Advertisement

Measurement of Severity of Injury After Articular Fracture and Correlation with Post-Traumatic Arthritis Development

  • Donald D. Anderson
  • J. Lawrence Marsh

Abstract

The severity of the initial injury to the articular surface and the supporting bone and surrounding soft tissue envelope is one of the most important factors in determining patient outcome after articular fractures. Injury severity strongly influences clinical decision-making during treatment and is an important predictor of patient outcome months and years after injury. Injury severity is often assessed on plain radiographs by casually labeling fractures as “high” or “low” energy, but energy is a mechanical entity that can be formally quantified. The CT-based methods described in this chapter make it possible to supplement these qualitative terms used to describe fracture severity with objectively measured quantities. CT-based fracture severity metrics have been shown to correlate with the opinions of experienced clinicians. For distal tibia fractures there appears to be a threshold for fracture severity, above which PTOA is much more likely to develop. Objectively quantifying acute fracture severity holds promise to improve clinical research by identifying who is at risk for PTOA development and set the stage for meaningful trials of new biologic agents to preserve articular surfaces. It will also improve patient care by guiding treatment and providing risk stratification and determining prognosis.

Keywords

Mechanical loading Articular fracture severity Objective CT analysis Joint trauma Post-traumatic arthritis development 

References

  1. 1.
    McKinley TO, Borrelli J, D’Lima DD, Furman BD, Giannoudis PV. Basic science of intra-articular fractures and posttraumatic osteoarthritis. J Orthop Trauma. 2010;24(9):567–70.PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Dirschl DR, Marsh JL, Buckwalter JA, Gelberman R, Olson SA, Brown TD, Llinias A. Articular fractures. J Am Acad Orthop Surg. 2004;12(6):416–23.PubMedGoogle Scholar
  3. 3.
    Tochigi Y, Buckwalter JA, Martin JA, Hillis SL, Zhang P, Vaseenon T, et al. Distribution and progression of chondrocyte damage in a whole-organ model of human ankle intra-articular fracture. J Bone Joint Surg Am. 2011;93(6):533–9.PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Anderson DD, Chubinskaya S, Guilak F, Martin JA, Oegema TR, Olson SA, Buckwalter JA. Post-traumatic osteoarthritis: Improved understanding and opportunities for early intervention. J Orthop Res. 2011;29(6):802–9.PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Bartlett CS, D’Amato MJ, Weiner LS. Fractures of the tibial pilon. In: Browner BD, Jupiter JB, Levine AM, Trafton PG, editors. Skeletal trauma. Philadelphia, PA: W.B. Saunders Company; 1998. p. 2295–325.Google Scholar
  6. 6.
    Anderson DD, Mosqueda T, Thomas T, Hermanson EL, Brown TD, Marsh JL. Quantifying tibial plafond fracture severity: absorbed energy and fragment displacement agree with clinical rank ordering. J Orthop Res. 2008;26(8):1046–52.PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Beardsley CL, Anderson DD, Marsh JL, Brown TD. Interfragmentary surface area as an index of comminution severity in cortical bone impact. J Orthop Res. 2005;23(3):686–90.PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Thomas TP, Anderson DD, Mosqueda TV, Van Hofwegen CJ, Hillis SL, Marsh JL, Brown TD. Objective ct-based metrics of articular fracture severity to assess risk for posttraumatic osteoarthritis. J Orthop Trauma. 2010;24(12):764–9.PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Brown TD, Johnston RC, Saltzman CL, Marsh JL, Buckwalter JA. Posttraumatic osteoarthritis: a first estimate of incidence, prevalence, and burden of disease. J Orthop Trauma. 2006;20(10):739–44.PubMedCrossRefGoogle Scholar
  10. 10.
    Marsh JL, Buckwalter J, Gelberman R, Dirschl D, Olson S, Brown T, Llinias A. Articular fractures: does an anatomic reduction really change the result? J Bone Joint Surg Am. 2002;84-A(7):1259–71.PubMedGoogle Scholar
  11. 11.
    Laird A, Keating JF. Acetabular fractures: a 16-year prospective epidemiological study. J Bone Joint Surg Br. 2005;87(7):969–73.PubMedCrossRefGoogle Scholar
  12. 12.
    Matta JM. Fractures of the acetabulum: accuracy of reduction and clinical results in patients managed operatively within three weeks after the injury. J Bone Joint Surg Am. 1996;78(11):1632–45.PubMedGoogle Scholar
  13. 13.
    Honkonen SE. Degenerative arthritis after tibial plateau fractures. J Orthop Trauma. 1995;9(4):273–7.PubMedCrossRefGoogle Scholar
  14. 14.
    Volpin G, Dowd GS, Stein H, Bentley G. Degenerative arthritis after intra-articular fractures of the knee. Long-term results. J Bone Joint Surg Br. 1990;72(4):634–8.PubMedGoogle Scholar
  15. 15.
    Bonar SK, Marsh JL. Tibial plafond fractures: changing principles of treatment. J Am Acad Orthop Surg. 1994;2(6):297–305.PubMedGoogle Scholar
  16. 16.
    Bourne RB, Rorabeck CH, Macnab J. Intra-articular fractures of the distal tibia: the pilon fracture. J Trauma. 1983;23(7):591–6.PubMedCrossRefGoogle Scholar
  17. 17.
    Etter C, Ganz R. Long-term results of tibial plafond fractures treated with open reduction and internal fixation. Arch Orthop Trauma Surg. 1991;110(6):277–83.PubMedCrossRefGoogle Scholar
  18. 18.
    Kellam JF, Waddell JP. Fractures of the distal tibial metaphysis with intra-articular extension—the distal tibial explosion fracture. J Trauma. 1979;19(8):593–601.PubMedCrossRefGoogle Scholar
  19. 19.
    Marsh JL, Bonar S, Nepola JV, Decoster TA, Hurwitz SR. Use of an articulated external fixator for fractures of the tibial plafond. J Bone Joint Surg Am. 1995;77(10):1498–509.PubMedGoogle Scholar
  20. 20.
    Marsh JL, Weigel DP, Dirschl DR. Tibial plafond fractures. How do these ankles function over time? J Bone Joint Surg Am. 2003;85-A(2):287–95.PubMedGoogle Scholar
  21. 21.
    Marsh JL, McKinley T, Dirschl D, Pick A, Haft G, Anderson DD, Brown T. The sequential recovery of health status after tibial plafond fractures. J Orthop Trauma. 2010;24(8):499–504.PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Brown TD, Anderson DD, Nepola JV, Singerman RJ, Pedersen DR, Brand RA. Contact stress aberrations following imprecise reduction of simple tibial plateau fractures. J Orthop Res. 1988;6(6):851–62.PubMedCrossRefGoogle Scholar
  23. 23.
    Buckwalter JA, Brown TD. Joint injury, repair, and remodeling: Roles in post-traumatic osteoarthritis. Clin Orthop Relat Res. 2004;423:7–16.PubMedCrossRefGoogle Scholar
  24. 24.
    McKinley TO, Rudert MJ, Koos DC, Tochigi Y, Baer TE, Brown TD. Pathomechanic determinants of posttraumatic arthritis. Clin Orthop Relat Res. 2004;(427 Suppl):S78–88.Google Scholar
  25. 25.
    McKinley TO, Rudert MJ, Tochigi Y, Pedersen DR, Koos DC, Baer TE, Brown TD. Incongruity-dependent changes of contact stress rates in human cadaveric ankles. J Orthop Trauma. 2006;20(10):732–8.PubMedCrossRefGoogle Scholar
  26. 26.
    McKinley TO, Tochigi Y, Rudert MJ, Brown TD. Instability-associated changes in contact stress and contact stress rates near a step-off incongruity. J Bone Joint Surg Am. 2008;90(2):375–83.PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Martin JS, Marsh JL, Bonar SK, DeCoster TA, Found EM, Brandser EA. Assessment of the AO/ASIF fracture classification for the distal tibia. J Orthop Trauma. 1997;11(7):477–83.PubMedCrossRefGoogle Scholar
  28. 28.
    Martin JS, Marsh JL. Current classification of fractures. Rationale and utility. Radiol Clin North Am. 1997;35(3):491–506.PubMedGoogle Scholar
  29. 29.
    Swiontkowski MF, Sands AK, Agel J, Diab M, Schwappach JR, Kreder HJ. Interobserver variation in the AO/OTA fracture classification system for pilon fractures: is there a problem? J Orthop Trauma. 1997;11(7):467–70.PubMedCrossRefGoogle Scholar
  30. 30.
    DeCoster TA, Willis MC, Marsh JL, Williams TM, Nepola JV, Dirschl DR, Hurwitz SR. Rank order analysis of tibial plafond fractures: does injury or reduction predict outcome? Foot Ankle Int. 1999;20(1):44–9.PubMedCrossRefGoogle Scholar
  31. 31.
    Williams TM, Nepola JV, DeCoster TA, Hurwitz SR, Dirschl DR, Marsh JL. Factors affecting outcome in tibial plafond fractures. Clin Orthop Relat Res. 2004;423:93–8.PubMedCrossRefGoogle Scholar
  32. 32.
    Beardsley CL, Marsh JL, Brown TD. A synthetic material mimicking the fragmentation of bone. 22nd annual meeting of the Am Soc of Biomech; 1998: Paper #483.Google Scholar
  33. 33.
    Beardsley CL, Brown TD, Brandser E, Marsh JL. Toward objective measurement of fracture comminution severity via image analysis. Fourth combined ORS meetings of USA, Canada, Europe, and Japan; 2001.Google Scholar
  34. 34.
    Beardsley CL, Bertsch CR, Marsh JL, Brown TD. Interfragmentary surface area as an index of comminution energy: proof of concept in a bone fracture surrogate. J Biomech. 2002;35(3):331–8.PubMedCrossRefGoogle Scholar
  35. 35.
    Currey JD. Changes in the impact energy absorption of bone with age. J Biomech. 1979;12(6):459–69.PubMedCrossRefGoogle Scholar
  36. 36.
    Currey JD, Brear K, Zioupos P. The effects of ageing and changes in mineral content in degrading the toughness of human femora. J Biomech. 1996;29(2):257–60.PubMedCrossRefGoogle Scholar
  37. 37.
    Gibson LJ, Ashby MF. Cellular solids: structure and properties. Cambridge, UK: Cambridge University Press; 1999.Google Scholar
  38. 38.
    Snyder SM, Schneider E. Estimation of mechanical properties of cortical bone by computed tomography. J Orthop Res. 1991;9(3):422–31.PubMedCrossRefGoogle Scholar
  39. 39.
    Domsic RT, Saltzman CL. Ankle osteoarthritis scale. Foot Ankle Int. 1998;19(7):466–71.PubMedCrossRefGoogle Scholar
  40. 40.
    Thomas TP, Anderson DD, Marsh JL, Brown TD. A new technique for expedited fracture severity assessment. 30th annual meeting of the Am Soc of Biomech; 2006: Paper #236.Google Scholar
  41. 41.
    Thomas TP, Anderson DD, Marsh JL, Brown TD. A method for the estimation of normative bone surface area to aid in objective ct-based fracture severity assessment. Iowa Orthop J. 2008;28:9–13.PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Orthopedic Biomechanics Laboratory, Department of Orthopedics and RehabilitationThe University of IowaIowa CityUSA
  2. 2.Orthopedics and RehabilitationUniversity of Iowa Hospitals and ClinicsIowa CityUSA

Personalised recommendations