Skip to main content

Abstract

Stroke is the fourth leading cause of death and the leading cause of long-term serious disability in the United States [1]. Treatment and management advancements for ischemic injury have increased the demand for accurate and reliable imaging techniques to rapidly identify both intra- and extracranial carotid artery pathology [2, 3].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mathews TJ et al. Annual summary of vital statistics: 2008. Pediatrics. 2011;127(1):146–57.

    Article  CAS  PubMed  Google Scholar 

  2. Schellinger PD, Fiebach JB, Hacke W. Imaging-based decision making in thrombolytic therapy for ischemic stroke: present status. Stroke. 2003;34(2):575–83.

    Article  PubMed  Google Scholar 

  3. Truwit CL. CT angiography versus MR angiography in the evaluation of acute neurovascular disease. Radiology. 2007;245(2):362–6. discussion 366.

    Article  PubMed  Google Scholar 

  4. Poisson SN et al. Intracranial large vessel occlusion as a predictor of decline in functional status after transient ischemic attack. Stroke. 2011;42(1):44–7.

    Article  PubMed  Google Scholar 

  5. Johnson JM, MeaderA, Hunt DT. Pearls and pitfalls of noninvasive carotid imaging. In: Abbara S, Kalva S editors. Vascular imaging pearls and pitfalls. Springer USA (NY) 2012.

    Google Scholar 

  6. Mahesh M. Search for isotropic resolution in CT from conventional through multiple-row detector. Radiographics. 2002;22(4):949–62.

    Article  PubMed  Google Scholar 

  7. Irace C et al. Arterial remodeling of the common carotid artery after aortic valve replacement in patients with aortic stenosis. Stroke. 2002;33(10):2446–50.

    Article  PubMed  Google Scholar 

  8. Shrier DA et al. CT angiography in the evaluation of acute stroke. AJNR Am J Neuroradiol. 1997;18(6):1011–20.

    CAS  PubMed  Google Scholar 

  9. Fox AJ et al. Identification, prognosis, and management of patients with carotid artery near occlusion. AJNR Am J Neuroradiol. 2005;26(8):2086–94.

    PubMed  Google Scholar 

  10. Cochran ST, Bomyea K, Sayre JW. Trends in adverse events after IV administration of contrast media. AJR Am J Roentgenol. 2001;176(6):1385–8.

    Article  CAS  PubMed  Google Scholar 

  11. Nagahata M et al. Bolus injection of contrast agents with various iodine concentrations and delivery rates for intracranial three-dimensional CT angiography: evaluation of intracranial arteriovenous contrast using a multidetector-row CT scanner. Radiat Med. 2008;26(8):494–8.

    Article  PubMed  Google Scholar 

  12. Claves JL et al. Evaluation of contrast densities in the diagnosis of carotid stenosis by CT angiography. AJR Am J Roentgenol. 1997;169(2):569–73.

    Article  CAS  PubMed  Google Scholar 

  13. Rubin GD et al. Multi-detector row CT angiography of lower extremity arterial inflow and runoff: initial experience. Radiology. 2001;221(1):146–58.

    Article  CAS  PubMed  Google Scholar 

  14. Bartlett ES et al. Diagnosing carotid stenosis near-occlusion by using CT angiography. AJNR Am J Neuroradiol. 2006;27(3):632–7.

    CAS  PubMed  Google Scholar 

  15. Schramm P et al. Comparison of CT and CT angiography source images with diffusion-weighted imaging in patients with acute stroke within 6 hours after onset. Stroke. 2002;33(10):2426–32.

    Article  PubMed  Google Scholar 

  16. Lima FO et al. The pattern of leptomeningeal collaterals on CT angiography is a strong predictor of long-term functional outcome in stroke patients with large vessel intracranial occlusion. Stroke. 2010;41(10):2316–22.

    Article  PubMed  Google Scholar 

  17. Johnson JM et al. Quality of extracranial carotid evaluation with 256-section CT. AJNR Am J Neuroradiol. 2013;34(8):1626–31.

    Article  CAS  PubMed  Google Scholar 

  18. Johnson TR et al. Material differentiation by dual energy CT: initial experience. Eur Radiol. 2007;17(6):1510–7.

    Article  PubMed  Google Scholar 

  19. Alvarez RE, Macovski A. Energy-selective reconstructions in X-ray computerized tomography. Phys Med Biol. 1976;21(5):733–44.

    Article  CAS  PubMed  Google Scholar 

  20. Liu X et al. Quantitative imaging of element composition and mass fraction using dual-energy CT: three-material decomposition. Med Phys. 2009;36(5):1602–9.

    Article  PubMed Central  PubMed  Google Scholar 

  21. Kang MJ et al. Dual-energy CT: clinical applications in various pulmonary diseases. Radiographics. 2010;30(3):685–98.

    Article  PubMed  Google Scholar 

  22. Korn A et al. Dual energy CTA of the carotid bifurcation: advantage of plaque subtraction for assessment of grade of the stenosis and morphology. Eur J Radiol. 2011;80(2):e120–5.

    Article  CAS  PubMed  Google Scholar 

  23. Sparacia G et al. Imaging processing for CT angiography of the cervicocranial arteries: evaluation of reformatting technique. Radiol Med. 2007;112(2):224–38.

    Article  CAS  PubMed  Google Scholar 

  24. Ota H et al. Quantitative vascular measurements in arterial occlusive disease. Radiographics. 2005;25(5):1141–58.

    Article  PubMed  Google Scholar 

  25. Schauer DA, Linton OW. NCRP Report No. 160, ionizing radiation exposure of the population of the United States, medical exposure–are we doing less with more, and is there a role for health physicists? Health Phys. 2009;97(1):1–5.

    Article  CAS  PubMed  Google Scholar 

  26. Singh S et al. Radiation dose optimization and thoracic computed tomography. Radiol Clin North Am. 2014;52(1):1–15.

    Article  PubMed  Google Scholar 

  27. Bahner ML et al. Improved vascular opacification in cerebral computed tomography angiography with 80 kVp. Invest Radiol. 2005;40(4):229–34.

    Article  PubMed  Google Scholar 

  28. Morcos SK. Review article: acute serious and fatal reactions to contrast media: our current understanding. Br J Radiol. 2005;78(932):686–93.

    Article  CAS  PubMed  Google Scholar 

  29. Singh J, Daftary A. Iodinated contrast media and their adverse reactions. J Nucl Med Technol. 2008;36(2):69–74. quiz 76-7.

    Article  PubMed  Google Scholar 

  30. American College of Radiology. ACR manual on contrast media. Reston, VA: ACR; 2013.

    Google Scholar 

  31. Bae KT, Tran HQ, Heiken JP. Multiphasic injection method for uniform prolonged vascular enhancement at CT angiography: pharmacokinetic analysis and experimental porcine model. Radiology. 2000;216(3):872–80.

    Article  CAS  PubMed  Google Scholar 

  32. Osborn AG, Jacobs JM, Osborn AG. Diagnostic cerebral angiography. 2nd ed. Philadelphia, PA: Lippincott-Raven; 1999. p. 462.

    Google Scholar 

  33. Motomiya M, Karino T. Flow patterns in the human carotid artery bifurcation. Stroke. 1984;15(1):50–6.

    Article  CAS  PubMed  Google Scholar 

  34. Rothwell PM, Gibson R, Warlow CP. Interrelation between plaque surface morphology and degree of stenosis on carotid angiograms and the risk of ischemic stroke in patients with symptomatic carotid stenosis. On behalf of the European Carotid Surgery Trialists’ Collaborative Group. Stroke. 2000;31(3):615–21.

    Article  CAS  PubMed  Google Scholar 

  35. North American Symptomatic Carotid Endarterectomy Trial Collaborators. Beneficial effect of carotid endarterectomy in symptomatic patients with high-grade carotid stenosis. N Engl J Med. 1991;325(7):445–53.

    Article  Google Scholar 

  36. Bartlett ES et al. Quantification of carotid stenosis on CT angiography. AJNR Am J Neuroradiol. 2006;27(1):13–9.

    CAS  PubMed  Google Scholar 

  37. Hobson 2nd RW. Update on the Carotid Revascularization Endarterectomy versus Stent Trial (CREST) protocol. J Am Coll Surg. 2002;194(1 Suppl):S9–14.

    Article  PubMed  Google Scholar 

  38. Wyers MC et al. The value of 3D-CT angiographic assessment prior to carotid stenting. J Vasc Surg. 2009;49(3):614–22.

    Article  PubMed  Google Scholar 

  39. Romero JM et al. Vasa vasorum enhancement on computerized tomographic angiography correlates with symptomatic patients with 50 % to 70 % carotid artery stenosis. Stroke. 2013;44(12):3344–9.

    Article  PubMed  Google Scholar 

  40. Lev MH et al. CT angiography in the rapid triage of patients with hyperacute stroke to intraarterial thrombolysis: accuracy in the detection of large vessel thrombus. J Comput Assist Tomogr. 2001;25(4):520–8.

    Article  CAS  PubMed  Google Scholar 

  41. Koelemay MJ et al. Systematic review of computed tomographic angiography for assessment of carotid artery disease. Stroke. 2004;35(10):2306–12.

    Article  PubMed  Google Scholar 

  42. Jaff MR et al. Imaging of the carotid arteries: the role of duplex ultrasonography, magnetic resonance arteriography, and computerized tomographic arteriography. Vasc Med. 2008;13(4):281–92.

    Article  PubMed  Google Scholar 

  43. Link J et al. Spiral CT angiography and selective digital subtraction angiography of internal carotid artery stenosis. AJNR Am J Neuroradiol. 1996;17(1):89–94.

    CAS  PubMed  Google Scholar 

  44. Berg M et al. Multi-detector row CT angiography in the assessment of carotid artery disease in symptomatic patients: comparison with rotational angiography and digital subtraction angiography. AJNR Am J Neuroradiol. 2005;26(5):1022–34.

    PubMed  Google Scholar 

  45. Lettau M et al. Carotid artery stents: in vitro comparison of different stent designs and sizes using CT angiography and contrast-enhanced MR angiography at 1.5 T and 3 T. AJNR Am J Neuroradiol. 2009;30(10):1993–7.

    Article  CAS  PubMed  Google Scholar 

  46. Yoon DY et al. Detection and characterization of intracranial aneurysms with 16-channel multidetector row CT angiography: a prospective comparison of volume-rendered images and digital subtraction angiography. AJNR Am J Neuroradiol. 2007;28(1):60–7.

    CAS  PubMed  Google Scholar 

  47. McKinney AM et al. Detection of aneurysms by 64-section multidetector CT angiography in patients acutely suspected of having an intracranial aneurysm and comparison with digital subtraction and 3D rotational angiography. AJNR Am J Neuroradiol. 2008;29(3):594–602.

    Article  CAS  PubMed  Google Scholar 

  48. Franklin B et al. Diagnostic accuracy and inter-rater reliability of 64-multislice 3D-CTA compared to intra-arterial DSA for intracranial aneurysms. J Clin Neurosci. 2010;17(5):579–83.

    Article  CAS  PubMed  Google Scholar 

  49. Lubicz B et al. Sixty-four-row multisection CT angiography for detection and evaluation of ruptured intracranial aneurysms: interobserver and intertechnique reproducibility. AJNR Am J Neuroradiol. 2007;28(10):1949–55.

    Article  CAS  PubMed  Google Scholar 

  50. Jehle D et al. Case series of 64 slice computed tomography-computed tomographic angiography with 3D reconstruction to diagnose symptomatic cerebral aneurysms: new standard of care? Neurol Int. 2012;4(1), e2.

    Article  PubMed Central  PubMed  Google Scholar 

  51. Uysal E et al. Detection and evaluation of intracranial aneurysms with 16-row multislice CT angiography: comparison with conventional angiography. Emerg Radiol. 2008;15(5):311–6.

    Article  PubMed  Google Scholar 

  52. Gaughen Jr JR et al. Utility of CT angiography in the identification and characterization of supraclinoid internal carotid artery blister aneurysms. AJNR Am J Neuroradiol. 2010;31(4):640–4.

    Article  PubMed  Google Scholar 

  53. Gonzalez AM et al. Blood blister-like aneurysms: single center experience and systematic literature review. Eur J Radiol. 2014;83(1):197–205.

    Article  PubMed  Google Scholar 

  54. Sastri SB, Sadasiva N, Pandey P. Giant cavernous carotid aneurysm with spontaneous ipsilateral ICA occlusion: report of 2 cases and review of literature. J Neurosci Rural Pract. 2013;4 Suppl 1:S113–6.

    PubMed Central  PubMed  Google Scholar 

  55. van Rooij WJ, Sluzewski M. Unruptured large and giant carotid artery aneurysms presenting with cranial nerve palsy: comparison of clinical recovery after selective aneurysm coiling and therapeutic carotid artery occlusion. AJNR Am J Neuroradiol. 2008;29(5):997–1002.

    Article  PubMed  Google Scholar 

  56. Moratti C, Andersson T. Giant extracranial aneurysm of the internal carotid artery in neurofibromatosis type 1. A case report and review of the literature. Interv Neuroradiol. 2012;18(3):341–7.

    PubMed Central  CAS  PubMed  Google Scholar 

  57. Slovut DP, Olin JW. Fibromuscular dysplasia. N Engl J Med. 2004;350(18):1862–71.

    Article  CAS  PubMed  Google Scholar 

  58. Vertinsky AT et al. Comparison of multidetector CT angiography and MR imaging of cervical artery dissection. AJNR Am J Neuroradiol. 2008;29(9):1753–60.

    Article  CAS  PubMed  Google Scholar 

  59. Liang T et al. Review of multidetector computed tomography angiography as a screening modality in the assessment of blunt vascular neck injuries. Can Assoc Radiol J. 2013;64(2):130–9.

    Article  PubMed  Google Scholar 

  60. Biffl WL et al. Blunt carotid arterial injuries: implications of a new grading scale. J Trauma. 1999;47(5):845–53.

    Article  CAS  PubMed  Google Scholar 

  61. Burlew CC, Biffl WL. Imaging for blunt carotid and vertebral artery injuries. Surg Clin North Am. 2011;91(1):217–31.

    Article  PubMed  Google Scholar 

  62. Langner S et al. Whole-body CT trauma imaging with adapted and optimized CT angiography of the craniocervical vessels: do we need an extra screening examination? AJNR Am J Neuroradiol. 2008;29(10):1902–7.

    Article  CAS  PubMed  Google Scholar 

  63. Liang T et al. Imaging of blunt vascular neck injuries: a clinical perspective. AJR Am J Roentgenol. 2013;201(4):893–901.

    Article  PubMed  Google Scholar 

  64. Liang T et al. Imaging of blunt vascular neck injuries: a review of screening and imaging modalities. AJR Am J Roentgenol. 2013;201(4):884–92.

    Article  PubMed  Google Scholar 

  65. Roberts DJ et al. Diagnostic accuracy of computed tomographic angiography for blunt cerebrovascular injury detection in trauma patients: a systematic review and meta-analysis. Ann Surg. 2013;257(4):621–32.

    Article  PubMed  Google Scholar 

  66. Maksimowicz-McKinnon K, Clark TM, Hoffman GS. Takayasu arteritis and giant cell arteritis: a spectrum within the same disease? Medicine (Baltimore). 2009;88(4):221–6.

    Article  Google Scholar 

  67. Comacchio F et al. Carotidynia: new aspects of a controversial entity. Acta Otorhinolaryngol Ital. 2012;32(4):266–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  68. Plouin PF et al. Fibromuscular dysplasia. Orphanet J Rare Dis. 2007;2:28.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason M. Johnson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kallianos, K., Franceschi, A.M., Carr, J.R., Mehan, W.A., Johnson, J.M. (2015). CT of Carotid Arteries. In: Trivedi, R., Saba, L., Suri, J. (eds) 3D Imaging Technologies in Atherosclerosis. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-7618-5_3

Download citation

Publish with us

Policies and ethics