Skip to main content

Aging and Post-Traumatic Arthritis

  • Chapter
Post-Traumatic Arthritis

Abstract

Age is an important risk factor for the development of osteoarthritis (OA) including post-traumatic OA. Joint injuries, such as meniscal and anterior cruciate ligament tears, lead to a more rapid onset of OA when they occur in older as compared to younger adults. This is likely due to age-related changes in the cells and matrix that make up joint tissues. Although the majority of studies have focused on aging of the articular cartilage, there is mounting evidence that changes in other joint tissues, including the meniscus and ligaments, also play a role. These changes include loss of cellularity, cell senescence, accumulation of advanced glycation end products, and other cell and matrix changes that alter the biomechanical properties of the tissue and the ability of the resident cells to repair damage. A chronic low-grade proinflammatory state seen with aging, as well as systemic aging changes including sarcopenia and increased fat mass, may also promote the development of post-traumatic OA in older adults. Animal models of post-traumatic OA also exhibit age-related changes that will be useful in deciphering mechanisms that are difficult to study in humans given the long period of time over which OA develops.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACL:

Anterior cruciate ligament

ADAMTS:

A disintegrin and metalloproteinase with thrombospondin motifs

AGEs:

Advanced glycation end products

CHOP:

C/EBP homologous protein

DMM:

Destabilized medial meniscus

ECM:

Extracellular matrix

ER:

Endoplasmic reticulum

IGF-1:

Insulin-like growth factor 1

IL:

Interleukin

MMP:

Matrix metalloproteinase

OA:

Osteoarthritis

PTOA:

Post-traumatic OA

RAGEs:

Receptor for advanced glycation end products

ROS:

Reactive oxygen species

SASP:

Senescence-associated secretory phenotype

SZP:

Superficial zone protein

UPR:

Unfolded protein response

VEGF:

Vascular endothelial growth factor

References

  1. Loeser RF. Aging processes and the development of osteoarthritis. Curr Opin Rheumatol. 2013;25(1):108–13.

    PubMed Central  PubMed  Google Scholar 

  2. Lotz M, Loeser RF. Effects of aging on articular cartilage homeostasis. Bone. 2012;51(2):241–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  3. Oliveria SA, Felson DT, Reed JI, Cirillo PA, Walker AM. Incidence of symptomatic hand, hip, and knee osteoarthritis among patients in a health maintenance organization. Arthritis Rheum. 1995;38(8):1134–41.

    CAS  PubMed  Google Scholar 

  4. Anderson SA, Loeser RF. Why is osteoarthritis an age-related disease? Best Pract Res Clin Rheumatol. 2010;24(1):15–26.

    PubMed Central  Google Scholar 

  5. Sowers M, Lachance L, Hochberg M, Jamadar D. Radiographically defined osteoarthritis of the hand and knee in young and middle-aged African American and Caucasian women. Osteoarthritis Cartilage. 2000;8(2):69–77.

    CAS  PubMed  Google Scholar 

  6. Losina E, Weinstein AM, Reichmann WM, Burbine SA, Solomon DH, Daigle ME, et al. Lifetime risk and age at diagnosis of symptomatic knee osteoarthritis in the US. Arthritis Care Res. 2013;65(5):703–11.

    Google Scholar 

  7. Gelber AC, Hochberg MC, Mead LA, Wang NY, Wigley FM, Klag MJ. Joint injury in young adults and risk for subsequent knee and hip osteoarthritis. Ann Intern Med. 2000;133(5):321–8.

    CAS  PubMed  Google Scholar 

  8. Roos H, Adalberth T, Dahlberg L, Lohmander LS. Osteoarthritis of the knee after injury to the anterior cruciate ligament or meniscus: the influence of time and age. Osteoarthr Cartilage. 1995;3(4):261–7.

    CAS  Google Scholar 

  9. Kim HA, Kim I, Song YW, Kim DH, Niu J, Guermazi A, et al. The association between meniscal and cruciate ligament damage and knee pain in community residents. Osteoarthritis Cartilage. 2011;19(12): 1422–8.

    CAS  PubMed  Google Scholar 

  10. Hill CL, Seo GS, Gale D, Totterman S, Gale ME, Felson DT. Cruciate ligament integrity in osteoarthritis of the knee. Arthritis Rheum. 2005;52(3):794–9.

    PubMed  Google Scholar 

  11. Lange AK, Fiatarone Singh MA, Smith RM, Foroughi N, Baker MK, Shnier R, et al. Degenerative meniscus tears and mobility impairment in women with knee osteoarthritis. Osteoarthritis Cartilage. 2007;15(6):701–8.

    CAS  PubMed  Google Scholar 

  12. DeHaven KE, Arnoczky SP. Meniscus repair: basic science, indications for repair, and open repair. Instr Course Lect. 1994;43:65–76.

    CAS  PubMed  Google Scholar 

  13. Baratz ME, Fu FH, Mengato R. Meniscal tears: the effect of meniscectomy and of repair on intraarticular contact areas and stress in the human knee. A preliminary report. Am J Sports Med. 1986;14(4):270–5.

    CAS  PubMed  Google Scholar 

  14. Cox JS, Cordell LD. The degenerative effects of medial meniscus tears in dogs’ knees. Clin Orthop. 1977;125:236–42.

    PubMed  Google Scholar 

  15. Cox JS, Nye CE, Schaefer WW, Woodstein IJ. The degenerative effects of partial and total resection of the medial meniscus in dogs’ knees. Clin Orthop. 1975;109:178–83.

    PubMed  Google Scholar 

  16. Seedhom BB, Takeda T, Tsubuku M, Wright V. Mechanical factors and patellofemoral osteoarthrosis. Ann Rheum Dis. 1979;38(4):307–16.

    Google Scholar 

  17. Ahmed AM, Burke DL, Yu A. In-vitro measurement of static pressure distribution in synovial joints – part II: retropatellar surface. J Biomech Eng. 1983;105(3):226–36.

    CAS  PubMed  Google Scholar 

  18. Ding C, Martel-Pelletier J, Pelletier JP, Abram F, Raynauld JP, Cicuttini F, et al. Meniscal tear as an osteoarthritis risk factor in a largely non-osteoarthritic cohort: a cross-sectional study. J Rheumatol. 2007;34(4):776–84.

    PubMed  Google Scholar 

  19. Crema MD, Roemer FW, Felson DT, Englund M, Wang K, Jarraya M, et al. Factors associated with meniscal extrusion in knees with or at risk for osteoarthritis: the multicenter osteoarthritis study. Radiology. 2012;264(2):494–503.

    PubMed Central  PubMed  Google Scholar 

  20. Brophy RH, Rai MF, Zhang Z, Torgomyan A, Sandell LJ. Molecular analysis of age and sex-related gene expression in meniscal tears with and without a concomitant anterior cruciate ligament tear. J Bone Joint Surg Am. 2012;94(5):385–93.

    PubMed Central  PubMed  Google Scholar 

  21. Fuller ES, Smith MM, Little CB, Melrose J. Zonal differences in meniscus matrix turnover and cytokine response. Osteoarthritis Cartilage. 2012;20(1):49–59.

    CAS  PubMed  Google Scholar 

  22. Ishihara G, Kojima T, Saito Y, Ishiguro N. Roles of metalloproteinase-3 and aggrecanase 1 and 2 in aggrecan cleavage during human meniscus degeneration. Orthop Rev (Pavia). 2009;1(2):e14.

    Google Scholar 

  23. Rai MF, Patra D, Sandell LJ, Brophy RH. Transcriptome analysis of injured human meniscus reveals a distinct phenotype of meniscus degeneration with aging. Arthritis Rheum. 2013;65(8):2090–101.

    CAS  PubMed  Google Scholar 

  24. Loeser RF, Olex A, McNulty MA, Carlson CS, Callahan M, Ferguson C, et al. Microarray analysis reveals age-related differences in gene expression during the development of osteoarthritis in mice. Arthritis Rheum. 2012;64(3):705–17.

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Silberberg R, Silberberg M, Vogel A, Wettstein W. Ultrastructure of articular cartilage of mice of various ages. Am J Anat. 1961;109:251–75.

    CAS  PubMed  Google Scholar 

  26. Meachim G, Collins DH. Cell counts of normal and osteoarthritic articular cartilage in relation to the uptake of sulphate (35SO4) in vitro. Ann Rheum Dis. 1962;21:45–50.

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Barnett CH, Cochrane W, Palfrey AJ. Age changes in articular cartilage of rabbits. Ann Rheum Dis. 1963;22:389–400.

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Meachim G, Ghadially FN, Collins DH. Regressive changes in the superficial layer of human articular cartilage. Ann Rheum Dis. 1965;24:23–30.

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Vignon E, Arlot M, Patricot LM, Vignon G. The cell density of human femoral head cartilage. Clin Orthop Relat Res. 1976;121:303–8.

    PubMed  Google Scholar 

  30. Livne E, von der Mark K, Silbermann M. Morphologic and cytochemical changes in maturing and osteoarthritic articular cartilage in the temporomandibular joint of mice. Arthritis Rheum. 1985;28(9):1027–38.

    CAS  PubMed  Google Scholar 

  31. Mitrovic D, Quintero M, Stankovic A, Ryckewaert A. Cell density of adult human femoral condylar articular cartilage. Joints with normal and fibrillated surfaces. Lab Invest. 1983;49(3):309–16.

    CAS  PubMed  Google Scholar 

  32. Quintero M, Mitrovic DR, Stankovic MA, de Seze S, Miravet L, Ryckewaert A. Cellular aspects of the aging of the articular cartilage. II. Condylar cartilage with fissured surface taken from normal and arthritic knees. Rev Rhum Mal Osteoartic. 1984;51(9):445–9.

    CAS  PubMed  Google Scholar 

  33. Roughley PJ. Structural changes in the proteoglycans of human articular cartilage during aging. J Rheumatol. 1987;14:14–5.

    CAS  PubMed  Google Scholar 

  34. Buckwalter JA, Roughley PJ, Rosenberg LC. Age-related changes in cartilage proteoglycans: quantitative electron microscopic studies. Microsc Res Tech. 1994;28(5):398–408.

    CAS  PubMed  Google Scholar 

  35. Temple-Wong MM, Bae WC, Chen MQ, Bugbee WD, Amiel D, Coutts RD, et al. Biomechanical, structural, and biochemical indices of degenerative and osteoarthritic deterioration of adult human articular cartilage of the femoral condyle. Osteoarthritis Cartilage. 2009;17(11):1469–76.

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Kerin A, Patwari P, Kuettner K, Cole A, Grodzinsky A. Molecular basis of osteoarthritis: biomechanical aspects. Cell Mol Life Sci. 2002;59(1):27–35.

    CAS  PubMed  Google Scholar 

  37. Rotter N, Tobias G, Lebl M, Roy AK, Hansen MC, Vacanti CA, et al. Age-related changes in the composition and mechanical properties of human nasal cartilage. Arch Biochem Biophys. 2002;403(1):132–40.

    CAS  PubMed  Google Scholar 

  38. Grushko G, Schneiderman R, Maroudas A. Some biochemical and biophysical parameters for the study of the pathogenesis of osteoarthritis: a comparison between the processes of ageing and degeneration in human hip cartilage. Connect Tissue Res. 1989;19(2–4):149–76.

    CAS  PubMed  Google Scholar 

  39. Bayliss MT, Howat S, Davidson C, Dudhia J. The Organization of Aggrecan in Human Articular Cartilage. Evidence for age-related changes in the rate of aggregation of newly synthesized molecules. J Biol Chem. 2000;275(9):6321–7.

    CAS  PubMed  Google Scholar 

  40. Bayliss MT, Osborne D, Woodhouse S, Davidson C. Sulfation of chondroitin sulfate in human articular cartilage. The effect of age, topographical position, and zone of cartilage on tissue composition. J Biol Chem. 1999;274(22):15892–900.

    CAS  PubMed  Google Scholar 

  41. Dudhia J. Aggrecan, aging and assembly in articular cartilage. Cell Mol Life Sci. 2005;62(19–20):2241–56.

    CAS  PubMed  Google Scholar 

  42. Verzijl N, Bank RA, TeKoppele JM, DeGroot J. AGEing and osteoarthritis: a different perspective. Curr Opin Rheumatol. 2003;15(5):616–22.

    PubMed  Google Scholar 

  43. Chen AC, Temple MM, Ng DM, Verzijl N, DeGroot J, TeKoppele JM, et al. Induction of advanced glycation end products and alterations of the tensile properties of articular cartilage. Arthritis Rheum. 2002;46(12):3212–7.

    CAS  PubMed  Google Scholar 

  44. Bank RA, Bayliss MT, Lafeber FP, Maroudas A, Tekoppele JM. Ageing and zonal variation in post-translational modification of collagen in normal human articular cartilage. The age-related increase in non-enzymatic glycation affects biomechanical properties of cartilage. Biochem J. 1998;330(Pt 1):345–51.

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Cecil DL, Johnson K, Rediske J, Lotz M, Schmidt AM, Terkeltaub R. Inflammation-induced chondrocyte hypertrophy is driven by receptor for advanced glycation end products. J Immunol. 2005;175(12):8296–302.

    CAS  PubMed  Google Scholar 

  46. Steenvoorden MM, Huizinga TW, Verzijl N, Bank RA, Ronday HK, Luning HA, et al. Activation of receptor for advanced glycation end products in osteoarthritis leads to increased stimulation of chondrocytes and synoviocytes. Arthritis Rheum. 2006;54(1):253–63.

    CAS  PubMed  Google Scholar 

  47. Yammani RR, Carlson CS, Bresnick AR, Loeser RF. Increase in production of matrix metalloproteinase 13 by human articular chondrocytes due to stimulation with S100A4: role of the receptor for advanced glycation end products. Arthritis Rheum. 2006;54(9):2901–11.

    CAS  PubMed  Google Scholar 

  48. Mitsuyama H, Healey RM, Terkeltaub RA, Coutts RD, Amiel D. Calcification of human articular knee cartilage is primarily an effect of aging rather than osteoarthritis. Osteoarthritis Cartilage. 2007;15(5):559–65.

    CAS  PubMed Central  PubMed  Google Scholar 

  49. Terkeltaub RA. What does cartilage calcification tell us about osteoarthritis? J Rheumatol. 2002;29(3):411–5.

    PubMed  Google Scholar 

  50. Verzijl N, DeGroot J, Ben ZC, Brau-Benjamin O, Maroudas A, Bank RA, et al. Crosslinking by advanced glycation end products increases the stiffness of the collagen network in human articular cartilage: a possible mechanism through which age is a risk factor for osteoarthritis. Arthritis Rheum. 2002;46(1):114–23.

    CAS  PubMed  Google Scholar 

  51. Wells T, Davidson C, Morgelin M, Bird JL, Bayliss MT, Dudhia J. Age-related changes in the composition, the molecular stoichiometry and the stability of proteoglycan aggregates extracted from human articular cartilage. Biochem J. 2003;370(Pt 1):69–79.

    CAS  PubMed Central  PubMed  Google Scholar 

  52. Armstrong CG, Mow VC. Variations in the intrinsic mechanical properties of human articular cartilage with age, degeneration, and water content. J Bone Joint Surg Am. 1982;64(1):88–94.

    CAS  PubMed  Google Scholar 

  53. Kempson GE. Relationship between the tensile properties of articular cartilage from the human knee and age. Ann Rheum Dis. 1982;41(5):508–11.

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Schumacher BL, Hughes CE, Kuettner KE, Caterson B, Aydelotte MB. Immunodetection and partial cDNA sequence of the proteoglycan, superficial zone protein, synthesized by cells lining synovial joints. J Orthop Res. 1999;17(1):110–20.

    CAS  PubMed  Google Scholar 

  55. Jay GD, Britt DE, Cha CJ. Lubricin is a product of megakaryocyte stimulating factor gene expression by human synovial fibroblasts. J Rheumatol. 2000;27(3):594–600.

    CAS  PubMed  Google Scholar 

  56. Temple MM, Bae WC, Chen MQ, Lotz M, Amiel D, Coutts RD, et al. Age- and site-associated biomechanical weakening of human articular cartilage of the femoral condyle. Osteoarthritis Cartilage. 2007;15(9):1042–52.

    CAS  PubMed  Google Scholar 

  57. Adams CS, Horton Jr WE. Chondrocyte apoptosis increases with age in the articular cartilage of adult animals. Anat Rec. 1998;250(4):418–25.

    CAS  PubMed  Google Scholar 

  58. Todd Allen R, Robertson CM, Harwood FL, Sasho T, Williams SK, Pomerleau AC, et al. Characterization of mature vs aged rabbit articular cartilage: analysis of cell density, apoptosis-related gene expression and mechanisms controlling chondrocyte apoptosis. Osteoarthritis Cartilage. 2004;12(11):917–23.

    CAS  PubMed  Google Scholar 

  59. Mobasheri A. Role of chondrocyte death and hypocellularity in ageing human articular cartilage and the pathogenesis of osteoarthritis. Med Hypotheses. 2002;58(3):193–7.

    CAS  PubMed  Google Scholar 

  60. Hashimoto S, Ochs RL, Rosen F, Quach J, McCabe G, Solan J, et al. Chondrocyte-derived apoptotic bodies and calcification of articular cartilage. Proc Natl Acad Sci U S A. 1998;95(6):3094–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  61. Pennock AT, Robertson CM, Emmerson BC, Harwood FL, Amiel D. Role of apoptotic and matrix-degrading genes in articular cartilage and meniscus of mature and aged rabbits during development of osteoarthritis. Arthritis Rheum. 2007;56(5):1529–36.

    PubMed  Google Scholar 

  62. Brama PA, van den Boom R, DeGroott J, Kiers GH, van Weeren PR. Collagenase-1 (MMP-1) activity in equine synovial fluid: influence of age, joint pathology, exercise and repeated arthrocentesis. Equine Vet J. 2004;36(1):34–40.

    CAS  PubMed  Google Scholar 

  63. Ding C, Cicuttini F, Scott F, Cooley H, Jones G. Association between age and knee structural change: a cross sectional MRI based study. Ann Rheum Dis. 2005;64(4):549–55.

    CAS  PubMed Central  PubMed  Google Scholar 

  64. Loeser RF, Shanker G. Autocrine stimulation by insulin-like growth factor 1 and insulin-like growth factor 2 mediates chondrocyte survival in vitro. Arthritis Rheum. 2000;43(7):1552–9.

    CAS  PubMed  Google Scholar 

  65. Cravero JD, Carlson CS, Im HJ, Yammani RR, Long D, Loeser RF. Increased expression of the Akt/PKB inhibitor TRB3 in osteoarthritic chondrocytes inhibits insulin-like growth factor 1-mediated cell survival and proteoglycan synthesis. Arthritis Rheum. 2009;60(2):492–500.

    CAS  PubMed Central  PubMed  Google Scholar 

  66. Henrotin YE, Bruckner P, Pujol JP. The role of reactive oxygen species in homeostasis and degradation of cartilage. Osteoarthritis Cartilage. 2003;11(10):747–55.

    CAS  PubMed  Google Scholar 

  67. Afonso V, Champy R, Mitrovic D, Collin P, Lomri A. Reactive oxygen species and superoxide dismutases: role in joint diseases. Joint Bone Spine. 2007;74(4):324–9.

    CAS  PubMed  Google Scholar 

  68. Verbruggen G, Cornelissen M, Almqvist KF, Wang L, Elewaut D, Broddelez C, et al. Influence of aging on the synthesis and morphology of the aggrecans synthesized by differentiated human articular chondrocytes. Osteoarthritis Cartilage. 2000;8(3):170–9.

    CAS  PubMed  Google Scholar 

  69. Forsyth CB, Cole A, Murphy G, Bienias JL, Im HJ, Loeser Jr RF. Increased matrix metalloproteinase-13 production with aging by human articular chondrocytes in response to catabolic stimuli. J Gerontol A Bio Sci Med Sci. 2005;60(9):1118–24.

    Google Scholar 

  70. Carlo Jr MD, Loeser RF. Increased oxidative stress with aging reduces chondrocyte survival: correlation with intracellular glutathione levels. Arthritis Rheum. 2003;48(12):3419–30.

    PubMed  Google Scholar 

  71. Kurz B, Lemke AK, Fay J, Pufe T, Grodzinsky AJ, Schunke M. Pathomechanisms of cartilage destruction by mechanical injury. Ann Anat. 2005;187(5–6):473–85.

    CAS  PubMed  Google Scholar 

  72. Murrell GA, Jang D, Williams RJ. Nitric oxide activates metalloprotease enzymes in articular cartilage. Biochem Biophys Res Commun. 1995;206(1):15–21.

    CAS  PubMed  Google Scholar 

  73. Stadtman ER, Berlett BS. Reactive oxygen-mediated protein oxidation in aging and disease. Chem Res Toxicol. 1997;10(5):485–94.

    CAS  PubMed  Google Scholar 

  74. Martin JA, Buckwalter JA. Telomere erosion and senescence in human articular cartilage chondrocytes. J Gerontol A Biol Sci Med Sci. 2001;56(4):B172–9.

    CAS  PubMed  Google Scholar 

  75. Freund A, Orjalo AV, Desprez PY, Campisi J. Inflammatory networks during cellular senescence: causes and consequences. Trends Mol Med. 2010;16(5):238–46.

    CAS  PubMed Central  PubMed  Google Scholar 

  76. Price JS, Waters JG, Darrah C, Pennington C, Edwards DR, Donell ST, et al. The role of chondrocyte senescence in osteoarthritis. Aging Cell. 2002;1(1):57–65.

    CAS  PubMed  Google Scholar 

  77. Lotz MK, Carames B. Autophagy and cartilage homeostasis mechanisms in joint health, aging and OA. Nat Rev Rheumatol. 2011;7(10):579–87.

    CAS  PubMed Central  PubMed  Google Scholar 

  78. Carames B, Taniguchi N, Otsuki S, Blanco FJ, Lotz M. Autophagy is a protective mechanism in normal cartilage, and its aging-related loss is linked with cell death and osteoarthritis. Arthritis Rheum. 2010;62(3):791–801.

    CAS  PubMed Central  PubMed  Google Scholar 

  79. Carames B, Kiosses WB, Akasaki Y, Brinson DC, Eap W, Koziol J, et al. Glucosamine activates autophagy in vitro and in vivo. Arthritis Rheum. 2013;65(7):1843–52.

    CAS  PubMed Central  PubMed  Google Scholar 

  80. Carames B, Taniguchi N, Seino D, Blanco FJ, D’Lima D, Lotz M. Mechanical injury suppresses autophagy regulators and pharmacologic activation of autophagy results in chondroprotection. Arthritis Rheum. 2012;64(4):1182–92.

    CAS  PubMed Central  PubMed  Google Scholar 

  81. Cuervo AM, Dice JF. Age-related decline in chaperone-mediated autophagy. J Biol Chem. 2000;275(40):31505–13.

    CAS  PubMed  Google Scholar 

  82. Blanco FJ, Rego I, Ruiz-Romero C. The role of mitochondria in osteoarthritis. Nat Rev Rheumatol. 2011;7(3):161–9.

    CAS  PubMed  Google Scholar 

  83. Kim J, Xu M, Xo R, Mates A, Wilson GL, Pearsall AW, et al. Mitochondrial DNA damage is involved in apoptosis caused by pro-inflammatory cytokines in human OA chondrocytes. Osteoarthritis Cartilage. 2010;18(3):424–32.

    CAS  PubMed  Google Scholar 

  84. Tschopp J. Mitochondria: sovereign of inflammation? Eur J Immunol. 2011;41(5):1196–202.

    CAS  PubMed  Google Scholar 

  85. Sasaki H, Takayama K, Matsushita T, Ishida K, Kubo S, Matsumoto T, et al. Autophagy modulates osteoarthritis-related gene expression in human chondrocytes. Arthritis Rheum. 2012;64(6):1920–8.

    CAS  PubMed  Google Scholar 

  86. Hotamisligil GS. Endoplasmic reticulum stress and the inflammatory basis of metabolic disease. Cell. 2010;140(6):900–17.

    CAS  PubMed Central  PubMed  Google Scholar 

  87. Nugent AE, Speicher DM, Gradisar I, McBurney DL, Baraga A, Doane KJ, et al. Advanced osteoarthritis in humans is associated with altered collagen VI expression and upregulation of ER-stress markers Grp78 and bag-1. J Histochem Cytochem. 2009;57(10):923–31.

    CAS  PubMed Central  PubMed  Google Scholar 

  88. Takada K, Hirose J, Senba K, Yamabe S, Oike Y, Gotoh T, et al. Enhanced apoptotic and reduced protective response in chondrocytes following endoplasmic reticulum stress in osteoarthritic cartilage. Int J Exp Pathol. 2011;92(4):232–42.

    PubMed Central  PubMed  Google Scholar 

  89. Hamamura K, Goldring MB, Yokota H. Involvement of p38 MAPK in regulation of MMP13 mRNA in chondrocytes in response to surviving stress to endoplasmic reticulum. Arch Oral Biol. 2009;54(3):279–86.

    CAS  PubMed Central  PubMed  Google Scholar 

  90. Price J, Zaidi AK, Bohensky J, Srinivas V, Shapiro IM, Ali H. Akt-1 mediates survival of chondrocytes from endoplasmic reticulum-induced stress. J Cell Physiol. 2010;222(3):502–8.

    CAS  PubMed  Google Scholar 

  91. Petursson F, Husa M, June R, Lotz M, Terkeltaub R, Liu-Bryan R. Linked decreases in liver kinase B1 and AMP-activated protein kinase activity modulate matrix catabolic responses to biomechanical injury in chondrocytes. Arthritis Res Ther. 2013;15(4):R77.

    PubMed Central  PubMed  Google Scholar 

  92. Lotz MK, Kraus VB. New developments in osteoarthritis. Posttraumatic osteoarthritis: pathogenesis and pharmacological treatment options. Arthritis Res Ther. 2010;12(3):211.

    PubMed Central  PubMed  Google Scholar 

  93. Webber RJ, Hough Jr AJ. Cell culture of rabbit meniscal fibrochondrocytes II. Sulfated proteoglycan synthesis. Biochimie. 1988;70(2):193–204.

    CAS  PubMed  Google Scholar 

  94. Webber RJ, Harris MG, Hough Jr AJ. Cell culture of rabbit meniscal fibrochondrocytes: proliferative and synthetic response to growth factors and ascorbate. J Orthop Res. 1985;3(1):36–42.

    CAS  PubMed  Google Scholar 

  95. Nakata K, Shino K, Hamada M, Mae T, Miyama T, Shinjo H, et al. Human meniscus cell: characterization of the primary culture and use for tissue engineering. Clin Orthop Relat Res. 2001;2001(391 Suppl):208–18.

    Google Scholar 

  96. Kobayashi K, Fujimoto E, Deie M, Sumen Y, Ikuta Y, Ochi M. Regional differences in the healing potential of the meniscus-an organ culture model to eliminate the influence of microvasculature and the synovium. Knee. 2004;11(4):271–8.

    PubMed  Google Scholar 

  97. Spindler KP, Mayes CE, Miller RR, Imro AK, Davidson JM. Regional mitogenic response of the meniscus to platelet-derived growth factor (PDGF-AB). J Orthop Res. 1995;13(2):201–7.

    CAS  PubMed  Google Scholar 

  98. Ionescu LC, Lee GC, Garcia GH, Zachry TL, Shah RP, Sennett BJ, et al. Maturation state-dependent alterations in meniscus integration: implications for scaffold design and tissue engineering. Tissue Eng Part A. 2011;17(1–2):193–204.

    CAS  PubMed Central  PubMed  Google Scholar 

  99. Tanaka T, Fujii K, Kumagae Y. Comparison of biochemical characteristics of cultured fibrochondrocytes isolated from the inner and outer regions of human meniscus. Knee Surg Sports Traumatol Arthrosc. 1999;7(2):75–80.

    CAS  PubMed  Google Scholar 

  100. Pauli C, Grogan SP, Patil S, Otsuki S, Hasegawa A, Koziol J, et al. Macroscopic and histopathologic analysis of human knee menisci in aging and osteoarthritis. Osteoarthritis Cartilage. 2011;19(9):1132–41.

    CAS  PubMed Central  PubMed  Google Scholar 

  101. Mesiha M, Zurakowski D, Soriano J, Nielson JH, Zarins B, Murray MM. Pathologic characteristics of the torn human meniscus. Am J Sports Med. 2007;35(1):103–12.

    PubMed  Google Scholar 

  102. Arnoczky SP, Warren RF. Microvasculature of the human meniscus. Am J Sports Med. 1982;10(2):90–5.

    CAS  PubMed  Google Scholar 

  103. Pauli C, Grogan SP, Patil S, Otsuki S, Hasegawa A, Koziol J, et al. Macroscopic and histopathologic analysis of human knee menisci in aging and osteoarthritis. Osteoarthritis Cartilage. 1995;19(9):1132–41.

    Google Scholar 

  104. Clark CR, Ogden JA. Development of the menisci of the human knee joint. Morphological changes and their potential role in childhood meniscal injury. J Bone Joint Surg Am. 1983;65(4):538–47.

    CAS  PubMed  Google Scholar 

  105. DeHaven KE. Decision-making factors in the treatment of meniscus lesions. Clin Orthop. 1990;252:49–54.

    PubMed  Google Scholar 

  106. Rubman MH, Noyes FR, Barber-Westin SD. Arthroscopic repair of meniscal tears that extend into the avascular zone. A review of 198 single and complex tears. Am J Sports Med. 1998;26(1):87–95.

    CAS  PubMed  Google Scholar 

  107. Noyes FR, Barber-Westin SD. Arthroscopic repair of meniscus tears extending into the avascular zone with or without anterior cruciate ligament reconstruction in patients 40 years of age and older. Arthroscopy. 2000;16(8):822–9.

    CAS  PubMed  Google Scholar 

  108. Becker R, Pufe T, Kulow S, Giessmann N, Neumann W, Mentlein R, et al. Expression of vascular endothelial growth factor during healing of the meniscus in a rabbit model. J Bone Joint Surg Br. 2004;86(7):1082–7.

    CAS  PubMed  Google Scholar 

  109. Petersen W, Pufe T, Starke C, Fuchs T, Kopf S, Neumann W, et al. The effect of locally applied vascular endothelial growth factor on meniscus healing: gross and histological findings. Arch Orthop Trauma Surg. 2007;127(4):235–40.

    PubMed  Google Scholar 

  110. Eyre DR, Muir H. The distribution of different molecular species of collagen in fibrous, elastic and hyaline cartilages of the pig. Biochem J. 1975;151(3):595–602.

    CAS  PubMed Central  PubMed  Google Scholar 

  111. Adams ME, Hukins DWL. The extracellular matrix of the meniscus. Knee Meniscus: basic and clinical foundations. New York, NY: Raven; 1992. p. 15–28.

    Google Scholar 

  112. Ghosh P, Taylor TK. The knee joint meniscus. A fibrocartilage of some distinction. Clin Orthop Relat Res. 1987;224:52–63.

    PubMed  Google Scholar 

  113. Setton LA, Guilak F, Hsu EW, Vail TP. Biomechanical factors in tissue engineered meniscal repair. Clin Orthop Relat Res. 1999;1999(367 Suppl):254–72.

    Google Scholar 

  114. Melrose J, Smith S, Cake M, Read R, Whitelock J. Comparative spatial and temporal localisation of perlecan, aggrecan and type I, II and IV collagen in the ovine meniscus: an ageing study. Histochem Cell Biol. 2005;124(3–4):225–35.

    CAS  PubMed  Google Scholar 

  115. McAlinden A, Dudhia J, Bolton MC, Lorenzo P, Heinegard D, Bayliss MT. Age-related changes in the synthesis and mRNA expression of decorin and aggrecan in human meniscus and articular cartilage. Osteoarthritis Cartilage. 2001;9(1):33–41.

    CAS  PubMed  Google Scholar 

  116. Sell DR, Monnier VM. Structure elucidation of a senescence cross-link from human extracellular matrix. Implication of pentoses in the aging process. J Biol Chem. 1989;264(36):21597–602.

    CAS  PubMed  Google Scholar 

  117. Sell DR, Monnier VM. End-stage renal disease and diabetes catalyze the formation of a pentose-derived crosslink from aging human collagen. J Clin Invest. 1990;85(2):380–4.

    CAS  PubMed Central  PubMed  Google Scholar 

  118. Takahashi M, Suzuki M, Kushida K, Hoshino H, Inoue T. The effect of aging and osteoarthritis on the mature and senescent cross-links of collagen in human meniscus. Arthroscopy. 1998;14(4):366–72.

    CAS  PubMed  Google Scholar 

  119. Ladefoged C. Amyloid deposits in the knee joint at autopsy. Ann Rheum Dis. 1986;45(8):668–72.

    CAS  PubMed Central  PubMed  Google Scholar 

  120. Solomon A, Murphy CL, Kestler D, Coriu D, Weiss DT, Makovitzky J, et al. Amyloid contained in the knee joint meniscus is formed from apolipoprotein A-I. Arthritis Rheum. 2006;54(11):3545–50.

    CAS  PubMed  Google Scholar 

  121. Andrish JT. Meniscal injuries in children and adolescents: diagnosis and management. J Am Acad Orthop Surg. 1996;4(5):231–7.

    PubMed  Google Scholar 

  122. Metcalf MH, Barrett GR. Prospective evaluation of 1485 meniscal tear patterns in patients with stable knees. Am J Sports Med. 2004;32(3):675–80.

    PubMed  Google Scholar 

  123. Starke C, Kopf S, Petersen W, Becker R. Meniscal repair. Arthroscopy. 2009;25(9):1033–44.

    PubMed  Google Scholar 

  124. Lohmander LS, Englund PM, Dahl LL, Roos EM. The long-term consequence of anterior cruciate ligament and meniscus injuries: osteoarthritis. Am J Sports Med. 2007;35(10):1756–69.

    PubMed  Google Scholar 

  125. Fleming BC, Hulstyn MJ, Oksendahl HL, Fadale PD. Ligament injury, reconstruction and osteoarthritis. Curr Opin Orthop. 2005;16(5):354–62.

    PubMed Central  PubMed  Google Scholar 

  126. Fleming BC. Biomechanics of the anterior cruciate ligament. J Orthop Sports Phys Ther. 2003;33(8):A13–5.

    PubMed  Google Scholar 

  127. Woo SL, Livesay GA, Engle C. Biomechanics of the human anterior cruciate ligament. Muscle stabilization and ACL reconstruction. Orthop Rev. 1992;21(8):935–41.

    CAS  PubMed  Google Scholar 

  128. Louboutin H, Debarge R, Richou J, Selmi TA, Donell ST, Neyret P, et al. Osteoarthritis in patients with anterior cruciate ligament rupture: a review of risk factors. Knee. 2009;16(4):239–44.

    PubMed  Google Scholar 

  129. Lee GC, Cushner FD, Vigoritta V, Scuderi GR, Insall JN, Scott WN. Evaluation of the anterior cruciate ligament integrity and degenerative arthritic patterns in patients undergoing total knee arthroplasty. J Arthroplasty. 2005;20(1):59–65.

    PubMed  Google Scholar 

  130. Mullaji AB, Marawar SV, Simha M, Jindal G. Cruciate ligaments in arthritic knees: a histologic study with radiologic correlation. J Arthroplasty. 2008;23(4):567–72.

    PubMed  Google Scholar 

  131. Chan WP, Lang P, Stevens MP, Sack K, Majumdar S, Stoller DW, et al. Osteoarthritis of the knee: comparison of radiography, CT, and MR imaging to assess extent and severity. AJR Am J Roentgenol. 1991;157(4):799–806.

    CAS  PubMed  Google Scholar 

  132. Link TM, Steinbach LS, Ghosh S, Ries M, Lu Y, Lane N, et al. Osteoarthritis: MR imaging findings in different stages of disease and correlation with clinical findings. Radiology. 2003;226(2):373–81.

    PubMed  Google Scholar 

  133. Hasegawa A, Otsuki S, Pauli C, Miyaki S, Patil S, Steklov N, et al. Anterior cruciate ligament changes in the human knee joint in aging and osteoarthritis. Arthritis Rheum. 2012;64(3):696–704.

    PubMed Central  PubMed  Google Scholar 

  134. Strocchi R, De Pasquale V, Facchini A, Raspanti M, Zaffagnini S, Marcacci M. Age-related changes in human anterior cruciate ligament (ACL) collagen fibrils. Ital J Anat Embryol. 1996;101(4):213–20.

    CAS  PubMed  Google Scholar 

  135. Wright T, Yoon C, Schmit BP. Shoulder MRI refinements: differentiation of rotator cuff tear from artifacts and tendonosis, and reassessment of normal findings. Semin Ultrasound CT MR. 2001;22(4):383–95.

    CAS  PubMed  Google Scholar 

  136. Buck FM, Grehn H, Hilbe M, Pfirrmann CW, Manzanell S, Hodler J. Degeneration of the long biceps tendon: comparison of MRI with gross anatomy and histology. AJR Am J Roentgenol. 2009;193(5):1367–75.

    PubMed  Google Scholar 

  137. Cushner FD, La Rosa DF, Vigorita VJ, Scuderi GR, Scott WN, Insall JN. A quantitative histologic comparison: ACL degeneration in the osteoarthritic knee. J Arthroplasty. 2003;18(6):687–92.

    PubMed  Google Scholar 

  138. Stubbs G, Dahlstrom J, Papantoniou P, Cherian M. Correlation between macroscopic changes of arthrosis and the posterior cruciate ligament histology in the osteoarthritic knee. ANZ J Surg. 2005;75(12):1036–40.

    PubMed  Google Scholar 

  139. Abreu M, Johnson K, Chung CB, De Lima Jr JE, Trudell D, Terkeltaub R, et al. Calcification in calcium pyrophosphate dihydrate (CPPD) crystalline deposits in the knee: anatomic, radiographic, MR imaging, and histologic study in cadavers. Skeletal Radiol. 2004;33(7):392–8.

    CAS  PubMed  Google Scholar 

  140. Hasty KA, Reife RA, Kang AH, Stuart JM. The role of stromelysin in the cartilage destruction that accompanies inflammatory arthritis. Arthritis Rheum. 1990;33(3):388–97.

    CAS  PubMed  Google Scholar 

  141. Higuchi H, Shirakura K, Kimura M, Terauchi M, Shinozaki T, Watanabe H, et al. Changes in biochemical parameters after anterior cruciate ligament injury. Int Orthop. 2006;30(1):43–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  142. Foos MJ, Hickox JR, Mansour PG, Slauterbeck JR, Hardy DM. Expression of matrix metalloprotease and tissue inhibitor of metalloprotease genes in human anterior cruciate ligament. J Orthop Res. 2001;19(4):642–9.

    CAS  PubMed  Google Scholar 

  143. Vavken P, Saad FA, Murray MM. Age dependence of expression of growth factor receptors in porcine ACL fibroblasts. J Orthop Res. 2010;28(8):1107–12.

    CAS  PubMed Central  PubMed  Google Scholar 

  144. Mastrangelo AN, Haus BM, Vavken P, Palmer MP, Machan JT, Murray MM. Immature animals have higher cellular density in the healing anterior cruciate ligament than adolescent or adult animals. J Orthop Res. 2010;28(8):1100–6.

    PubMed Central  PubMed  Google Scholar 

  145. Gillard GC, Reilly HC, Bell-Booth PG, Flint MH. The influence of mechanical forces on the glycosaminoglycan content of the rabbit flexor digitorum profundus tendon. Connect Tissue Res. 1979;7(1):37–46.

    CAS  PubMed  Google Scholar 

  146. Nakahara H, Hasegawa A, Otabe K, Ayabe F, Matsukawa T, Onizuka N, et al. Transcription factor Mohawk and the pathogenesis of human anterior cruciate ligament degradation. Arthritis Rheum. 2013;65(8):2081–9.

    CAS  PubMed  Google Scholar 

  147. Noyes FR, Grood ES. The strength of the anterior cruciate ligament in humans and Rhesus monkeys. J Bone Joint Surg Am. 1976;58(8):1074–82.

    CAS  PubMed  Google Scholar 

  148. Woo SL, Hollis JM, Adams DJ, Lyon RM, Takai S. Tensile properties of the human femur-anterior cruciate ligament-tibia complex. The effects of specimen age and orientation. Am J Sports Med. 1991;19(3):217–25.

    CAS  PubMed  Google Scholar 

  149. Blevins FT, Hecker AT, Bigler GT, Boland AL, Hayes WC. The effects of donor age and strain rate on the biomechanical properties of bone-patellar tendon-bone allografts. Am J Sports Med. 1994;22(3):328–33.

    CAS  PubMed  Google Scholar 

  150. Flahiff CM, Brooks AT, Hollis JM, Vander Schilden JL, Nicholas RW. Biomechanical analysis of patellar tendon allografts as a function of donor age. Am J Sports Med. 1995;23(3):354–8.

    CAS  PubMed  Google Scholar 

  151. Levy YD, Hasegawa A, Patil S, Koziol JA, Lotz MK, D'Lima DD. Histopathological changes in the human posterior cruciate ligament during aging and osteoarthritis: correlations with anterior cruciate ligament and cartilage changes. Ann Rheum Dis. 2012;72(2):271–7.

    PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard F. Loeser M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Loeser, R.F., Ferguson, C.M., Lotz, M.K. (2015). Aging and Post-Traumatic Arthritis. In: Olson, MD, S., Guilak, PhD, F. (eds) Post-Traumatic Arthritis. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-7606-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-7606-2_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-7605-5

  • Online ISBN: 978-1-4899-7606-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics