979;12:423–36.PubMedCrossRefGoogle Scholar
  19. Lanir Y. Constitutive equations for fibrous connective tissues. J Biomech. 1983;16:1–12.PubMedCrossRefGoogle Scholar
  20. Liao J, Yang L, Grashow J, Sacks MS. Molecular orientation of collagen in intact planar connective tissues under biaxial stretch. Acta Biomater. 2005;1(1):45–54.Google Scholar
  21. MacKenna DA, Vaplon SM, McCulloch AD. Microstructural model of perimysial collagen fibers for resting myocardial mechanics during ventricular filling. Am J Physiol. 1997;273:H1576–86.PubMedGoogle Scholar
  22. Marijianowski MMH, Teeling P, Becker AE. Remodeling after myocardial infarction in humans is not associated with interstitial fibrosis of noninfarcted myocardium. J Am Coll Cardiol. 1997;30:76–82.PubMedCrossRefGoogle Scholar
  23. McCulloch AD, Smaill BH, Hunter PJ. Regional left ventricular epicardial deformation in the passive dog heart. Circ Res. 1989;64:721–33.PubMedCrossRefGoogle Scholar
  24. Meyers MA, Chen PY, Lin AYM, Seki Y. Biological materials: structure and mechanical properties. Prog Mater Sci. 2008;53:1–206.CrossRefGoogle Scholar
  25. Nevo E, Lanir Y. Structural finite deformation model of the left ventricle during diastole and systole. J Biomech Eng. 1989;111(4):342–9.PubMedCrossRefGoogle Scholar
  26. Nevo E, Lanir Y. The effect of residual strain on the diastolic function of the left ventricle as predicted by a structural model. J Biomech. 1994;27(12):1433–46.PubMedCrossRefGoogle Scholar
  27. Omens JH, MacKenna DA, McCulloch AD. Measurement of strain and analysis of stress in resting rat left ventricular myocardium. J Biomech. 1993;26:665–76.PubMedCrossRefGoogle Scholar
  28. Omens JH, Miller TR, Covell JW. Relationship between passive tissue strain and collagen uncoiling during healing of infarcted myocardium. Cardiovasc Res. 1997;33:351–8.PubMedCrossRefGoogle Scholar
  29. Robinson TF, Geraci MA, Sonnenblick EH, Factor SM. Coiled perimysioal fibres of papillary muscle in rat heart: morphology, distribution and changes in configuration. Circ Res. 1988;63:577–92.PubMedCrossRefGoogle Scholar
  30. Sacks MS. Incorporation of experimentally-derived fiber orientation into a structural constitutive model for planar collagenous tissues. J Biomech Eng. 2003;125:280–7.PubMedCrossRefGoogle Scholar
  31. Sarnoff SJ, Braunwald E, Welch Jr GH, Case RB, Stainsby WN, Macruz R. Hemodynamic determinants of oxygen consumption of the heart with special reference to the tension time index. Am J Physiol. 1958;192:148–56.PubMedGoogle Scholar
  32. Schmid H, Nash MP, Young AA, Hunter PJ. Myocardial material parameter estimation—a comparative study for simple shear. J Biomech Eng. 2006;128:742–50.PubMedCrossRefGoogle Scholar
  33. Strauer BE, Beer K, Heitlinger K, Höfling B. Left ventricular systolic wall stress as a primary determinant of myocardial oxygen consumption: comparative studies in patients with normal left ventricular function, with pressure and volume overload and with coronary heart disease. Basic Res Cardiol. 1977;72:306–13.PubMedCrossRefGoogle Scholar
  34. Streeter DD, Spotnitz HM, Patel DP, Ross Jr J, Sonnenblick EH. Fiber orientation in the canine left ventricle during diastole and systole. Circ Res. 1969;24:339–47.PubMedCrossRefGoogle Scholar
  35. Vendelin M, Bovendeerd PH, Engelbrecht J, Arts T. Optimizing ventricular fibers: uniform strain or stress, but not ATP consumption, leads to high efficiency. Am J Physiol Heart Circ Physiol. 2002;283(3):H1072–81.PubMedCrossRefGoogle Scholar
  36. Vetter FJ, McCulloch AD. Three-dimensional analysis of regional cardiac function: a model of rabbit ventricular anatomy. Prog Biophys Mol Biol. 1998;69(2–3):157–83.PubMedCrossRefGoogle Scholar
  37. Walker JC, Guccione JM, Jiang Y, Zhang P, Wallace AW, Hsu EW, Ratcliffe MB. Helical myofiber orientation after myocardial infarction and left ventricular surgical restoration in sheep. J Thorac Cardiovasc Surg. 2005;129(2):382–90.PubMedCrossRefGoogle Scholar
  38. Xu C, Pilla JJ, Isaac G, Gorman 3rd JH, Biom AS, Gorman RC, et~al. Deformation analysis of 3D tagged cardiac images using an optical flow method. J Cardiovasc Magn Reson. 2010;12(1):19.Google Scholar
  39. Yin FC, Strumpf RK, Chew PH, Zeger SL. Quantification of the mechanical properties of noncontracting canine myocardium under simultaneous biaxial loading. J Biomech. 1987;20(6): 577–589.Google Scholar
  40. Yin FC. Ventricular wall stress. Circ Res. 1981;49:829–42.PubMedCrossRefGoogle Scholar
  41. Zhang Z, Tendulkar A, Sun K, Saloner DA, Wallace AW, Ge L, Guccione JM, Ratcliffe MB. Comparison of the Young-Laplace law and finite element based calculation of ventricular wall stress: implications for postinfarct and surgical ventricular remodeling. Ann Thorac Surg. 2011;91(1):150–6.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2016

Authors and Affiliations

  • Lik Chuan Lee
    • 1
  • Jonathan Wenk
    • 2
  • Doron Klepach
    • 3
  • Ghassan S. Kassab
    • 4
    Email author
  • Julius M. Guccione
    • 5
  1. 1.Department of Mechanical EngineeringMichigan State UniversityEast LansingUSA
  2. 2.Department of Mechanical Engineering and SurgeryUniversity of KentuckyLexingtonUSA
  3. 3.Department of Mechanical or Industrial Engineering, AltairTel Aviv University, Multiscale Design Systems, LLC, UCSF, UC Berkeley, University of CaliforniaBerkeleyUSA
  4. 4.California Medical Innovations InstituteSan DiegoUSA
  5. 5.Department of SurgeryUniversity of California at San FranciscoSan FranciscoUSA

Personalised recommendations