Skip to main content

Mapping Out Protein Hydration Dynamics by Overhauser Dynamic Nuclear Polarization

  • Chapter
  • First Online:
Protein NMR

Part of the book series: Biological Magnetic Resonance ((BIMR,volume 32))

Abstract

Water molecules in the immediate vicinity of biomolecular surfaces (e.g., protein, lipid membranes, and DNA) are essential to mediate biological activities, such as enzyme activity, ligand binding, allosteric effect, or molecular recognition. For instance, the formation of a functional enzyme-substrate complex may be mediated by the retardation of water mobility at the active site of the enzyme. Hydrated water could also facilitate specific protein function, such as channel gating, whose kinetics has been found to be critically correlated with the rate of water fluctuations. Additionally, water is generally thought to be a catalyst for the hydrogen-bond rearrangements of a protein. The prevailing view is that water molecules actively contribute to the hydrophobic effect involved in protein-folding and ligand-binding events by modulating protein conformational changes through the formation or breaking of hydrogen bonds at protein–water interfaces. Interestingly, the diffusion dynamics of hydration water that entails hydrogen-bond rearrangement of the dynamic protein–water network may be critically coupled to protein dynamics, not only at the interfaces, but also at the core. A combination of the rapid hydrogen-bond rearrangements and the fast hydration dynamics at protein–water interfaces are suggested to be essential in increasing the protein structural flexibility and facilitating protein-ligand recognition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This condition is valid if I is proton and S is electron.

  2. 2.

    Here, S spin typically represents electron spin of nitroxide radical for ODNP

  3. 3.

    w 0, w 1 and w 2 are denoted as nuclear-electron zero-, single-, and double-quantum transition rates.

References

  • Abragam A (1983) The principles of nuclear magnetism. Clarendon, London

    Google Scholar 

  • Altenbach C, Greenhalgh DA, Khorana HG, Hubbell WL (1994) A collision gradient-method to determine the immersion depth of nitroxides in lipid bilayers—application to spin-labeled mutants of bacteriorhodopsin. Proc Natl Acad Sci U S A 91(5):1667–1671

    PubMed Central  CAS  PubMed  Google Scholar 

  • Aman K, Lindahl E, Edholm O, Hakansson P, Westlund PO (2003) Structure and dynamics of interfacial water in an Lalpha phase lipid bilayer from molecular dynamics simulations. Biophys J 84(1):102–115. doi:10.1016/S0006-3495 (03)74835-8

    PubMed Central  CAS  PubMed  Google Scholar 

  • Armstrong BD, Choi J, Lopez C, Wesener DA, Hubbell W, Cavagnero S, Han S (2011) Site-specific hydration dynamics in the nonpolar core of a molten globule by dynamic nuclear polarization of water. J Am Chem Soc 133(15):5987–5995. doi:10.1021/ja111515s

    PubMed Central  CAS  PubMed  Google Scholar 

  • Armstrong BD, Han S (2007) A new model for Overhauser enhanced nuclear magnetic resonance using nitroxide radicals. J Chem Phys 127(10):10. doi:10450810.1063/1.2770465

    Google Scholar 

  • Armstrong BD, Han S (2009) Overhauser dynamic nuclear polarization to study local water dynamics. J Am Chem Soc 131(13):4641–4647. doi:10.1021/ja809259q

    CAS  PubMed  Google Scholar 

  • Bagchi B (2005) Water dynamics in the hydration layer around proteins and micelles. Chem Rev 105(9):3197–3219. doi:10.1021/cr020661+

    CAS  PubMed  Google Scholar 

  • Ball P (2008a) Water as a biomolecule. Chem Phys Chem 9(18):2677–2685. doi:10.1002/cphc.200800515

    CAS  PubMed  Google Scholar 

  • Ball P (2008b) Water as an active constituent in cell biology. Chem Rev 108(1):74–108. doi:10.1021/cr068037a

    CAS  PubMed  Google Scholar 

  • Bates Jr. RD, Drozdoski WS (1977) Use of nitroxide spin labels in studies of solvent-solute Interactions. J. Chem. Phys. 67(9):4038–4044

    Google Scholar 

  • Bloembergen N, Purcell EM, Pound RV (1948) Relaxation effects in nuclear magnetic resonance absorption. Phys Rev 73(7):679–712. doi:10.1103/Physrev.73.679

    CAS  Google Scholar 

  • Borah B, Bryant RG (1981) NMR relaxation dispersion in an aqueous nitroxide system. J Chem Phys 75(7):3297–3300

    CAS  Google Scholar 

  • Bordignon E (2012) Site-directed spin labeling of membrane proteins. Top Curr Chem 321:121–157. doi:10.1007/128_2011_243

    CAS  PubMed  Google Scholar 

  • Burling FT, Weis WI, Flaherty KM, Brunger AT (1996) Direct observation of protein solvation and discrete disorder with experimental crystallographic phases. Science 271(5245):72–77

    CAS  PubMed  Google Scholar 

  • Chandler D (2005) Interfaces and the driving force of hydrophobic assembly. Nature 437(7059):640–647. doi:10.1038/nature04162

    CAS  PubMed  Google Scholar 

  • Cheng CY, Goor OJGM, Han S (2012a) Quantitative analysis of molecular transport across liposomal bilayer by J-mediated Overhauser dynamic nuclear polarization. Anal Chem 84(21):8936–8940

    CAS  PubMed  Google Scholar 

  • Cheng CY, Varkey J, Ambroso MR, Langen R, Han SI (2013) Hydration dynamics as an intrinsic ruler for refining protein structure at lipid membrane interfaces. Proc Natl Acad Sci U S A 110(42):16838–16843. doi:10.1073/Pnas.1307678110

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cheng CY, Wang J, Kausik R, Lee KYC, Han S (2012b) manuscript is under review

    Google Scholar 

  • Cheng CY, Wang JY, Kausik R, Lee KY, Han S (2012c) An ultrasensitive tool exploiting hydration dynamics to decipher weak lipid membrane-polymer interactions. J Magn Reson 215:115–119. doi:10.1016/j.jmr.2011.12.004

    CAS  PubMed  Google Scholar 

  • Cheung MS, Garcia AE, Onuchic JN (2002) Protein folding mediated by solvation: water expulsion and formation of the hydrophobic core occur after the structural collapse. Proc Natl Acad Sci U S A 99(2):685–690

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chiti F, Dobson CM (2006) Protein misfolding, functional amyloid, and human disease. Annu Rev Biochem 75:333–366. doi:10.1146/annurev.biochem.75.101304.123901

    CAS  PubMed  Google Scholar 

  • Columbus L, Hubbell WL (2002) A new spin on protein dynamics. Trends Biochem Sci 27(6):288–295. doi:Pii S0968-0004 (02)02095-9

    CAS  PubMed  Google Scholar 

  • Davidovic M, Mattea C, Qvist J, Halle B (2009) Protein cold denaturation as seen from the solvent. J Am Chem Soc 131(3):1025–1036. doi:10.1021/ja8056419

    CAS  PubMed  Google Scholar 

  • Denisov VP, Jonsson BH, Halle B (1999) Hydration of denatured and molten globule proteins. Nat Struct Biol 6(3):253–260

    CAS  PubMed  Google Scholar 

  • Diakova G, Goddard YA, Korb JP, Bryant RG (2010) Water and backbone dynamics in a hydrated protein. Biophys J 98(1):138–146. doi:10.1016/J.Bpj.2009.09.054

    PubMed Central  CAS  PubMed  Google Scholar 

  • Doll A, Bordignon E, Joseph B, Tschaggelar R, Jeschke G (2012) Liquid state DNP for water accessibility measurements on spin-labeled membrane proteins at physiological temperatures. J Magn Reson doi:10.1016/j.jmr.2012.06.003

    Google Scholar 

  • Dong H, Sharma M, Zhou HX, Cross TA (2012) Glycines: role in alpha-helical membrane protein structures and a potential indicator of native conformation. Biochemistry 51(24):4779–4789. doi:10.1021/bi300090x

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ebbinghaus S, Kim SJ, Heyden M, Yu X, Heugen U, Gruebele M, Leitner DM, Havenith M (2007) An extended dynamical hydration shell around proteins. Proc Natl Acad Sci U S A 104(52):20749–20752. doi:10.1073/pnas.0709207104

    PubMed Central  CAS  PubMed  Google Scholar 

  • Edwards DT, Huber T, Hussain S, Stone KM, Kinnebrew M, Kaminker I, Matalon E, Sherwin MS, Goldfarb D, Han S (2014) Determining the oligomeric structure of proteorhodopsin by Gd3 + -based pulsed dipolar spectroscopy of multiple distances. Structure 22(11):1677–1686. doi:10.1016/j.str.2014.09.008

    CAS  PubMed  Google Scholar 

  • Fenimore PW, Frauenfelder H, McMahon BH, Parak FG (2002) Slaving: solvent fluctuations dominate protein dynamics and functions. Proc Natl Acad Sci U S A 99(25):16047–16051. doi:10.1073/pnas.212637899

    PubMed Central  CAS  PubMed  Google Scholar 

  • Fenimore PW, Frauenfelder H, McMahon BH, Young RD (2004) Bulk-solvent and hydration-shell fluctuations, similar to alpha- and beta-fluctuations in glasses, control protein motions and functions. Proc Natl Acad Sci U S A 101(40):14408–14413. doi:10.1073/pnas.0405573101

    PubMed Central  CAS  PubMed  Google Scholar 

  • Franck JM, Pavlova A, Scott JA, Han S (2013a) Quantitative cw Overhauser effect dynamic nuclear polarization for the analysis of local water dynamics. Prog Nucl Magn Reson Spectrosc 74:33–56. doi:10.1016/j.pnmrs.2013.06.001

    CAS  PubMed  Google Scholar 

  • Franck JM, Scott JA, Han S (2013b) Nonlinear scaling of surface water diffusion with bulk water viscosity of crowded solutions. J Am Chem Soc 135(11):4175–4178. doi:10.1021/ja3112912

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gabel F, Bicout D, Lehnert U, Tehei M, Weik M, Zaccai G (2002) Protein dynamics studied by neutron scattering. Q Rev Biophys 35(4):327–367

    CAS  PubMed  Google Scholar 

  • Garde S, Hummer G, Garcia AE, Paulaitis ME, Pratt LR (1996) Origin of entropy convergence in hydrophobic hydration and protein folding. Phys Rev Lett 77(24):4966–4968. doi:10.1103/PhysRevLett.77.4966

    CAS  PubMed  Google Scholar 

  • Georgieva ER, Ramlall TF, Borbat PP, Freed JH, Eliezer D (2008) Membrane-bound alpha-synuclein forms an extended helix: long-distance pulsed ESR measurements using vesicles, bicelles, and rodlike micelles. J Am Chem Soc 130(39):12856–12857. doi:10.1021/ja804517m

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gottschalk M, Dencher NA, Halle B (2001) Microsecond exchange of internal water molecules in bacteriorhodopsin. J Mol Biol 311(3):605–621. doi:10.1006/jmbi.2001.4895

    CAS  PubMed  Google Scholar 

  • Grossman M, Born B, Heyden M, Tworowski D, Fields GB, Sagi I, Havenith M (2011) Correlated structural kinetics and retarded solvent dynamics at the metalloprotease active site. Nat Struct Mol Biol 18(10):1102–1108. doi:10.1038/nsmb.2120

    PubMed Central  CAS  PubMed  Google Scholar 

  • Halle B (2003) Cross-relaxation between macromolecular and solvent spins: the role of long-range dipole couplings. J Chem Phys 119(23):12372–12385. doi:10.1063/1.1625632

    CAS  Google Scholar 

  • Halle B (2004) Protein hydration dynamics in solution: a critical survey. Philos Trans R Soc Lond Ser B-Biol Sci 359(1448):1207–1223. doi:10.1098/rstb.2004.1499

    CAS  Google Scholar 

  • Halle B, Davidovic M (2003) Biomolecular hydration: from water dynamics to hydrodynamics. Proc Natl Acad Sci U S A 100(21):12135–12140. doi:10.1073/pnas.2033320100

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hausser KH, Stehlik D (1968) Dynamic nuclear polarization in liquids. Adv Magn Reson 3:79–139

    CAS  Google Scholar 

  • Head-Gordon T, Hura G (2002) Water structure from scattering experiments and simulation. Chem Rev 102(8):2651–2670

    CAS  PubMed  Google Scholar 

  • Hochstrasser RM (2005) Techniques: spectroscopy at a stretch. Nature 434(7033):570–571. doi:10.1038/434570a

    CAS  PubMed  Google Scholar 

  • Hodges MW, Cafiso DS, Polnaszek CF, Lester CC, Bryant RG (1997) Water translational motion at the bilayer interface: an NMR relaxation dispersion measurement. Biophys J 73(5):2575–2579

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hofer P, Parigi G, Luchinat C, Carl P, Guthausen G, Reese M, Carlomagno T, Griesinger C, Bennati M (2008) Field dependent dynamic nuclear polarization with radicals in aqueous solution. J Am Chem Soc 130(11):3254–3255. doi:10.1021/ja0783207

    Google Scholar 

  • Hoffmann J, Aslimovska L, Bamann C, Glaubitz C, Bamberg E, Brutschy B (2010) Studying the stoichiometries of membrane proteins by mass spectrometry: microbial rhodopsins and a potassium ion channel. Phys Chem Chem Phys 12(14):3480–3485

    CAS  PubMed  Google Scholar 

  • Hubbell WL, Cafiso DS, Altenbach C (2000) Identifying conformational changes with site-directed spin labeling. Nat Struct Biol 7(9):735–739

    CAS  PubMed  Google Scholar 

  • Hummer G, Garde S, Garcia AE, Paulaitis ME, Pratt LR (1998) Hydrophobic effects on a molecular scale. J Phys Chem B 102(51):10469–10482. doi:10.1021/jp982873+

    CAS  Google Scholar 

  • Hussain S, Franck JM, Han S (2013) Transmembrane protein activation refined by site-specific hydration dynamics. Angew Chem-Int Edit 52(7):1953–1958. doi:10.1002/Anie.201206147

    CAS  Google Scholar 

  • Hussain S, Kinnebrew M, Schonenbach NS, Aye E, Han S (2015) Functional consequences of the oligomeric assembly of proteorhodopsin. J Mol Biol in press

    Google Scholar 

  • Hwang LP, Freed JH (1975) Dynamic effects of pair correlation functions on spin relaxation by translational diffusion in liquids. J Chem Phys 63(9):4017–4025

    CAS  Google Scholar 

  • Jao CC, Hegde BG, Chen J, Haworth IS, Langen R (2008) Structure of membrane-bound alpha-synuclein from site-directed spin labeling and computational refinement. Proc Natl Acad Sci U S A 105(50):19666–19671. doi:10.1073/pnas.0807826105

    PubMed Central  CAS  PubMed  Google Scholar 

  • Jeschke G (2012) DEER distance measurements on proteins. Annu Rev Phys Chem 63:419–446. doi:10.1146/Annurev-Physchem-032511-143716

    CAS  PubMed  Google Scholar 

  • Kausik R, Han S. (2009) Ultrasensitive detection of interfacial diffusion coefficient on lipid vesicle surfaces at molecular length scales. J Am Chem Soc 131(51):18254–18256

    CAS  PubMed  Google Scholar 

  • Kim PS, Baldwin RL (1990) Intermediates in the folding reactions of small proteins. Annu Rev Biochem 59:631–660. doi:10.1146/annurev.bi.59.070190.003215

    CAS  PubMed  Google Scholar 

  • Kim YC, Wikstrom M, Hummer G (2009) Kinetic gating of the proton pump in cytochrome c oxidase. Proc Natl Acad Sci U S A 106(33):13707–13712. doi:10.1073/pnas.0903938106

    PubMed Central  CAS  PubMed  Google Scholar 

  • King JT, Kubarych KJ (2012) Site-specific coupling of hydration water and protein flexibility studied in solution with ultrafast 2D-IR spectroscopy. J Am Chem Soc 134(45):18705–18712. doi:10.1021/ja307401r

    CAS  PubMed  Google Scholar 

  • King JT, Arthur EJ, Brooks CL 3rd, Kubarych KJ (2012) Site-specific hydration dynamics of globular proteins and the role of constrained water in solvent exchange with amphiphilic cosolvents. J Phys Chem B. doi:10.1021/jp300835k

    Google Scholar 

  • Klyszejko AL, Shastri S, Mari SA, Grubmuller H, Muller DJ, Glaubitz C (2008) Folding and assembly of proteorhodopsin. J Mol Biol 376(1):35–41. doi:10.1016/j.jmb.2007.11.030

    CAS  PubMed  Google Scholar 

  • Korb JP, Bryant RG (2001) The physical basis for the magnetic field dependence of proton spin-lattice relaxation rates in proteins. J Chem Phys 115(23):10964–10974. doi:10.1063/1.1417509

    CAS  Google Scholar 

  • Korb JP, Diakova G, Bryant RG (2006) Paramagnetic relaxation of protons in rotationally immobilized proteins. J Chem Phys 124(13). doi:Artn 134910

    Google Scholar 

  • Levy Y, Onuchic JN (2006) Water mediation in protein folding and molecular recognition. Annu Rev Biophys Biomolec Struct 35:389–415. doi:10.1146/annurev.biophys.35.040405.102134

    CAS  Google Scholar 

  • Li TP, Hassanali AAP, Kao YT, Zhong DP, Singer SJ (2007) Hydration dynamics and time scales of coupled water-protein fluctuations. J Am Chem Soc 129(11):3376–3382. doi:10.1021/ja0685957

    CAS  PubMed  Google Scholar 

  • Lide DR (2004) CRC handbook chemistry and physics. 85th edn., Boca Raton, FL

    Google Scholar 

  • Lindquist BA, Furse KE, Corcelli SA (2009) Nitrile groups as vibrational probes of biomolecular structure and dynamics: an overview. Phys Chem Chem Phys 11(37):8119–8132. doi: 10.1039/B908588b

    CAS  PubMed  Google Scholar 

  • Luong TQ, Verma PK, Mitra RK, Havenith M (2011) Do hydration dynamics follow the structural perturbation during thermal denaturation of a protein: a terahertz absorption study. Biophys J 101(4):925–933. doi:10.1016/j.bpj.2011.05.011

    PubMed Central  CAS  PubMed  Google Scholar 

  • MacCallum JL, Tieleman DP (2011) Hydrophobicity scales: a thermodynamic looking glass into lipid-protein interactions. Trends Biochem Sci 36(12):653–662. doi:10.1016/J.Tibs.2011.08.003

    CAS  PubMed  Google Scholar 

  • Manor J, Mukherjee P, Lin YS, Leonov H, Skinner JL, Zanni MT, Arkin IT (2009) Gating mechanism of the influenza A M2 channel revealed by 1D and 2D IR spectroscopies. Structure 17(2):247–254. doi:10.1016/j.str.2008.12.015

    PubMed Central  CAS  PubMed  Google Scholar 

  • Mattea C, Qvist J, Halle B (2008) Dynamics at the protein-water interface from O-17 spin relaxation in deeply supercooled solutions. Biophys J 95(6):2951–2963. doi:10.1529/biophysj.108.135194

    PubMed Central  CAS  PubMed  Google Scholar 

  • Mazza MG, Stokely K, Pagnotta SE, Bruni F, Stanley HE, Franzese G (2011) More than one dynamic crossover in protein hydration water. Proc Natl Acad Sci U S A 108(50):19873–19878. doi:10.1073/Pnas.1104299108

    PubMed Central  CAS  PubMed  Google Scholar 

  • Nandi N, Bhattacharyya K, Bagchi B (2000) Dielectric relaxation and solvation dynamics of water in complex chemical and biological systems. Chem Rev 100(6):2013–2045. doi:10.1021/cr980127v

    CAS  PubMed  Google Scholar 

  • Niehues G, Heyden M, Schmidt DA, Havenith M (2011) Exploring hydrophobicity by THz absorption spectroscopy of solvated amino acids. Faraday Discuss 150:193–207; discussion 257 – 192

    CAS  PubMed  Google Scholar 

  • Nucci NV, Pometun MS, Wand AJ (2011a) Mapping the hydration dynamics of ubiquitin. J Am Chem Soc 133(32):12326–12329. doi:10.1021/ja202033k

    PubMed Central  CAS  PubMed  Google Scholar 

  • Nucci NV, Pometun MS, Wand AJ (2011b) Site-resolved measurement of water-protein interactions by solution NMR. Nat Struct Mol Biol 18(2):245–U315. doi:10.1038/nsmb.1955

    PubMed Central  CAS  PubMed  Google Scholar 

  • Otting G, Liepinsh E, Wüthrich K (1991) Protein hydration in aqueous solution. Science 254(5034):974–980

    CAS  PubMed  Google Scholar 

  • Overhauser AW (1953) Polarization of nuclei in metals. Phys Rev 92(2):411–415

    CAS  Google Scholar 

  • Page RC, Li C, Hu J, Gao FP, Cross TA (2007) Lipid bilayers: an essential environment for the understanding of membrane proteins. Magn Reson Chem 45 Suppl. 1:S2–11. doi:10.1002/mrc.2077

    CAS  PubMed  Google Scholar 

  • Pal SK, Peon J, Zewail AH (2002) Biological water at the protein surface: dynamical solvation probed directly with femtosecond resolution. Proc Natl Acad Sci U S A 99(4):1763–1768. doi:10.1073/pnas.042697899

    CAS  PubMed  Google Scholar 

  • Pavlova A, McCarney ER, Peterson DW, Dahlquist FW, Lew J, Han S (2009) Site-specific dynamic nuclear polarization of hydration water as a generally applicable approach to monitor protein aggregation. Phys Chem Chem Phys 11(31):6833–6839. doi:10.1039/b906101k

    PubMed Central  CAS  PubMed  Google Scholar 

  • Perkins JR, Diboun I, Dessailly BH, Lees JG, Orengo C (2010) Transient protein-protein interactions: structural, functional, and network properties. Structure 18(10):1233–1243. doi:10.1016/j.str.2010.08.007

    CAS  PubMed  Google Scholar 

  • Persson E, Halle B (2008a) Cell water dynamics on multiple time scales. Proc Natl Acad Sci U S A 105(17):6266–6271. doi:10.1073/pnas.0709585105

    PubMed Central  CAS  PubMed  Google Scholar 

  • Persson E, Halle B (2008b) Nanosecond to microsecond protein dynamics probed by magnetic relaxation dispersion of buried water molecules. J Am Chem Soc 130(5):1774–1787. doi:10.1021/ja0775873

    CAS  PubMed  Google Scholar 

  • Pizzitutti F, Marchi M, Sterpone F, Rossky PJ (2007) How protein surfaces induce anomalous dynamics of hydration water. J Phys Chem B 111(26):7584–7590. doi:10.1021/jp0717185

    CAS  PubMed  Google Scholar 

  • Poole CP (1996) Electron spin resonance: a comprehensive treatise on experimental techniques. Dover, Mineola

    Google Scholar 

  • Popp CA, Hyde JS (1982) Electron-electron double resonance and saturation-recovery studies of nitroxide electron and nuclear spin-lattice relaxation times and Heisenberg exchange rates: lateral diffusion in dimyristoyl phosphatidylcholine. Proc Natl Acad Sci U S A 79(8):2559–2563

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rasaiah JC, Garde S, Hummer G (2008) Water in nonpolar confinement: from nanotubes to proteins and beyond. Ann Rev Phys Chem 59:713–740. doi:10.1146/annurev.physchem.59.032607.093815

    CAS  Google Scholar 

  • Raschke TM (2006) Water structure and interactions with protein surfaces. Curr Opin Struct Biol 16(2):152–159. doi:10.1016/J.Sbi.2006.03.002

    CAS  PubMed  Google Scholar 

  • Ronne C, Thrane L, Astrand PO, Wallqvist A, Mikkelsen KV, Keiding SR (1997) Investigation of the temperature dependence of dielectric relaxation in liquid water by THz reflection spectroscopy and molecular dynamics simulation. J Chem Phys 107(14):5319–5331

    CAS  Google Scholar 

  • Roy S, Bagchi B (2012) Free energy barriers for escape of water molecules from protein hydration layer. J Phys Chem B 116(9):2958–2968. doi:10.1021/jp209437j

    CAS  PubMed  Google Scholar 

  • Russo D, Hura G, Head-Gordon T (2004) Hydration dynamics near a model protein surface. Biophys J 86(3):1852–1862

    PubMed Central  CAS  PubMed  Google Scholar 

  • Solomon I (1955) Relaxation processes in a system of 2 spins. Phys Rev 99(2):559–565. doi:10.1103/Physrev.99.559

    CAS  Google Scholar 

  • Spindler PE, Glaser SJ, Skinner TE, Prisner TF (2013) Broadband inversion PELDOR spectroscopy with partially adiabatic shaped pulses. Angew Chem Int Ed Engl 52(12):3425–3429. doi:10.1002/anie.201207777

    CAS  PubMed  Google Scholar 

  • Stone KM, Voska J, Kinnebrew M, Pavlova A, Junk MJN, Han SG (2013) Structural insight into proteorhodopsin oligomers. Biophys J 104(2):472–481. doi:10.1016/J.Bpj.2012.11.3831

    PubMed Central  CAS  PubMed  Google Scholar 

  • Svergun DI, Richard S, Koch MH, Sayers Z, Kuprin S, Zaccai G (1998) Protein hydration in solution: experimental observation by x-ray and neutron scattering. Proc Natl Acad Sci U S A 95(5):2267–2272

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tarek M, Tobias DJ (2000) The dynamics of protein hydration water: a quantitative comparison of molecular dynamics simulations and neutron-scattering experiments. Biophys J 79(6):3244–3257

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tehei M, Franzetti B, Wood K, Gabel F, Fabiani E, Jasnin M, Zamponi M, Oesterhelt D, Zaccai G, Ginzburg M, Ginzburg BZ (2007) Neutron scattering reveals extremely slow cell water in a dead sea organism. Proc Natl Acad Sci U S A 104(3):766–771. doi:10.1073/Pnas.0601639104

    PubMed Central  CAS  PubMed  Google Scholar 

  • Turke MT, Tkach I, Reese M, Hofer P, Bennati M (2010) Optimization of dynamic nuclear polarization experiments in aqueous solution at 15 MHz/9.7 GHz: a comparative study with DNP at 140 MHz/94 GHz. Phys Chem Chem Phys 12(22):5893–5901. doi:10.1039/c002814m

    PubMed  Google Scholar 

  • Tycko R (2011) Solid-state NMR studies of amyloid fibril structure. Annu Rev Phys Chem 62:279–299. doi:10.1146/annurev-physchem-032210-103539

    PubMed Central  CAS  PubMed  Google Scholar 

  • Vinh NQ, Allen SJ, Plaxco KW (2011) Dielectric spectroscopy of proteins as a quantitative experimental test of computational models of their low-frequency harmonic motions. J Am Chem Soc 133(23):8942–8947. doi:10.1021/Ja200566u

    CAS  PubMed  Google Scholar 

  • Weil JA, Bolton JR (2007) Electron paramagnetic resonance: elementary theory and practical applications, 2 edn. Wiley-Interscience, Hoboken, New Jersey

    Google Scholar 

  • Wimley WC, White SH (1996) Experimentally determined hydrophobicity scale for proteins at membrane interfaces. Nat Struct Biol 3(10):842–848. doi:10.1038/Nsb1096-842

    CAS  PubMed  Google Scholar 

  • Wood K, Plazanet M, Gabel F, Kessler B, Oesterhel D, Tobias DJ, Zaccai G, Weik M (2007) Coupling of protein and hydration-water dynamics in biological membranes. Proc Natl Acad Sci U S A 104(46):18049–18054

    PubMed Central  CAS  PubMed  Google Scholar 

  • Woys AM, Mukherjee SS, Skoff DR, Moran SD, Zanni MT (2013) A strongly absorbing class of non-Natural labels for probing protein electrostatics and solvation with FTIR and 2D IR spectroscopies. J Phys Chem B 117(17):5009–5018. doi:10.1021/jp402946c

    PubMed Central  CAS  PubMed  Google Scholar 

  • Xu F, Cross TA (1999) Water: foldase activity in catalyzing polypeptide conformational rearrangements. Proc Natl Acad Sci U S A 96(16):9057–9061

    PubMed Central  CAS  PubMed  Google Scholar 

  • Xu J, Plaxco KW, Allen SJ (2006) Probing the collective vibrational dynamics of a protein in liquid water by terahertz absorption spectroscopy. Protein Sci 15(5):1175–1181. doi:10.1110/ps.062073506

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang L, Wang, L., Kao, Y., Qiu, W., Yang, Y., Okobiah, O., Zhong, D (2007) Mapping hydration dynamics around a protein surface. Proc Nat Acad Sci U S A 104(47):18461–18466

    CAS  Google Scholar 

  • Zhang LY, Yang Y, Kao YT, Wang LJ, Zhong DP (2009) Protein hydration dynamics and molecular mechanism of coupled water-protein fluctuations. J Am Chem Soc 131(30):10677–10691. doi:10.1021/ja902918p

    CAS  PubMed  Google Scholar 

  • Zhong D, Pal SK, Zewail AH (2011) Biological water: a critique. Chemical Physics Letters 503(1–3):1–11

    CAS  Google Scholar 

  • Zhou HX, Cross TA (2013) Influences of membrane mimetic environments on membrane protein structures. Annu Rev Biophys 42:361–392. doi:10.1146/annurev-biophys-083012-130326

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zhou R, Huang X, Margulis CJ, Berne BJ (2004) Hydrophobic collapse in multidomain protein folding. Science 305(5690):1605–1609. doi:10.1126/science.1101176

    CAS  PubMed  Google Scholar 

  • Zhu F, Hummer G (2010) Pore opening and closing of a pentameric ligand-gated ion channel. Proc Natl Acad Sci U S A 107(46):19814–19819. doi:10.1073/pnas.1009313107

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported by the 2011 NIH Innovator award to SH, the cluster of Excellence RESOLV (EXC 1069) funded by the Deutsche Forschungsgemeinschaft and the WCU Program (R33-2008-000-10163-0) of KAIST to JS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Songi Han .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Cheng, CY., Song, J., Franck, J., Han, S. (2015). Mapping Out Protein Hydration Dynamics by Overhauser Dynamic Nuclear Polarization. In: Berliner, L. (eds) Protein NMR. Biological Magnetic Resonance, vol 32. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-7621-5_2

Download citation

Publish with us

Policies and ethics