Skip to main content

Abstract

Coronary artery disease (CAD) is one of the leading causes of mortality and morbidity in Europe and in the USA, representing high sanitary costs for insurance and national health systems. Coronary angiography is still the gold standard for the real-time visualisation and assessment of coronary circle and a fundamental interventional tool for intravascular thrombolysis and stenting placement procedures, but nowadays a new imaging modality has emerged as reference technique for the diagnostic assessment of the coronary: CT angiography (CTA). This technique allows a non-invasive examination of the coronaries, including the evaluation of vessel lumen, the conditions of the coronary walls, the plaque type and morphology, and the relationships between the vessels and the heart. CTA has become a very important instrument to evaluate coronary arteries in particular for those symptomatic patients with a low-intermediate risk for CAD. In this chapter we present the state of the art of CTA of coronary arteries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Go AS, et al. Heart disease and stroke statics—2013 update: a report from the American Heart Association. Circulation. 2013;127:e6–245.

    Article  PubMed  Google Scholar 

  2. Hamdan A, et al. A prospective study for comparison of MR and CT imaging for detection of coronary artery stenosis. JACC Cardiovasc Imaging. 2011;4(9):50–61.

    Article  PubMed  Google Scholar 

  3. Bastarrika G, et al. CT of coronary artery disease. Radiology. 2009;253(2):317–38.

    Article  PubMed  Google Scholar 

  4. Kakouros N, et al. The utility of cardiac CT beyond the assessment of suspected coronary artery disease. Clin Radiol. 2012;67:695e708.

    Article  Google Scholar 

  5. Sundaram B, et al. Anatomy and terminology for the interpretation and reporting of cardiac MDCT: Part 1, Structured report, coronary calcium screening, and coronary artery anatomy. AJR Am J Roentgenol. 2009;192:574–83.

    Article  PubMed  Google Scholar 

  6. Cerqueira MD, et al. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: a statement for healthcare professionals from the cardiac imaging committee of the council on clinical cardiology of the American Heart Association. Circulation. 2002;105:539–42.

    Article  PubMed  Google Scholar 

  7. Lee J. Coronary artery calcium scoring and its impact on the clinical practice in the era of multidetector CT. Int J Cardiovasc Imaging. 2011;27:9–25.

    Article  PubMed  Google Scholar 

  8. Sundaram B, et al. Anatomy and terminology for the interpretation and reporting of cardiac MDCT: Part 2, CT angiography, cardiac function assessment, and noncoronary and extracardiac findings. AJR Am J Roentgenol. 2009;192:584–98.

    Article  PubMed  Google Scholar 

  9. Agatston AS, et al. Quantification of coronary artery calcium using ultrafast computed tomography. J Am Coll Cardiol. 1990;15(4):827–32.

    Article  CAS  PubMed  Google Scholar 

  10. Patel J, et al. All-cause mortality in asymptomatic persons with extensive Agatston scores above 1000. J Cardiovasc Comput Tomogr. 2014;8:26–32.

    Article  PubMed  Google Scholar 

  11. Sun Z, et al. Coronary CT angiography: current status and continuing challenges. Br J Radiol. 2012;85:495–510.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Pannu HK, et al. β-blockers for cardiac CT: a primer for the radiologist. AJR Am J Roentgenol. 2006;186:S341–5.

    Article  PubMed  Google Scholar 

  13. Hassan A, et al. Technical challenges of coronary CT angiography: today and tomorrow. Eur J Radiol. 2011;79:161–71.

    Article  PubMed  Google Scholar 

  14. Bastarrika G, et al. Cardiac CT in the assessment of acute chest pain in the emergency department. AJR Am J Roentgenol. 2009;193:397–409.

    Article  PubMed  Google Scholar 

  15. Cody DD, et al. AAPM/RSNA physics tutorial for residents technologic advances in multi-detector CT with a focus on cardiac imaging. RadioGraphics. 2007;27:1829–37.

    Article  PubMed  Google Scholar 

  16. Sun Z. Multislice CT angiography in cardiac imaging: prospective ECG-gating or retrospective ECG-Gating? Biomed Imaging Interv J. 2010;6(1), e4.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Qin J, et al. Prospective versus retrospective ECG gating for 320-detector CT of the coronary arteries: comparison of image quality and patient radiation dose. Clin Imaging. 2011;35:193–7.

    Article  PubMed  Google Scholar 

  18. Carrascosa P, et al. Accuracy of low-dose prospectively gated axial coronary CT angiography for the assessment of coronary artery stenosis in patients with stable heart rate. J Cardiovasc Comput Tomogr. 2010;4:197–205.

    Article  PubMed  Google Scholar 

  19. Stolzmann P, et al. Dual-source CT in step-and-shoot mode: noninvasive coronary angiography with low radiation dose. Radiology. 2008;249(1):71–80.

    Article  PubMed  Google Scholar 

  20. Schoepf UJ, et al. CT of coronary artery disease. Radiology. 2004;232:18–37.

    Article  PubMed  Google Scholar 

  21. Silva AC, et al. Innovations in CT dose reduction strategy: application if the adaptive statistical iterative reconstruction algorithm. AJR Am J Roentgenol. 2010;194:191–9.

    Article  PubMed  Google Scholar 

  22. Leipsic J, et al. Adaptive statistical iterative reconstruction: assessment of image noise and image quality in coronary CT angiography. AJR Am J Roentgenol. 2010;195:649–54.

    Article  PubMed  Google Scholar 

  23. Scheffel H, et al. Coronary artery plaques: cardiac CT with model-based and adaptive-statistical iterative reconstruction technique. Eur J Radiol. 2012;81:e363–9.

    Article  PubMed  Google Scholar 

  24. Siripornpitak S, et al. Cardiac CT angiography in children with congenital heart disease. Eur J Radiol. 2013;82:1067–82.

    Article  PubMed  Google Scholar 

  25. Sun Z, et al. Coronary CT angiography: how should physicians use it wisely and when do physicians request it appropriately? Eur J Radiol. 2012;81:e684–7.

    Article  PubMed  Google Scholar 

  26. Habib PJ, et al. Association of cardiac events with coronary artery disease detected by 64-slice or greater coronary CT angiography: a systematic review and meta-analysis. Int J Cardiol. 2013;169:112–20.

    Article  PubMed  Google Scholar 

  27. Dougoud S, et al. Prognostic value of coronary CT angiography on long-term follow-up of 6.9 years. Int J Cardiovasc Imaging. 2014;30(5):969–76. doi:10.1007/s10554-014-0420-1.

    Article  PubMed  Google Scholar 

  28. Han BK, et al. Safety and accuracy of dual-source coronary computed tomography angiography in the pediatric population. J Cardiovasc Comput Tomogr. 2012;6:252–9.

    Article  PubMed  Google Scholar 

  29. Zheng M, et al. Image quality of ultra-low-dose dual-source CT angiography using high-pitch spiral acquisition and iterative reconstruction in young children with congenital heart disease. J Cardiovasc Comput Tomogr. 2013;7:376–82.

    Article  PubMed  Google Scholar 

  30. Angelini P, et al. Coronary anomalies: incidence, pathophysiology, and clinical relevance. Circulation. 2002;105:2449–54.

    Article  PubMed  Google Scholar 

  31. Yu F-F, et al. Congenital anomalies of coronary arteries in complex congenital heart disease: diagnosis and analysis with dual-source CT. J Cardiovasc Comput Tomogr. 2013;7:383–90.

    Article  PubMed  Google Scholar 

  32. Pleva L, et al. Congenital coronary anomalies. Cor Vasa. 2014;56:e27–36.

    Article  Google Scholar 

  33. Torres FS. Role of MDCT coronary angiography in the evaluation of septal vs interarterial course of anomalous left coronary arteries. J Cardiovasc Comput Tomogr. 2010;4:246–54.

    Article  PubMed  Google Scholar 

  34. Diaz-Zamudio M, et al. Coronary artery aneurysms and ectasia: role of coronary CT angiography. RadioGraphics. 2009;29:1939–54.

    Article  PubMed  Google Scholar 

  35. Alegria JR, et al. Myocardial bridging. Eur Heart J. 2005;26:1159–68.

    Article  PubMed  Google Scholar 

  36. Choi HS, et al. Pitfalls, artifacts, and remedies in multi-detector row CT coronary angiography. RadioGraphics. 2004;24:787–800.

    Article  PubMed  Google Scholar 

  37. Aldana-Sepulveda N, et al. Single coronary artery: spectrum of imaging findings with multidetector CT. J Cardiovasc Comput Tomogr. 2013;7:391e399.

    Article  Google Scholar 

  38. Kumar V, Abbas AK, Fausto N. Robbins and Contran pathologic bases of disease—Italian Version—Capitolo 11: Frederick J. Schoen: Vasi sanguigni. Philadelphia, PA: Elsevier; 2006. p. 511–554.

    Google Scholar 

  39. Bogot NR, et al. Cardiac CT of the transplanted heart: indications, technique, appearance, and complications. RadioGraphics. 2007;27:1297–309.

    Article  PubMed  Google Scholar 

  40. Sun Z, et al. CT virtual intravascular endoscopy assessment of coronary artery plaques: a preliminary study. Eur J Radiol. 2010;75:e112–9.

    Article  PubMed  Google Scholar 

  41. Brodoefel H, et al. Accuracy of dual-source CT in the characterisation of non-calcified plaque: use of a colour-coded analysis compared with virtual histology intravascular ultrasound. Br J Radiol. 2009;82:805–12.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Vliegenthart R, et al. Dual-energy CT of the heart. AJR Am J Roentgenol. 2012;199:S54–63.

    Article  PubMed  Google Scholar 

  43. Kang DK, et al. Dual-energy computed tomography for integrative imaging of coronary artery disease: principles and clinical applications. Semin Ultrasound CT MR. 2010;31(4):276–91.

    Article  PubMed  Google Scholar 

  44. Sun Z, et al. Multislice CT angiography assessment of left coronary artery: correlation between bifurcation angle and dimensions and development of coronary artery disease. Eur J Radiol. 2011;79:e90–5.

    Article  PubMed  Google Scholar 

  45. Soto ME, et al. Coronary CT angiography in Takayasu arteritis. JACC Cardiovasc Imaging. 2011;4(9):958–66.

    Article  PubMed  Google Scholar 

  46. Ozcan OU, et al. Coronary artery ectasia. Cor Vasa. 2013;55:e242–7.

    Article  Google Scholar 

  47. McMahon MA, et al. Multidetector CT of aortic dissection: a pictorial review. RadioGraphics. 2010;30:445–60.

    Article  PubMed  Google Scholar 

  48. Sharma N, et al. Spontaneous left main coronary artery dissection in pregnancy. Int J Cardiol. 2012;159:e11–3.

    Article  PubMed  Google Scholar 

  49. Zenooz NA, et al. Coronary artery fistulas: CT findings. RadioGraphics. 2009;29:781–9.

    Article  PubMed  Google Scholar 

  50. Pugliese F, et al. Multidetector CT for visualization of coronary stents. RadioGraphics. 2006;26:887–904.

    Article  PubMed  Google Scholar 

  51. Frazier AA, et al. Coronary artery bypass grafts: assessment with multidetector CT in the early and late postoperative settings. RadioGraphics. 2005;25:881–96.

    Article  PubMed  Google Scholar 

  52. Khedr SA, et al. Diagnostic value of MDCT angiography in assessment of coronary artery bypass graft. Egypt J Radiol Nucl Med. 2013;44:183–91.

    Article  Google Scholar 

  53. Romagnoli A, et al. Diagnostic accuracy of 64-slice CT in evaluating coronary artery bypass grafts and of the native coronary arteries. Radiol Med. 2010;115:1167–78.

    Article  CAS  PubMed  Google Scholar 

  54. Gao SZ, et al. Accelerated coronary vascular disease in the heart transplant patient: coronary arteriographic findings. J Am Coll Cardiol. 1988;12:334–40.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Saba M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Porcu, M. et al. (2015). CT Imaging of Coronary Arteries. In: Trivedi, R., Saba, L., Suri, J. (eds) 3D Imaging Technologies in Atherosclerosis. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-7618-5_2

Download citation

Publish with us

Policies and ethics