Imaging and Development: Relevant Findings in Males

  • Margaret Semrud-Clikeman
  • Rachel Robillard
Part of the Issues of Diversity in Clinical Neuropsychology book series (ISSUESDIV)


The ability for neuroimaging to now explore brain structure and functioning variations has opened new avenues of research in gender differences (Cairns, Malone, Johnston, & Cammock, Personality and Individual Differences, 6, 653–654, 1985; Gur et al., Science, 267(5197), 528–531, 1995; Kulynych, Vladar, Jones, & Weinberger, Cerebral Cortex, 4(2), 107–118, 1994; Schlaepfer et al., Psychiatry Research: Neuroimaging, 61, 129–135, 1995; Witelson & McCulloch, Schizophrenia Bulletin, 17(4), 583–591, 1991). The first studies emphasized different diseases with less emphasis on gender. Most studies utilized males because females were excluded due to concerns about pregnancy issues (Witelson & McCulloch, Schizophrenia Bulletin, 17(4), 583–591, 1991). The focus of this chapter is on men and neuroimaging findings in various disorders as well as in general development.

Magnetic resonance imaging (MRI) and fMRI (functional MRI) require no radiation. These noninvasive and safe technologies have increased interest in gender differences in brain structure and function. The aim of this chapter is to discuss the extant literature in imaging in men. Gender differences will be briefly discussed as far as what variations may be seen in normal development, as well as in common developmental disorders such as learning disabilities and attention deficit hyperactivity disorder. Where possible, we will follow those differences into adulthood, both for normal development and for those seen in specific disorders in order to more fully understand how normal as well as disrupted development can influence later functioning. As it is not possible within this chapter to discuss the neuroimaging findings in all disorders, we are focusing on findings in men in the disorders of schizophrenia, depression, antisocial personality disorder (ASPD), and stroke/heart attack. This chapter begins with a brief discussion of neuroimaging techniques as well as methodological issues that impact our understanding of the existing research in these areas.


Sex Gender Male Neuropsychology Neuroimaging MRI PET CT DTI Development 


  1. Alivisatos, B., & Petrides, M. (1997). Functional activation of the human brain during mental rotation. Neuropsychologia, 35(2), 111–118.CrossRefPubMedGoogle Scholar
  2. Altarelli, I., Leroy, F., Monzalvo, K., Fluss, J., Billard, C., Dehaene-Lambertz, G., … Ramus, F. (in press). Planum temporale asymmetry in developmental dyslexia: Revisiting an old question. Human Brain Mapping. Google Scholar
  3. Armstrong, E., Schleicher, A., Omran, H., Curtis, M., & Zilles, K. (1995). The ontogeny of human gyrification. Cerebral Cortex, 5, 56–63.CrossRefPubMedGoogle Scholar
  4. Baron-Cohen, S., Ring, H., Chitnis, X., Wheelwright, S., Gregory, L., Williams, S., … Bullmore, E. (2006). fMRI of parents of children with Asperger Syndrome: A pilot study. Brain and Cognition, 61, 122–130.Google Scholar
  5. Borod, J. C., Koff, E., Lorch, M. P., & Nicholas, M. (1986). The expression and perception of facial emotion in brain-damaged patients. Neuropsychologia, 24(2), 169–180.CrossRefPubMedGoogle Scholar
  6. Cairns, U., Malone, S., Johnston, J., & Cammock, T. (1985). Sex differences in children’s group embedded Figures Test performance. Personality and Individual Differences, 6, 653–654.CrossRefGoogle Scholar
  7. Castellanos, F. X., Giedd, J. N., Marsh, S. D., Hamburger, S. D., Vaituzis, A. C., Dickstein, D. P., … Rapoport, J. L. (1996). Quantitative brain magnetic resonance imaging in attention-deficit hyperactivity disorder. Archives of General Psychiatry, 53(7), 607–616.Google Scholar
  8. Caviness, V. S., Kennedy, D. N., Bates, J. F., & Makris, N. (1996). The developing human brain: A morphometric profile. In R. W. Thatcher, G. Reid Lyon, J. Rumsey, & N. A. Krasnegor (Eds.), Developmental neuroimaging: Mapping the development of brain and behavior (pp. 3–14). New York, NY: Academic Press.Google Scholar
  9. Clark, A. S., Maclusky, N. J., & Goldman-Rakic, P. S. (1988). Androgen binding and metabolism in the cerebral cortex of the developing rhesus monkey. Endocrinology, 123, 932–940.CrossRefPubMedGoogle Scholar
  10. Cohen-Bendahan, C. C., Buitelaar, J. K., van Goozen, S. H. M., & Cohen-Kettenis, P. T. (2004). Prenatal exposure to testosterone and functional cerebral lateralization: A study in same-sex and opposite-sex twin girls. Psychoneuroendocrinology, 29, 911–916.CrossRefPubMedGoogle Scholar
  11. Cowell, P. E., Turetsky, B. I., Gur, R. C., Grossman, R. I., Shtasel, D. L., & Gur, R. E. (1994). Sex differences in aging of the human frontal and temporal lobes. The Journal of Neuroscience, 14(8), 4748–4755.PubMedGoogle Scholar
  12. Davatzikos, C., & Resnick, S. M. (1998). Sex differences in anotomic measures of interhemispheric connectivity: Correlations with cognition in women but not men. Cerebral Cortex, 8, 635–640.CrossRefPubMedGoogle Scholar
  13. de la Torre, J. (Ed.). (1997). Cerebrovascular pathology in Alzheimer’s disease. New York, NY: New York Academy of Sciences.Google Scholar
  14. DeCarli, C. (2003). Defining mild cognitive impairment: Prevalence, prognosis, etiology, and treatment. Lancet Neurology, 2, 15–21.CrossRefPubMedGoogle Scholar
  15. DeCarli, C., Massaro, J., Harvey, D., Hald, J., Tullberg, M., Au, R., … Wolf, P. A. (2005). Measures of brain morphology and infarction in the Framingham heart study: Establishing what is normal. Neurobiology of Aging, 26, 491–510.Google Scholar
  16. Dekaban, A. S., & Sadowsky, D. (1978). Changes in brain weights during the span of human life: Relation of brain weights to body heights and body weights. Annals of Neurology, 4, 345–356.CrossRefPubMedGoogle Scholar
  17. Doyle-Thomas, K. A., Card, D., Soorya, L. V., Wang, A. T., Fan, J., & Anagnostou, E. (2014). Metabolic mapping of deep brain structures and associations with symptomatology in autism spectrum disorders. Research in Autism Spectrum Disorders, 8(1), 44–51.PubMedCentralCrossRefPubMedGoogle Scholar
  18. Eberling, J. L., Wu, C., Haan, M. N., Mungas, D., Buonocore, M., & Jagust, W. J. (2003). Preliminary evidence that estrogen protects against age-related hippocampal atrophy. Neurobiology of Aging, 24, 725–732.CrossRefPubMedGoogle Scholar
  19. Filipek, P. A., & Blickman, J. G. (1992). Neurodiagnostic laboratory procedures: Neuroimaging techniques. In R. B. David (Ed.), Pediatric neurology for the clinician (pp. 33–56). Norwalk, CT: Appleton-Lang.Google Scholar
  20. Filipek, P. A., Kennedy, D. N., & Caviness, V. (1992). Neuroimaging in child neuropsychology. In I. Rapin & S. J. Segalowitz (Eds.), Handbook of neuropsychology (Vol. 6, pp. 301–329). New York, NY: Elsevier Science.Google Scholar
  21. Filipek, P. A., Semrud-Clikeman, M., Steingard, R. J., Renshaw, P. F., Kennedy, D. N., & Biederman, J. (1997). Volumetric MRI analysis comparing subjects having attention-deficit hyperactivity disorder with normal controls. Neurology, 48(3,Pt1), 589–601.CrossRefPubMedGoogle Scholar
  22. Frederikse, M. E., Lu, A., Aylward, E., Barta, P., & Pearlson, G. (1999). Sex differences in the inferior parietal lobule. Cerebral Cortex, 9, 896–901.CrossRefPubMedGoogle Scholar
  23. Giedd, J. N., Blumenthal, J. D., Jeffries, N. O., Rajapakse, J. C., Vaituzis, A. C., Liu, H., … Castellanos, F. X. (1999). Development of the human corpus callosum during childhood and adolescence: A longitudinal MRI study. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 23, 571–588.Google Scholar
  24. Giedd, J. N., Castellanos, F. X., Rajapakse, J. C., Vaituzis, A. C., & Rapoport, J. L. (1997). Sexual dimorphism of the developing human brain. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 21, 1185–1201.CrossRefPubMedGoogle Scholar
  25. Giedd, J. N., Rosenthal, M. A., Rose, A. B., Blumenthal, J. D., Molloy, E., Dopp, R. R., … Gogtay, N. (2004). Brain development in healthy children and adolescents: Magnetic resonance imaging studies. In M. S. Keshavan (Ed.), Neurodevelopment and Schizophrenia (pp. 35–43). Cambridge, UK: Cambridge University Press.Google Scholar
  26. Giedd, J. N., Snell, J. W., Lange, N., Rajapakse, J. C., Casey, B. J., Kozuch, P. L., … Rapoport, J. L. (1996). Quantitative magnetic resonance imaging of human brain development: Ages 4-18. Cerebral Cortex, 6, 551–560.Google Scholar
  27. Goldstein, J. M., Seidman, L. J., Horton, N. J., Makris, N., Kennedy, D. N., Caviness, V. S., Jr., & Tsuang, M. T. (2001). Normal sexual dimorphism of the adult human brain assessed by in vivo magnetic resonance imaging. Cerebral Cortex, 11(6), 490–497.Google Scholar
  28. Gur, R. C., Gunning-Dixon, F., Bilker, W. B., & Gur, R. E. (2002). Sex differences in temporo-limbic and frontal brain volumes of healthy adults. Cerebral Cortex, 12, 998–1003.CrossRefPubMedGoogle Scholar
  29. Gur, R. C., Mozley, L. H., Mozley, P. D., Resnick, S. M., Karp, J. S., Alavi, A., … Gur, R. E. (1995). Sex differences in regional cerebral glucose metabolism during a resting state. Science, 267(5197), 528–531.Google Scholar
  30. Gur, R. C., Mozley, P. D., Resnick, S. M., Gottlieb, G. L., Kohn, M., Zimmerman, R., … Berretta, D. (1991). Gender differences in age effect on brain atrophy measured by magnetic resonance imaging. Proceedings of the National Academy of Sciences, 88(7), 2845–2849.Google Scholar
  31. Gur, R. C., Skolnick, B. E., & Gur, R. E. (1994). Effects of emotional discrimination tasks on cerebral blood flow: Regional activation and its relation to performance. Brain and Cognition, 25(2), 271–286.CrossRefPubMedGoogle Scholar
  32. Hatazawa, J., Brooks, R. A., Di Chiro, G., & Campbell, G. (1987). Global cerebral glucose utilization is independent of brain size: A PET study. Journal of Computer Assisted Tomography, 11, 571–576.CrossRefPubMedGoogle Scholar
  33. Holland, D., Chang, L., Ernst, T. M., Curran, M., Buchthal, S. D., Alicata, D., … Dale, A. M. (in press). Structural growth trajectories and rates of change in the first 3 months of infant brain development. JAMA Neurology. Google Scholar
  34. Hubl, D., Koenig, T., Strik, W., Federspiel, A., Kreis, R., Boesch, C., … Dierks, T. (2004). Pathways that make voices: White matter changes in auditory hallucinations. Archives of General Psychiatry, 61, 658–668.Google Scholar
  35. Huttenlocher, P. R. (1990). Morphometric study of human cerebral cortex development. Neuropsychologia, 28, 517–527.CrossRefPubMedGoogle Scholar
  36. Hynd, G. W., & Semrud-Clikeman, M. (1989). Dyslexia and brain morphology. Psychological Bulletin, 106(3), 447–482.CrossRefPubMedGoogle Scholar
  37. Jack, C. R., Jr., Dickson, D. W., Parisi, J. E., Xu, Y. C., Cha, R. H., O’Brien, P. C., … Peterson, R. C. (2002). Antemortem MRI findings correlate with hippocampal neuropathology in typical aging and dementia. Neurology, 58, 750–757.Google Scholar
  38. Jernigan, T. L., Trauner, D. A., Hesselink, J. R., & Tallal, P. A. (1991). Maturation of human cerebrum observed in vivo during adolescence. Brain, 114, 2037–2049.CrossRefPubMedGoogle Scholar
  39. Jonides, J., Smith, E. E., Koeppe, R. A., & Awh, E. (1993). Spatial working memory in humans as revealed by PET. Nature, 363(6430), 623–625.CrossRefPubMedGoogle Scholar
  40. Kallai, J., Csatho, A., Kover, F., Makany, T., Nemes, J., Horvath, K., … Nagy, F. (2005). MRI-assessed volume of the left and right hippocampi in females correlates with the relative length of the second and fourth fingers (the 2D:4D ratio). Psychiatry Research: Neuroimaging, 140, 199–210.Google Scholar
  41. Kelley, D. B. (1993). Androgens and brain development: Possible contributions to developmental dyslexia. In A. M. Galaburda (Ed.), Dyslexia and development: Neurobiological aspects of extra-ordinary brains (pp. 21–41). Cambridge, MA: Harvard University Press.Google Scholar
  42. Kulynych, J. J., Vladar, K., Jones, D. W., & Weinberger, D. R. (1994). Gender differences in the normal lateralization of the supratemporal cortex: MRI surface-rendering morphometry of Heschl’s gyrus and the planum temporale. Cerebral Cortex, 4(2), 107–118.CrossRefPubMedGoogle Scholar
  43. Luna, B., & Sweeney, J. A. (2004). Cognitive development: Functional magnetic resonance imaging studies. In M. S. Keshavan (Ed.), Neurodevelopment and schizophrenia (pp. 45–68). Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
  44. Manning, J. T. (2002). Digit ratio: A pointer to fertility, behavior, and health. New Brunswick, NJ: Rutgers University Press.Google Scholar
  45. Maquet, P., Lejeune, H., Pouthas, V., Bonnet, M., Casini, L., Macar, F., … Comar, D. (1996). Brain activation induced by estimation of duration: A PET study. NeuroImage, 3, 119–126.Google Scholar
  46. McEwen, B. S. (1983). Gonadal steroid influences on brain development and sexual differentiation. In R. Greep (Ed.), Reproductive physiology (pp. 99–145). Baltimore, MD: University Park.Google Scholar
  47. Mesulam, M. M. (1998). From sensation to cognition. Brain: A Journal of Neurology, 121(6), 1013–1052.CrossRefGoogle Scholar
  48. Moffat, S. D., Szekely, C. A., Zonderman, A. B., Kabani, N. J., & Resnick, S. M. (2000). Longitudinal change in hippocampal volume as a function of apolipoprotein E genotype. Neurology, 55, 134–136.CrossRefPubMedGoogle Scholar
  49. Murphy, D. G., DeCarli, C., Daly, E., Haxby, J. V., Allen, G., White, B. J., & Schapiro, M. B. (1993). X-chromosome effects on female brain: A magnetic resonance imaging study of Turner’s syndrome. Lancet, 342, 1197–1200.Google Scholar
  50. Nopoulos, P., Flaum, M., O’Leary, D., & Andreasen, N. C. (2000). Sexual dimorphism in the human brain: Evaluation of tissue volume, tissue composition and surface anatomy using magnetic resonance imaging. Psychiatry Research: Neuroimaging, 98, 1–13.CrossRefPubMedGoogle Scholar
  51. O’Keefe, J. A., Pedersen, E. B., Castro, J. A., & Handa, R. J. (1993). The ontogeny of estrogen receptors in heterochronic hippocampal and neocortical transplants an intrinsic developmental program. Brain Research: Developmental Brain Research, 75, 105–112.CrossRefPubMedGoogle Scholar
  52. Pfefferbaum, A., Mathalon, D. H., Sullivan, E. V., Rawles, J. M., Zipursky, R. B., & Lim, K. O. (1994). A quantitative magnetic resonance imaging study of changes in brain morphology from infancy to late adulthood. Archives of Neurology, 51, 874–887.CrossRefPubMedGoogle Scholar
  53. Raine, A., Lencz, T., Bihrle, S., LaCasse, L., & Colletti, P. (2000). Reduced prefrontal gray matter volume and reduced autonomic activity in antisocial personality disorder. Archives of General Psychiatry, 57(2), 119–127.CrossRefPubMedGoogle Scholar
  54. Raz, N., Lindenberger, U., Rodrigue, K. M., Kennedy, K. M., Head, D., Williamson, A., & Acker, J. D. (2005). Regional brain changes in aging healthy adults: General trends, individual differences and modifiers. Cerebral Cortex, 15, 1676–1689.Google Scholar
  55. Reiss, A. L., Abrams, M. T., Singer, H. S., Ross, J. L., & Denckla, M. B. (1996). Brain development, gender and IQ in children. A volumetric imaging study. Brain, 119(Pt 5), 1763–1774.CrossRefPubMedGoogle Scholar
  56. Remage-Healey, L. (in press). Frank Beach Award winner: Steroids as neuromodulators of brain circuits and behavior. Hormones and Behavior. Google Scholar
  57. Rose, A. B., Merke, D. P., Clasen, L. S., Rosenthal, M. A., Wallace, G. L., Vaituzis, A. C., … Giedd, J. N. (2004). Effects of hormones and sex chromosomes on stress-influenced regions of the developing pediatric brain. Annals of the New York Academy of Sciences, 1032, 231–233.Google Scholar
  58. Salat, D., Ward, A., Kaye, J. A., & Janowsky, J. S. (1997). Sex differences in the corpus callosum with aging. Neurobiology of Aging, 18(2), 191–197.CrossRefPubMedGoogle Scholar
  59. Schlaepfer, T. E., Harris, G. J., Tien, A. Y., Peng, L., Lee, S., & Pearlson, G. D. (1995). Structural differences in the cerebral cortex of healthy female and male subjects: An MRI study. Psychiatry Research: Neuroimaging, 61, 129–135.CrossRefPubMedGoogle Scholar
  60. Semrud-Clikeman, M., & Fine, J. G. (2009). Neuroimaging in women. In E. Fletcher-Janzen & C. R. Reynolds (Eds.), The neuropsychology of women (pp. 31–67). New York, NY: Kluwer.Google Scholar
  61. Semrud-Clikeman, M., Fine, J. G., Bledsoe, J., & Zhu, D. C. (2012). Gender difference in brain activation on a mental rotation task. International Journal of Neuroscience, 122, 590–597.CrossRefPubMedGoogle Scholar
  62. Semrud-Clikeman, M., Fine, J. G., & Zhu, D. C. (2011). The role of the right hemisphere for processing of social interactions in normal adults using functional magnetic resonance imaging. Neuropsychobiology, 64, 47–51.CrossRefPubMedGoogle Scholar
  63. Semrud-Clikeman, M., & Pliszka, S. R. (2006). Correction: Volumetric MRI differences in treatment-naïve vs chronically treated children with ADHD. Neurology, 67(11), 2091.CrossRefGoogle Scholar
  64. Shaywitz, B. A., Shaywitz, S. E., Pugh, K. R., Constable, R. T., Skudlarski, P., Fulbright, R. B., … Gore, J. C. (1995). Sex differences in the functional organization of the brain for language. Nature, 373, 607–609.Google Scholar
  65. Sholl, S. A., & Kim, K. L. (1989). Estrogen receptors in the rhesus monkey brain during fetal development. Developmental Brain Research, 50(2), 189–196.CrossRefPubMedGoogle Scholar
  66. Sowell, E. R., Trauner, D. A., Gamst, A., & Jernigan, T. L. (2002). Development of cortical and subcortical brain structures in childhood and adolescence: A structural MRI study. Developmental Medicine & Child Neurology, 44, 4–16.CrossRefGoogle Scholar
  67. Voyer, D., Butler, T., Cordero, J., Brake, B., Silbersweig, D., Stern, E., & Imperato-McGinley, J. (2006). The relation between computerized and paper-and-pencil mental rotation tasks: A validation study. Journal of Clinical and Experimental Neuropsychology, 28, 928–939.Google Scholar
  68. Wang, S., & Young, K. M. (in press). White matter plasticity in adulthood. Neuroscience. Google Scholar
  69. Wendt, P. E., & Risberg, J. (1994). Cortical activation during visual spatial processing: Relation between hemispheric asymmetry of blood flow and performance. Brain and Cognition, 24(1), 87–103.CrossRefPubMedGoogle Scholar
  70. Winstein, C. J., Grafton, S. T., & Pohl, P. S. (1997). Motor task difficulty and brain activity: Investigation of goal-directed reciprocal aiming using positron emission tomography. Journal of Neurophysiology, 77(3), 1581–1594.PubMedGoogle Scholar
  71. Witelson, S. F. (1989). Hand and sex differences in the isthmus and genu of the human corpus callosum. Brain, 112, 799–835.CrossRefPubMedGoogle Scholar
  72. Witelson, S. F., Glezer, I. I., & Kigar, D. L. (1995). Women have greater density of neurons in posterior temporal cortex. Journal of Neuroscience, 15(5), 3418–3428.PubMedGoogle Scholar
  73. Witelson, S. F., & Kigar, D. L. (1988a). Anatomical development of the corpus callosum in humans: A review with reference to sex and cognition. In D. L. Molfese & S. J. Segalowitz (Eds.), Brain lateralization in children (pp. 35–57). New York, NY: Guilford Press.Google Scholar
  74. Witelson, S. F., & Kigar, D. L. (1988b). Aysmmetry in brain function follows asymmetry in anatomical form: Gross, microscope, postmortem and imaging studies. In F. Boller & J. Grafman (Eds.), Handbook of neuropsychology (Vol. 1, pp. 111–142). Amsterdam, The Netherlands: Elsevier Science Publishers.Google Scholar
  75. Witelson, S. F., & Kigar, D. L. (2004). Sylvian fissure morphology and asymmetry in men and women: Bilateral differences in relation to handedness in men. Journal of Comparative Neurology, 323(3), 326–340.CrossRefGoogle Scholar
  76. Witelson, S. F., & McCulloch, P. B. (1991). Premortem and postmortem measurement to study structure with function: A human brain collection. Schizophrenia Bulletin, 17(4), 583–591.CrossRefPubMedGoogle Scholar
  77. Witelson, S. F., & Pallie, W. (1973). Left hemisphere specialization for language in the newborn: Neuroanatomical evidence of asymmetry. Brain, 96, 641–646.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Pediatrics, Division of Clinical Behavioral NeuroscienceUniversity of Minnesota Medical SchoolMinneapolisUSA
  2. 2.Department of School PsychologyAustin Public SchoolsAustinUSA
  3. 3.Austin Independent School DistrictAustinUSA

Personalised recommendations