Potential Mechanism of PTA: Alterations in Joint Loading

Abstract

The complex interaction between biomechanics and biology in the etiology and progression of arthritis remains unknown. The challenge becomes one of understanding joint mechanics in both normal and traumatized joints. This requires consideration of how loads are transferred across the joint, how they are distributed among the joint tissues, and how injury affects joint stability. Lessons learned from tribology of man-made joints underscore the importance of the interaction between joint force and stability. Animal models used to induce arthritic changes, often by creating joint instability, are hampered by poor control and inadequate measurement of the mechanical environment. However, considerable progress is underway, supported by increases in computational tools and computing power, the availability of mouse models that can incorporate specific genetic alterations, and more robust imaging techniques for longitudinally modeling the resulting alterations in joint tissues.

Keywords

Joint stability Biomechanics Joint load Joint kinematics Load transfer Joint contact Wear 

References

  1. 1.
    Poole AR. Osteoarthritis as a whole joint disease. HSS J. 2012;8:4–6.PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Burstein AH, Wright TM. Fundamentals of orthopaedic biomechanics. Baltimore: Williams & Wilkins; 1994.Google Scholar
  3. 3.
    Bartel DL, Bicknell VL, Wright TM. The effect of conformity, thickness, and material on stresses in ultra-high molecular weight components for total joint replacement. J Bone Joint Surg Am. 1986;68:1041–51.PubMedGoogle Scholar
  4. 4.
    Deneweth JM, Newman KE, Sylvia SM, McLean SG, Arruda EM. Heterogeneity of tibial plateau cartilage in response to a physiological compressive strain rate. J Orthop Res. 2013;31:370–5.PubMedCrossRefGoogle Scholar
  5. 5.
    Li H, Hosseini A, Li JS, Gill 4th TJ, Li G. Quantitative magnetic resonance imaging (MRI) morphological analysis of knee cartilage in healthy and anterior cruciate ligament-injured knees. Knee Surg Sports Traumatol Arthrosc. 2012;20:1496–502.PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Gilbert S, Chen T, Hutchinson ID, Choi D, Voigt C, Warren RF, Maher SA. Dynamic contact mechanics on the tibial plateau of the human knee during activities of daily living. J Biomech. 2014;47(9):2006–12. doi: 10.1016/j.jbiomech.2013.11.003. Epub 2013 Nov 16.PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Guo H, Maher SA, Spilker RL. Biphasic finite element contact analysis of the knee joint using an augmented Lagrangian method. Med Eng Phys. 2013;35(9):1313–20.PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Räsänen LP, Mononen ME, Nieminen MT, Lammentausta E, Jurvelin JS, Korhonen RK, OAI Investigators. Implementation of subject-specific collagen architecture of cartilage into a 2D computational model of a knee joint—data from the Osteoarthritis Initiative (OAI). J Orthop Res. 2013;31:10–22.PubMedCrossRefGoogle Scholar
  9. 9.
    Segal NA, Kern AM, Anderson DD, Niu J, Lynch J, Guermazi A, Torner JC, Brown TD, Nevitt M, Multicenter Osteoarthritis Study Group. Elevated tibiofemoral articular contact stress predicts risk for bone marrow lesions and cartilage damage at 30 months. Osteoarthritis Cartilage. 2012;20:1120–6.PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Brown AN, McKinley TO, Bay BK. Trabecular bone strain changes associated with subchondral bone defects of the tibial plateau. J Orthop Trauma. 2002;16(9):638–43.PubMedCrossRefGoogle Scholar
  11. 11.
    Mündermann A, Dyrby CO, D'Lima DD, Colwell Jr CW, Andriacchi TP. In vivo knee loading characteristics during activities of daily living as measured by an instrumented total knee replacement. J Orthop Res. 2008;26:1167–72.PubMedCrossRefGoogle Scholar
  12. 12.
    Bergmann G, Deuretzbacher G, Heller M, Graichen F, Rohlmann A, Strauss J, Duda GN. Hip contact forces and gait patterns from routine activities. J Biomech. 2001;34:859–71.PubMedCrossRefGoogle Scholar
  13. 13.
    Zhang H, Vrahas MS, Baratta RV, Rosler DM. Damage to rabbit femoral articular cartilage following direct impacts of uniform stresses: an in vitro study. Clin Biomech. 1999;14:543–8.CrossRefGoogle Scholar
  14. 14.
    Milentijevic D, Rubel IF, Liew AS, Helfet DL, Torzilli PA. An in vivo rabbit model for cartilage trauma: a preliminary study of the influence of impact stress magnitude on chondrocyte death and matrix damage. J Orthop Trauma. 2005;19:466–73.PubMedCrossRefGoogle Scholar
  15. 15.
    Ewers BJ, Weaver BT, Sevensma ET, Haut RC. Chronic changes in rabbit retro-patellar cartilage and subchondral bone after blunt impact loading of the patellofemoral joint. J Orthop Res. 2002;20:545–50.PubMedCrossRefGoogle Scholar
  16. 16.
    Newberry WN, Mackenzie CD, Haut RC. Blunt impact causes changes in bone and cartilage in a regularly exercised animal model. J Orthop Res. 1998;16(3):348–54.PubMedCrossRefGoogle Scholar
  17. 17.
    Atkinson PJ, Haut RC. Injuries produced by blunt trauma to the human patellofemoral joint vary with flexion angle of the knee. J Orthop Res. 2001;19:827–33.PubMedCrossRefGoogle Scholar
  18. 18.
    Furman BD, Strand J, Hembree WC, Ward BD, Guilak F, Olson SA. Joint degeneration following closed intraarticular fracture in the mouse knee: a model of posttraumatic arthritis. J Orthop Res. 2007;25:578–92.PubMedCrossRefGoogle Scholar
  19. 19.
    Ward BD, Furman BD, Huebner JL, Kraus VB, Guilak F, Olson SA. Absence of posttraumatic arthritis following intraarticular fracture in the MRL/MpJ mouse. Arthritis Rheum. 2008;58:744–53.PubMedCrossRefGoogle Scholar
  20. 20.
    McKinley TO, Tochigi Y, Rudert MJ, Brown TD. The effect of incongruity and instability on contact stress directional gradients in human cadaveric ankles. Osteoarthritis Cartilage. 2008;16(11):1363–9.PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Fukubayashi T, Torzilli PA, Sherman MF, Warren RF. An in vitro biomechanical evaluation of anterior-posterior motion of the knee. Tibial displacement, rotation, and torque. J Bone Joint Surg Am. 1982; 64:258–64.PubMedGoogle Scholar
  22. 22.
    Hurd WJ, Snyder-Mackler L. Knee instability after acute ACL rupture affects movement patterns during the mid-stance phase of gait. J Orthop Res. 2007;25:1369–77.PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Wright TM, Bartel DL, Rimnac CM. Surface damage in polyethylene joint components. In: The changing role of engineering in orthopaedics. London, England: Mech Eng Publ Ltd; 1989. p. 187–92.Google Scholar
  24. 24.
    Tochigi Y, Vaseenon T, Heiner AD, Fredericks DC, Martin JA, Rudert MJ, Hillis SL, Brown TD, McKinley TO. Instability dependency of osteoarthritis development in a rabbit model of graded anterior cruciate ligament transection. J Bone Joint Surg Am. 2011;93:640–7.PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Bedi A, Kelly NH, Baad M, Fox AJ, Brophy RH, Warren RF, Maher SA. Dynamic contact mechanics of the medial meniscus as a function of radial tear, repair, and partial meniscectomy. J Bone Joint Surg Am. 2010;92:1398–408.PubMedCrossRefGoogle Scholar
  26. 26.
    Frank CB, Beveridge JE, Huebner KD, Heard BJ, Tapper JE, O’Brien EJ, Shrive NG. Complete ACL/MCL deficiency induces variable degrees of instability in sheep with specific kinematic abnormalities correlating with degrees of early osteoarthritis. J Orthop Res. 2012;30:384–92.PubMedCrossRefGoogle Scholar
  27. 27.
    O’Brien EJ, Beveridge JE, Huebner KD, Heard BJ, Tapper JE, Shrive NG, Frank CB. Osteoarthritis develops in the operated joint of an ovine model following ACL reconstruction with immediate anatomic reattachment of the native ACL. J Orthop Res. 2013;31:35–43.PubMedCrossRefGoogle Scholar
  28. 28.
    Potter HG, Jain SK, Ma Y, Black BR, Fung S, Lyman S. Cartilage injury after acute, isolated anterior cruciate ligament tear: immediate and longitudinal effect with clinical/MRI follow-up. Am J Sports Med. 2012;40:276–85.PubMedCrossRefGoogle Scholar
  29. 29.
    Van de Velde SK, Bingham JT, Hosseini A, Kozanek M, DeFrate LE, Gill TJ, Li G. Increased tibiofemoral cartilage contact deformation in patients with anterior cruciate ligament deficiency. Arthritis Rheum. 2009; 60:3693–702.PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Hosseini A, Van de Velde S, Gill TJ, Li G. Tibiofemoral cartilage contact biomechanics in patients after reconstruction of a ruptured anterior cruciate ligament. J Orthop Res. 2012;30:1781–8.PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Bedi A, Chen T, Santner TJ, El-Amin S, Kelly NH, Warren RF, Maher SA. Changes in dynamic medial tibiofemoral contact mechanics and kinematics after injury of the anterior cruciate ligament: a cadaveric model. Proc Inst Mech Eng H. 2013;227(9):1027–37.PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Glasson SS, Blanchet TJ, Morris EA. The surgical destabilization of the medial meniscus (DMM) model of osteoarthritis in the 129/SvEv mouse. Osteoarthritis Cartilage. 2007;15:1061–9.PubMedCrossRefGoogle Scholar
  33. 33.
    Radin EL, Rose RM. Role of subchondral bone in the initiation and progression of cartilage damage. Clin Orthop Relat Res. 1986;213:34–40.PubMedGoogle Scholar
  34. 34.
    Day JS, Ding M, van der Linden JC, Hvid I, Sumner DR, Weinans H. A decreased subchondral trabecular bone tissue elastic modulus is associated with pre-arthritic cartilage damage. J Orthop Res. 2001;19:914–8.PubMedCrossRefGoogle Scholar
  35. 35.
    Weinans H. Periarticular bone changes in osteoarthritis. HSS J. 2012;8:10–2.PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Botter SM, van Osch GJ, Clockaerts S, Waarsing JH, Weinans H, van Leeuwen JP. Osteoarthritis induction leads to early and temporal subchondral plate porosity in the tibial plateau of mice: an in vivo micro CT study. Arthritis Rheum. 2011;63:2690–9.PubMedCrossRefGoogle Scholar
  37. 37.
    Ko FC, Dragomir C, Plumb DA, Goldring SR, Wright TM, Goldring MB, van der Meulen MC. In vivo cyclic compression causes cartilage degeneration and subchondral bone changes in mouse tibiae. Arthritis Rheum. 2013;65:1569–78.PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Poulet B, Westerhof TA, Hamilton RW, Shefelbine SJ, Pitsillides AA. Spontaneous osteoarthritis in Str/ort mice is unlikely due to greater vulnerability to mechanical trauma. Osteoarthritis Cartilage. 2013;21:756–63.PubMedCrossRefGoogle Scholar
  39. 39.
    Ko FC, Dragomir C, Plumb DA, Hsia AW, Goldring SR, Wright TM, Goldring MB, van der Meulen MC. Progressive cell-mediated changes in articular cartilage and bone in mice are initiated by a single loading session. Trans Orthop Res Soc. 2013;38:547.Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of BiomechanicsHospital for Special SurgeryNew YorkUSA

Personalised recommendations