Advertisement

Survey of Animal Models in Post-Traumatic Arthritis: Choosing the Right Model to Answer the Right Question

  • Bridgette D. Furman
  • Kelly A. Kimmerling
  • Chia-Lung Wu
  • Dianne Little
  • Farshid Guilak
  • Steven A. Olson

Abstract

The selection of a model to study post-traumatic arthritis is a challenging and potentially confusing decision. This chapter was added specifically to address questions investigators may have when considering moving their work into an animal model. It is not possible to cover every possible species of animal that could be used. Therefore, this chapter provides a comprehensive review of the various aspects of arthritis after joint injury that can be studied in three commonly used species. This work provides an overview of what assays, information, and data can be available to the investigators. It is important that investigators are certain they will be able to collect data to address their research question before the investigation begins.

Keywords

Experimental model Murine Mice Canine Dog Rabbit Post-traumatic arthritis 

Notes

Acknowledgments

Supported in part by the Arthritis Foundation, the Department of Defense, the Collaborative Research Center, AO Foundation, Davos Switzerland, and NIH grants AR48182, AR48852, AG15768, AR50245, and AG46927.

References

  1. 1.
    National Research Council (US) Committee for the update of the guide for the care and use of laboratory animals. Guide for the care and use of laboratory animals. 8th ed. Washington, DC: National Academies Press (US); 2011.Google Scholar
  2. 2.
    Bendele AM. Animal models of osteoarthritis. J Musculoskelet Neuronal Interact. 2001;1:363–76.PubMedGoogle Scholar
  3. 3.
    Glasson SS, Blanchet TJ, Morris EA. The surgical destabilization of the medial meniscus (DMM) model of osteoarthritis in the 129/SvEv mouse. Osteoarthritis Cartilage. 2007;15:1061–9. doi: 10.1016/j.joca.2007.03.006.PubMedCrossRefGoogle Scholar
  4. 4.
    Furman BD, et al. Joint degeneration following closed intraarticular fracture in the mouse knee: a model of posttraumatic arthritis. J Orthop Res. 2007;25:578–92. doi: 10.1002/jor.20331.PubMedCrossRefGoogle Scholar
  5. 5.
    Lewis JS, et al. Acute joint pathology and synovial inflammation is associated with increased intra-articular fracture severity in the mouse knee. Osteoarthritis Cartilage. 2011;19:864–73. doi: 10.1016/j.joca.2011.04.011.PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Christiansen BA, et al. Musculoskeletal changes following non-invasive knee injury using a novel mouse model of post-traumatic osteoarthritis. Osteoarthritis Cartilage. 2012;20:773–82. doi: 10.1016/j.joca.2012.04.014.PubMedCrossRefGoogle Scholar
  7. 7.
    Batiste DL, et al. High-resolution MRI and micro-CT in an ex vivo rabbit anterior cruciate ligament transection model of osteoarthritis. Osteoarthritis Cartilage. 2004;12:614–26. doi: 10.1016/j.joca.2004.03.002.PubMedCrossRefGoogle Scholar
  8. 8.
    Wei ZM, et al. Quantitative T2 mapping evaluation for articular cartilage lesions in a rabbit model of anterior cruciate ligament transection osteoarthritis. Chin Med J (Engl). 2012;125:843–50.Google Scholar
  9. 9.
    Killian ML, et al. Traumatic anterior cruciate ligament tear and its implications on meniscal degradation: a preliminary novel lapine osteoarthritis model. J Surg Res. 2010;164:234–41. doi: 10.1016/j.jss.2009.03.006.PubMedCrossRefGoogle Scholar
  10. 10.
    Arunakul M, et al. Replication of chronic abnormal cartilage loading by medial meniscus destabilization for modeling osteoarthritis in the rabbit knee in vivo. J Orthop Res. 2013;31:1555–60. doi: 10.1002/jor.22393.PubMedCrossRefGoogle Scholar
  11. 11.
    Hede A, Svalastoga E, Reimann I. Articular cartilage changes following meniscal lesions. Repair and meniscectomy studied in the rabbit knee. Acta Orthop Scand. 1991;62:319–22.PubMedCrossRefGoogle Scholar
  12. 12.
    Hatsushika D, et al. Intraarticular injection of synovial stem cells promotes meniscal regeneration in a rabbit massive meniscal defect model. J Orthop Res. 2013;31:1354–9. doi: 10.1002/jor.22370.PubMedCrossRefGoogle Scholar
  13. 13.
    Moon MS, Woo YK, Kim YI. Meniscal regeneration and its effects on articular cartilage in rabbit knees. Clin Orthop Relat Res. 1988;227:298–304.PubMedGoogle Scholar
  14. 14.
    Shen W, et al. Osteoarthritis prevention through meniscal regeneration induced by intra-articular injection of meniscus stem cells. Stem Cells Dev. 2013;22:2071–82. doi: 10.1089/scd.2012.0563.PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Key JA. Experimental arthritis: the changes in joints produced by creating defects in the articular cartilage. J Bone Joint Surg Am. 1931;13:725–39.Google Scholar
  16. 16.
    Lovasz G, et al. Cartilage changes caused by a coronal surface stepoff in a rabbit model. Clin Orthop Relat Res. 1998;224–34.Google Scholar
  17. 17.
    Lovász G, et al. Characteristics of degeneration in an unstable knee with a coronal surface step-off. J Bone Joint Surg. 2001;83:428–36.CrossRefGoogle Scholar
  18. 18.
    Mitchell N, Shepard N. Healing of articular cartilage in intra-articular fractures in rabbits. J Bone Joint Surg Am. 1980;62:628–34.PubMedGoogle Scholar
  19. 19.
    Farkas TA, Biro T, Bihari-Varga M. Early changes in the composition of rabbit articular cartilage following experimentally produced intra-articular fractures. A histological and thermoanalytical study. Acta Orthop Scand. 1975;46:716–26.PubMedCrossRefGoogle Scholar
  20. 20.
    Ewers BJ, Jayaraman VM, Banglmaier RF, Haut RC. Rate of blunt impact loading affects changes in retropatellar cartilage and underlying bone in the rabbit patella. J Biomech. 2002;35:747–55.PubMedCrossRefGoogle Scholar
  21. 21.
    Ewers BJ, Newberry WN, Haut RC. Chronic softening of cartilage without thickening of underlying bone in a joint trauma model. J Biomech. 2000;33:1689–94.PubMedCrossRefGoogle Scholar
  22. 22.
    Newberry WN, Garcia JJ, Mackenzie CD, Decamp CE, Haut RC. Analysis of acute mechanical insult in an animal model of post-traumatic osteoarthrosis. J Biomech Eng. 1998;120:704–9.PubMedCrossRefGoogle Scholar
  23. 23.
    Newberry WN, Mackenzie CD, Haut RC. Blunt impact causes changes in bone and cartilage in a regularly exercised animal model. J Orthop Res. 1998;16:348–54. doi: 10.1002/jor.1100160311.PubMedCrossRefGoogle Scholar
  24. 24.
    Borrelli Jr J, et al. Induction of chondrocyte apoptosis following impact load. J Orthop Trauma. 2003;17:635–41.PubMedCrossRefGoogle Scholar
  25. 25.
    Borrelli Jr J, Zaegel MA, Martinez MD, Silva MJ. Diminished cartilage creep properties and increased trabecular bone density following a single, sub-fracture impact of the rabbit femoral condyle. J Orthop Res. 2010;28:1307–14. doi: 10.1002/jor.21122.PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Borrelli J Jr, Zhu Y, Burns M, Sandell L, Silva MJ. Cartilage tolerates single impact loads of as much as half the joint fracture threshold. Clin Orthop Relat Res. 2004;266–73.Google Scholar
  27. 27.
    Brophy RH, Martinez M, Borrelli Jr J, Silva MJ. Effect of combined traumatic impact and radial transection of medial meniscus on knee articular cartilage in a rabbit in vivo model. Arthroscopy. 2012;28:1490–6. doi: 10.1016/j.arthro.2012.03.015.PubMedCrossRefGoogle Scholar
  28. 28.
    Milentijevic D, Rubel IF, Liew AS, Helfet DL, Torzilli PA. An in vivo rabbit model for cartilage trauma: a preliminary study of the influence of impact stress magnitude on chondrocyte death and matrix damage. J Orthop Trauma. 2005;19:466–73.PubMedCrossRefGoogle Scholar
  29. 29.
    Anderst WJ, Les C, Tashman S. In vivo serial joint space measurements during dynamic loading in a canine model of osteoarthritis. Osteoarthritis Cartilage. 2005;13:808–16. doi: 10.1016/j.joca.2005.04.019.PubMedCrossRefGoogle Scholar
  30. 30.
    Boyd SK, Matyas JR, Wohl GR, Kantzas A, Zernicke RF. Early regional adaptation of periarticular bone mineral density after anterior cruciate ligament injury. J Appl Physiol (1985). 2000;89:2359–64.Google Scholar
  31. 31.
    Brandt KD, et al. Anterior (cranial) cruciate ligament transection in the dog: a bona fide model of osteoarthritis, not merely of cartilage injury and repair. J Rheumatol. 1991;18:436–46.PubMedGoogle Scholar
  32. 32.
    Brandt KD, Myers SL, Burr D, Albrecht M. Osteoarthritic changes in canine articular cartilage, subchondral bone, and synovium fifty-four months after transection of the anterior cruciate ligament. Arthritis Rheum. 1991;34:1560–70.PubMedCrossRefGoogle Scholar
  33. 33.
    Libicher M, Ivancic M, Hoffmann M, Wenz W. Early changes in experimental osteoarthritis using the Pond-Nuki dog model: technical procedure and initial results of in vivo MR imaging. Eur Radiol. 2005;15:390–4. doi: 10.1007/s00330-004-2486-y.PubMedCrossRefGoogle Scholar
  34. 34.
    McDevitt C, Gilbertson E, Muir H. An experimental model of osteoarthritis; early morphological and biochemical changes. J Bone Joint Surg Br. 1977;59:24–35.PubMedGoogle Scholar
  35. 35.
    Pond MJ. Avulsion of the extensor digitorum longus muscle in the dog: a report of four cases. J Small Anim Pract. 1973;14:785–96.PubMedCrossRefGoogle Scholar
  36. 36.
    Klompmaker J, et al. Meniscal repair by fibrocartilage? An experimental study in the dog. J Orthop Res. 1992;10:359–70. doi: 10.1002/jor.1100100308.PubMedCrossRefGoogle Scholar
  37. 37.
    Nishida M, Higuchi H, Kobayashi Y, Takagishi K. Histological and biochemical changes of experimental meniscus tear in the dog knee. J Orthop Sci. 2005;10:406–13. doi: 10.1007/s00776-005-0916-6.PubMedCrossRefGoogle Scholar
  38. 38.
    Wyland DJ, Guilak F, Elliott DM, Setton LA, Vail TP. Chondropathy after meniscal tear or partial meniscectomy in a canine model. J Orthop Res. 2002;20:996–1002. doi: 10.1016/S0736-0266(02)00022-0.PubMedCrossRefGoogle Scholar
  39. 39.
    Elliott DM, Guilak F, Vail TP, Wang JY, Setton LA. Tensile properties of articular cartilage are altered by meniscectomy in a canine model of osteoarthritis. J Orthop Res. 1999;17:503–8. doi: 10.1002/jor.1100170407.PubMedCrossRefGoogle Scholar
  40. 40.
    Donohue JM, Buss D, Oegema Jr TR, Thompson Jr RC. The effects of indirect blunt trauma on adult canine articular cartilage. J Bone Joint Surg Am. 1983;65:948–57.PubMedGoogle Scholar
  41. 41.
    Thompson Jr RC, Oegema Jr TR, Lewis JL, Wallace L. Osteoarthrotic changes after acute transarticular load. An animal model. J Bone Joint Surg Am. 1991;73:990–1001.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Bridgette D. Furman
    • 1
  • Kelly A. Kimmerling
    • 2
  • Chia-Lung Wu
    • 3
  • Dianne Little
    • 4
  • Farshid Guilak
    • 5
  • Steven A. Olson
    • 5
  1. 1.Department of Orthopedic SurgeryDuke University Medical CenterDurhamUSA
  2. 2.Departments of Orthopedic Surgery and Biomedical EngineeringDuke University Medical CenterDurhamUSA
  3. 3.Department of Orthopedic SurgeryDuke University Medical CenterDurhamUSA
  4. 4.Department of Orthopedic SurgeryDuke University Medical CenterDurhamUSA
  5. 5.Department of Orthopedic SurgeryDuke University Medical CenterDurhamUSA

Personalised recommendations