Advertisement

The Influence of Microstructure on Neural Tissue Mechanics

  • Lynne E. BilstonEmail author

Abstract

Neural tissues have a complex microstructure, and this is reflected in their mechanical properties. Both brain and spinal cord tissues are heterogeneous, with white and grey matter regions having different constituents and structural arrangements. This gives rise to the complex, non-linearly viscoelastic mechanical behaviour of these tissues.

Keywords

Grey Matter Diffusion Tensor Imaging Nerve Root Carpal Tunnel Syndrome Neural Tissue 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgment

Lynne Bilston is supported by a National Health and Medical Research Council of Australia Senior Research Fellowship.

References

  1. Assaf Y, Pasternak O. Diffusion tensor imaging (DTI)-based white matter mapping in brain research: a review. J Mol Neurosci. 2008;34(1):51–61.PubMedCrossRefGoogle Scholar
  2. Bain AC, Shreiber DI, Meaney DF. Modeling of microstructural kinematics during simple elongation of central nervous system tissue. J Biomech Eng. 2003;125:798.PubMedCrossRefGoogle Scholar
  3. Bilston LE, editor. Neural tissue biomechanics. Studies in mechanobiology, tissue engineering and biomaterials. Berlin: Springer; 2011.Google Scholar
  4. Bilston LE, Thibault LE. The mechanical properties of the human cervical spinal cord in vitro. Ann Biomed Eng. 1996;24(1):67–74.PubMedGoogle Scholar
  5. Bilston LE, Liu Z, Phan-Thien N. Linear viscoelastic properties of bovine brain tissue in shear. Biorheology. 1997;34(6):377–85.PubMedCrossRefGoogle Scholar
  6. Bilston LE, Liu Z, Phan-Thien N. Large strain behaviour of brain tissue in shear: some experimental data and differential constitutive model. Biorheology. 2001;38(4):335–45.PubMedGoogle Scholar
  7. Brands DWA, Peters GWM, Bovendeerd PHM. Design and numerical implementation of a 3-D non-linear viscoelastic constitutive model for brain tissue during impact. J Biomech. 2004;37(1):127–34.PubMedCrossRefGoogle Scholar
  8. Cater HL, Sundstrom LE, Morrison B. Temporal development of hippocampal cell death is dependent on tissue strain but not strain rate. J Biomech. 2006;39(15):2810–8.PubMedCrossRefGoogle Scholar
  9. Cheng S, Bilston LE. Unconfined compression of white matter. J Biomech. 2007;40(1):117–24.PubMedCrossRefGoogle Scholar
  10. Cheng S, Bilston LE. Computational model of the cerebral ventricles in hydrocephalus. J Biomech Eng. 2010;132:054501.PubMedCrossRefGoogle Scholar
  11. Cheng S, Clarke EC, Bilston LE. Rheological properties of the tissues of the central nervous system: a review. Med Eng Phys. 2008;30(10):1318–37.PubMedCrossRefGoogle Scholar
  12. Chinzei K, Miller K. Compression of swine brain tissue: experiment in vitro. J Mech Eng Lab. 1996;50(4):106–15.Google Scholar
  13. Clarke EC, Bilston LE. Contrasting biomechanics and neuropathology of spinal cord injury in neonatal and adult rats following vertebral dislocation. J Neurotrauma. 2008;25(7):817–32.PubMedCrossRefGoogle Scholar
  14. Clarke EC, McNulty PA, Macefield VG, Bilston LE. Mechanically evoked sensory and motor responses to dynamic compression of the ulnar nerve. Muscle Nerve. 2007;35(3):303–11.PubMedCrossRefGoogle Scholar
  15. Clarke EC, Choo AM, Liu J, Lam CK, Bilston LE, Tetzlaff W, et al. Anterior fracture-dislocation is more severe than lateral: a biomechanical and neuropathological comparison in rat thoracolumbar spine. J Neurotrauma. 2008;25(4):371–83.PubMedCrossRefGoogle Scholar
  16. Clarke EC, Cheng S, Bilston LE. The mechanical properties of neonatal rat spinal cord in vitro, and comparisons with adult. J Biomech. 2009;42(10):1397–402.PubMedCrossRefGoogle Scholar
  17. Clarke E, Cheng S, Green M, Sinkus R, Bilston L. Using static preload with magnetic resonance elastography to estimate large strain viscoelastic properties of bovine liver. J Biomech. 2011;44(13):2461–5.PubMedCrossRefGoogle Scholar
  18. Cloots RJH, van Dommelen JAW, Nyberg T, Kleiven S, Geers MGD. Micromechanics of diffuse axonal injury: influence of axonal orientation and anisotropy. Biomech Model Mechanobiol. 2011;10(3):413–22.PubMedCrossRefGoogle Scholar
  19. Coats B, Margulies SS. Material properties of porcine pariet al cortex. J Biomech. 2006;39(13):2521–5.PubMedCrossRefGoogle Scholar
  20. Darvish KK, Crandall JR. Nonlinear viscoelastic effects in oscillatory shear deformation of brain tissue. Med Eng Phys. 2001;23(9):633–45.PubMedCrossRefGoogle Scholar
  21. Dilley A, Lynn B, Pang SJ. Pressure and stretch mechanosensitivity of peripheral nerve fibres following local inflammation of the nerve trunk. Pain. 2005;117(3):462–72.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Elkin BS, Azeloglu EU, Costa KD, Morrison 3rd B. Mechanical heterogeneity of the rat hippocampus measured by atomic force microscope indentation. J Neurotrauma. 2007;24(5):812–22.PubMedCrossRefGoogle Scholar
  23. Fallenstein GT, Hulce VD, Melvin JW. Dynamic mechanical properties of human brain tissue. JBiomech. 1969;2(3):217–26.PubMedCrossRefGoogle Scholar
  24. Ferry J. Viscoelastic properties of polymers. New York: Wiley; 1980.Google Scholar
  25. Fiford RJ. Biomechanics of spinal cord injury in a novel rat model. PhD thesis, University of Sydney; 2006.Google Scholar
  26. Fiford RJ, Bilston LE. The mechanical properties of rat spinal cord in vitro. J Biomech. 2005;38(7):1509–15.PubMedCrossRefGoogle Scholar
  27. Fiford RJ, Bilston LE, Waite P, Lu J. A vertebral dislocation model of spinal cord injury in rats. JNeurotrauma. 2004;21(4):451–8.PubMedCrossRefGoogle Scholar
  28. Franceschini G, Bigoni D, Regitnig P, Holzapfel GA. Brain tissue deforms similarly to filled elastomers and follows consolidation theory. J Mech Phys Solids. 2006;54(12):2592–620.CrossRefGoogle Scholar
  29. Galford JE, McElhaney JH. A viscoelastic study of scalp, brain, and dura. J Biomech. 1970;3: 211–21.PubMedCrossRefGoogle Scholar
  30. García J, Smith J. A biphasic hyperelastic model for the analysis of fluid and mass transport in brain tissue. Ann Biomed Eng. 2009;37(2):375–86.PubMedCrossRefGoogle Scholar
  31. Gennarelli TA, Thibault LE. Biomechanics of acute subdural hematoma. J Trauma. 1982;22(8):680–6.PubMedCrossRefGoogle Scholar
  32. Gennarelli TA, Thibault LE, Adams JH, Graham DI, Thompson CJ, Marcincin RP. Diffuse axonal injury and traumatic coma in the primate. Ann Neurol. 1982;12(6):564–74.PubMedCrossRefGoogle Scholar
  33. Green MA, Bilston LE, Sinkus R. In vivo brain viscoelastic properties measured by magnetic resonance elastography. NMR Biomed. 2008;21(7):755–64.PubMedCrossRefGoogle Scholar
  34. Green MA, Bilston LE, van Houten E, Sinkus R, editors. In-vivo brain viscoelastic anisotropic properties using DTI and MR-elastography. In: Proceedings of the 17th ISMRM; Honolulu, HI; 2009.Google Scholar
  35. Han SE, Lin CSY, Boland RA, Bilston LE, Kiernan MC. Changes in human sensory axonal excitability induced by focal nerve compression. J Physiol. 2010;588(10):1737–45.PubMedPubMedCentralCrossRefGoogle Scholar
  36. Hollander Y, Durban D, Lu X, Kassab GS, Lanir Y. Experimentally validated microstructural 3D constitutive model of coronary arterial media. J Biomech Eng. 2011a;133(3):031007.PubMedPubMedCentralCrossRefGoogle Scholar
  37. Hollander Y, Durban D, Lu X, Kassab GS, Lanir Y. Constitutive modeling of coronary arterial media—comparison of three model classes. J Biomech Eng. 2011b;133(6):061008.PubMedPubMedCentralCrossRefGoogle Scholar
  38. Horowitz A, Lanir Y, Yin FC, Perl M, Sheinman I, Strumpf RK. Structural three-dimensional constitutive law for the passive myocardium. J Biomech Eng. 1988;110(3):200–7.PubMedCrossRefGoogle Scholar
  39. Hrapko M, van Dommelen JAW, Peters GWM, Wismans JSHM. The mechanical behaviour of brain tissue: large strain response and constitutive modelling. Biorheology. 2006;43(5): 623–36.PubMedGoogle Scholar
  40. Hubbard RD, Chen Z, Winkelstein BA. Transient cervical nerve root compression modulates pain: load thresholds for allodynia and sustained changes in spinal neuropeptide expression. J Biomech. 2008;41(3):677–85.PubMedPubMedCentralCrossRefGoogle Scholar
  41. Ichihara K, Taguchi T, Shimada Y, Sakuramoto I, Kawano S, Kawai S. Gray matter of the bovine cervical spinal cord is mechanically more rigid and fragile than the white matter. JNeurotrauma. 2001;18(3):361–7.PubMedCrossRefGoogle Scholar
  42. Jamin Y, Boult JK, Bamber JC, Sinkus R, Robinson SP, editors. High resolution magnetic resonance elastography of orthotopic murine glioma in vivo. Montreal: ISMRM; 2011.Google Scholar
  43. Kruse SA, Rose GH, Glaser KJ, Manduca A, Felmlee JP, Jack Jr CR, et al. Magnetic resonance elastography of the brain. Neuroimage. 2008;39(1):231–7.PubMedPubMedCentralCrossRefGoogle Scholar
  44. Kwan MK, Wall EJ, Weiss JA, Rydevik BL, Garfin SR, Woo SL-Y. Biomechanical analysis of rabbit peripheral nerve: in situ stresses and strains. ASME Biomech Symp AMD. 1989;98: 109–12.Google Scholar
  45. Kwan MK, Wall EJ, Massie J, Garfin SR. Strain, stress and stretch of peripheral nerve rabbit experiments in vitro and in vivo. Acta Orthop. 1992;63(3):267–72.CrossRefGoogle Scholar
  46. Lanir Y. Biaxial stress-relaxation in skin. Ann Biomed Eng. 1976;4(3):250–70.PubMedCrossRefGoogle Scholar
  47. Lanir Y. Structure-strength relations in mammalian tendon. Biophys J. 1978;24(2):541–54.PubMedPubMedCentralCrossRefGoogle Scholar
  48. Lanir Y. A structural theory for the homogeneous biaxial stress-strain relationships in flat collagenous tissues. J Biomech. 1979;12(6):423–36.PubMedCrossRefGoogle Scholar
  49. Lanir Y. A microstructure model for the rheology of mammalian tendon. J Biomech Eng. 1980;102(4):332–9.PubMedCrossRefGoogle Scholar
  50. Lanir Y. Constitutive equations for the lung tissue. J Biomech Eng. 1983a;105(4):374–80.PubMedCrossRefGoogle Scholar
  51. Lanir Y. Constitutive equations for fibrous connective tissues. J Biomech. 1983b;16(1):1–12.PubMedCrossRefGoogle Scholar
  52. Lanir Y. Plausibility of structural constitutive equations for swelling tissues—implications of the C-N and S-E conditions. J Biomech Eng. 1996;118(1):10–6.PubMedCrossRefGoogle Scholar
  53. Lanir Y. Physical mechanisms of soft tissues rheological properties. In: Chien S, editor. Biomechanics: from molecules to man: tributes to Yuan-Cheng Fung on his 90th birthday. Singapore: World Scientific; 2009. p. 1–12.CrossRefGoogle Scholar
  54. Lokshin O, Lanir Y. Viscoelasticity and preconditioning of rat skin under uniaxial stretch: microstructural constitutive characterization. J Biomech Eng. 2009;131(3):031009.PubMedCrossRefGoogle Scholar
  55. Lu Y-B, Franze K, Seifert G, Steinhäuser C, Kirchhoff F, Wolburg H, et al. Viscoelastic properties of individual glial cells and neurons in the CNS. Proc Natl Acad Sci. 2006;103(47):17759–64.PubMedPubMedCentralCrossRefGoogle Scholar
  56. Miller K. Constitutive model of brain tissue suitable for finite element analysis of surgical procedures. J Biomech. 1999;32(5):531–7.PubMedCrossRefGoogle Scholar
  57. Miller K, Chinzei K. Mechanical properties of brain tissue in tension. J Biomech. 2002;35(4): 483–90.PubMedCrossRefGoogle Scholar
  58. Miller K, Chinzei K, Orssengo G, Bednarz P. Mechanical properties of brain tissue in-vivo: experiment and computer simulation. J Biomech. 2000;33(11):1369–76.PubMedCrossRefGoogle Scholar
  59. Murphy MC, Huston J, Jack CR, Glaser KJ, Manduca A, Felmlee JP, et al. Decreased brain stiffness in Alzheimer’s disease determined by magnetic resonance elastography. J Magn Reson Imaging. 2011;34(3):494–8.PubMedPubMedCentralCrossRefGoogle Scholar
  60. Nicholson KJ, Winkelstein BA. Nerve and nerve root biomechanics. In: Bilston LE, editor. Neural tissue biomechanics. Studies in mechanobiology, tissue engineering and biomaterials. Springer: Berlin; 2011. p. 203–29.Google Scholar
  61. Nicolle S, Lounis M, Willinger R, Palierne JF. Shear linear behavior of brain tissue over a large frequency range. Biorheology. 2005;42(3):209–23.PubMedGoogle Scholar
  62. Ning X, Zhu Q, Lanir Y, Margulies SS. A transversely isotropic viscoelastic constitutive equation for brainstem undergoing finite deformation. J Biomech Eng. 2006;128(6):925–33.PubMedCrossRefGoogle Scholar
  63. Pena A, Bolton MD, Whitehouse H, Pickard JD. Effects of brain ventricular shape on periventricular biomechanics: a finite-element analysis. Neurosurgery. 1999;45(1):107.PubMedCrossRefGoogle Scholar
  64. Phillips JB, Smit X, De Zoysa N, Afoke A, Brown RA. Peripheral nerves in the rat exhibit localized heterogeneity of tensile properties during limb movement. J Physiol. 2004;557(3):879–87.PubMedPubMedCentralCrossRefGoogle Scholar
  65. Pierpaoli C, Jezzard P, Basser PJ, Barnett A, Di Chiro G. Diffusion tensor MR imaging of the human brain. Radiology. 1996;201(3):637–48.PubMedCrossRefGoogle Scholar
  66. Povlishock JT, Christman CW. The pathobiology of traumatically induced axonal injury in animals and humans: a review of current thoughts. J Neurotrauma. 1995;12(4):555–64.PubMedCrossRefGoogle Scholar
  67. Prange MT, Margulies SS. Regional, directional, and age-dependent properties of the brain undergoing large deformation. J Biomech Eng. 2002;124(2):244–52.PubMedCrossRefGoogle Scholar
  68. Qin EC, Sinkus R, Geng G, Cheng S, Green M, Rae CD, Bilston LE. Combining MR elastography and diffusion tensor imaging for the assessment of anisotropic mechanical properties: a phantom study. J Magn Reson Imaging. 2013;37:217–26.PubMedCrossRefGoogle Scholar
  69. Rothman SM, Winkelstein BA. Chemical and mechanical nerve root insults induce differential behavioral sensitivity and glial activation that are enhanced in combination. Brain Res. 2007;1181:30–43.PubMedPubMedCentralCrossRefGoogle Scholar
  70. Rothman SM, Nicholson KJ, Winkelstein BA. Time-dependent mechanics and measures of glial activation and behavioral sensitivity in a rodent model of radiculopathy. J Neurotrauma. 2010;27(5):803–14.PubMedCrossRefGoogle Scholar
  71. Sack I, Beierbach B, Hamhaber U, Klatt D, Braun J, Sack I, et al. Non-invasive measurement of brain viscoelasticity using magnetic resonance elastography. NMR Biomed. 2008;21(3): 265–71.PubMedCrossRefGoogle Scholar
  72. Sack I, Beierbach B, Wuerfel J, Klatt D, Hamhaber U, Papazoglou S, et al. The impact of aging and gender on brain viscoelasticity. Neuroimage. 2009;46(3):652–7.PubMedCrossRefGoogle Scholar
  73. Schregel K, Wuerfel née Tysiak E, Garteiser. P, Gemeinhardt I, Prozorovski T, Aktas O, et al. Demyelination reduces brain parenchymal stiffness quantified in vivo by magnetic resonance elastography. Proc Natl Acad Sci U S A. 2012;109(17):6650–5.PubMedPubMedCentralCrossRefGoogle Scholar
  74. Shreiber D, Hao H, Elias R. Probing the influence of myelin and glia on the tensile properties of the spinal cord. Biomech Model Mechanobiol. 2009;8(4):311–21.PubMedCrossRefGoogle Scholar
  75. Singh A, Lu Y, Chen C, Cavanaugh JM. Mechanical properties of spinal nerve roots subjected to tension at different strain rates. J Biomech. 2006;39(9):1669–76.PubMedCrossRefGoogle Scholar
  76. Singh A, Kallakuri S, Chen C, Cavanaugh JM. Structural and functional changes in nerve roots due to tension at various strains and strain rates: an in-vivo study. J Neurotrauma. 2009;26(4): 627–40.PubMedCrossRefGoogle Scholar
  77. Streitberger K-J, Wiener E, Hoffmann J, Freimann FB, Klatt D, Braun J, et al. In vivo viscoelastic properties of the brain in normal pressure hydrocephalus. NMR Biomed. 2011;24(4):385–92.PubMedGoogle Scholar
  78. Tanoue M, Yamaga M, Ide J, Takagi K. Acute stretching of peripheral nerves inhibits retrograde axonal transport. J Hand Surg Br. 1996;21(3):358–63.PubMedCrossRefGoogle Scholar
  79. Tsuchiya K, Katase S, Fujikawa A, Hachiya J, Kanazawa H, Yodo K. Diffusion-weighted MRI of the cervical spinal cord using a single-shot fast spin-echo technique: findings in normal subjects and in myelomalacia. Neuroradiology. 2003;45(2):90–4.PubMedGoogle Scholar
  80. Velardi F, Fraternali F, Angelillo M. Anisotropic constitutive equations and experimental tensile behavior of brain tissue. Biomech Model Mechanobiol. 2006;5(1):53–61.PubMedCrossRefGoogle Scholar
  81. Wang C, Garcia M, Lu X, Lanir Y, Kassab GS. Three-dimensional mechanical properties of porcine coronary arteries: a validated two-layer model. Am J Physiol Heart Circ Physiol. 2006;291(3):H1200–9.PubMedCrossRefGoogle Scholar
  82. Wittek A, Hawkins T, Miller K. On the unimportance of constitutive models in computing brain deformation for image-guided surgery. Biomech Model Mechanobiol. 2009;8(1):77–84.PubMedPubMedCentralCrossRefGoogle Scholar
  83. Yang KH, Mao H, Wagner C, Zhu F, Chou CC, King AI. Modeling of the brain for injury prevention. In: Bilston LE, editor. Neural tissue biomechanics. Studies in mechanobiology, tissue engineering and biomaterials. Berlin: Springer; 2011. p. 69–120.Google Scholar
  84. Zhang J, Green MA, Sinkus R, Bilston LE. Viscoelastic properties of human cerebellum using magnetic resonance elastography. J Biomech. 2011;44(10):1909–13.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2016

Authors and Affiliations

  1. 1.Neuroscience Research Australia and University of New South WalesSydneyAustralia

Personalised recommendations