Skip to main content

High-Resolution fMRI

  • Chapter
  • First Online:

Part of the book series: Biological Magnetic Resonance ((BIMR,volume 30))

Abstract

High-resolution functional magnetic resonance imaging (fMRI) is motivated by the desire to understand how the brain is organized and functions at the most fundamental levels. To date, there have been several submillimeter applications of fMRI which have been successful in mapping out columnar organizations as well as measuring depth-dependent information, reflective of neuronal processing and interactions across cortical layers. The usefulness and efficiency of high-resolution fMRI depends on a variety of different factors. Among these factors is the ability to acquire higher-resolution images over a sufficiently large field of view (FOV) in a reasonable acquisition time. Longer acquisition times result in an increase in the voxel point spread function and a decrease in the efficiency of the fMRI paradigm. Smaller FOVs limit the ability to obtain information and functional maps simultaneously across several cortical areas. Further, any motion in the data is difficult to correct. The sensitivity and efficiency of the high-resolution images can be improved by using localized coil arrays which provide higher signal-to-noise ratio (SNR) and the ability to accelerate the imaging. Alternative pulse sequences which affect SNR, efficiency, and functional contrast, are also integral parts of optimizing high-resolution acquisitions. Also, higher magnetic fields are paramount to obtaining sufficient sensitivity and specificity in the functional images. Ultimately, however, one of the single biggest factors in the successful acquisition of high-resolution fMRI is the ability and cooperation of human subjects to remain still and attentive over extended periods of time.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Bandettini PA, Wong EC, Hinks RS, Tikofsky RS, Hyde JS (1992) Time course EPI of human brain function during task activation. Magn Reson Med 25:390–398

    Article  CAS  PubMed  Google Scholar 

  • Bartfeld E, Grinvald A (1992) Relationships between orientation-preference pinwheels, cytochrome oxidase blobs, and ocular-dominance columns in primate striate cortex. Proc Natl Acad Sci U S A 89:11905–11909

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Blasdel GG (1992) Differential imaging of ocular dominance and orientation selectivity in monkey striate cortex. J Neurosci 12:3115–3138

    CAS  PubMed  Google Scholar 

  • Blasdel GG, Salama G (1986) Voltage-sensitive dyes reveal a modular organization in monkey striate cortex. Nature 321:579–585

    Article  CAS  PubMed  Google Scholar 

  • Bonhoeffer T, Grinvald A (1991) Iso-orientation domains in cat visual cortex are arranged in pinwheel-like patterns. Nature 353:429–431

    Article  CAS  PubMed  Google Scholar 

  • Boxerman JL, Bandettini PA, Kwong KK, Baker JR, Davis TJ, Rosen BR, Weisskoff RM (1995) The Intravascular contribution to fMRI signal changes: Monte Carlo modeling and diffusion-weighted studies in vivo. Magn Reson Med 34:4–10

    Article  CAS  PubMed  Google Scholar 

  • Chaimow D, Yacoub E, Uğurbil K, Shmuel A (2011) Modeling and analyzing mechanisms underlying fMRI-based decoding of information conveyed in cortical columns. Neuroimage 56(2):627–642

    Google Scholar 

  • Chaimow D, Yacoub E, Uğurbil K, Shmuel A (2015) Spatial specificity of the functional MRI blood oxygenation response relative to metabolic activity. Annual meting of the Society for Neuroscience, Chicago, USA

    Article  CAS  PubMed  Google Scholar 

  • Cheng K, Waggoner RA, Tanaka K (2001) Human ocular dominance columns as revealed by high-field functional magnetic resonance imaging. Neuron 32:359–374

    Google Scholar 

  • de Zwart JA, van Gelderen P, Kellman P, Duyn JH (2002) Application of sensitivity-encoded echo-planar imaging for blood oxygen level-dependent functional brain imaging. Magn Reson Med 48:1011–1020

    Article  PubMed  Google Scholar 

  • Dechent P, Frahm J (2000) Direct mapping of ocular dominance columns in human primary visual cortex. Neuroreport 11:3247–3249

    Article  CAS  PubMed  Google Scholar 

  • Duong TQ, Yacoub E, Adriany G, Hu X, Uğurbil K, Vaughan JT, Merkle H, Kim SG (2002) High-resolution, spin-echo BOLD, and CBF fMRI at 4 and 7 T. Magn Reson Med 48:589–593

    Article  PubMed  Google Scholar 

  • Duong TQ, Yacoub E, Adriany G, Hu X, Uğurbil K, Kim SG (2003) Microvascular BOLD contribution at 4 and 7 T in the human brain: gradient-echo and spin-echo fMRI with suppression of blood effects. Magn Reson Med 49:1019–1027

    Google Scholar 

  • Duvernoy HM, Delon S, Vannson JL (1981) Cortical blood vessels of the human brain. Brain Res Bull 7:519–579

    Article  CAS  PubMed  Google Scholar 

  • Duyn JH, Moonen CTW, Yperen GH, Boer RW, Luyten PR (1994) Inflow versus deoxyhemoglobin effects in BOLD functional MRI using gradient echoes at 1.5T. NMR Biomed 7:83–88

    Article  CAS  PubMed  Google Scholar 

  • Engel SA, Rumelhart DE, Wandell BA, Lee AT, Glover GH, Chichilnisky EJ, Shadlen MN (1994) fMRI of human visual cortex. Nature 369:525

    Article  CAS  PubMed  Google Scholar 

  • Engel SA, Glover GH, Wandell BA (1997) Retinotopic organization in human visual cortex and the spatial precision of functional MRI. Cereb Cortex 7:181–192

    Article  CAS  PubMed  Google Scholar 

  • Feinberg DA, Oshio K (1991) GRASE (gradient- and spin-echo) MR imaging: a new fast clinical imaging technique. Radiology 181:597–602

    Article  CAS  PubMed  Google Scholar 

  • Feinberg D, Hoenninger J, Crooks L, Kaufman L, Watts J, Arakawa M (1985) Inner volume MR imaging: technical concepts and their application. Radiology 156:743–747

    Article  CAS  PubMed  Google Scholar 

  • Feinberg DA, Harel N, Ramanna S, Uğurbil K, Yacoub E (2008) Sub-millimeter single-shot 3D GRASE with inner volume selection for T2-weighted fMRI applications at 7 Tesla. 16th annual meeting of the International Society for Magnetic Resonance in Medicine, Toronto

    Google Scholar 

  • Fonta C, Imbert M (2002) Vascularization in the primate visual cortex during development. Cereb Cortex 12:199–211

    Article  PubMed  Google Scholar 

  • Frahm J, Bruhn H, Merboldt KD (1992) Dynamic MRI of human brain oxygenation during rest and photic stimulation. J Magn Reson Imaging 2:501–505

    Article  CAS  PubMed  Google Scholar 

  • Frahm J, Merboldt KD, Henicke W (1993) Functional MRI of human brain activation at high spatial resolution. Magn Reson Med 29:139–144

    Article  CAS  PubMed  Google Scholar 

  • Frahm J, Merboldt KD, Hanicke W, Kleinschmidt A, Boecker H (1994) Brain or vein-oxygenation or flow? On signal physiology in functional MRI of human brain activation. NMR Biomed 7:45–53

    Article  CAS  PubMed  Google Scholar 

  • Gati JS, Menon RS, Uğurbil K, Rutt BK (1997) Experimental determination of the BOLD field strength dependence in vessels and tissue. Magn Reson Med 38:296–302

    Article  CAS  PubMed  Google Scholar 

  • Glover GH (1997) Basic and advanced concepts of spiral imaging. ISMRM Fast Workshop Syllabus, Asilomar, CA, pp 115–119

    Google Scholar 

  • Goense JB, Logothetis NK (2006) Laminar specificity in monkey V1 using high-resolution SE-fMRI. Magn Reson Imaging 24:381–392

    Article  PubMed  Google Scholar 

  • Golay X, Pruessmann KP, Weiger M, Crelier GR, Folkers PJ, Kollias SS, Boesiger P (2000) PRESTO-SENSE: an ultrafast whole-brain fMRI technique. Magn Reson Med 43:779–786

    Article  CAS  PubMed  Google Scholar 

  • Haase A, Frahm J, Matthaei D, Hanicke W, Merboldt, K.-D. (1986) FLASH imaging: rapid NMR imaging using low flip angle pulses. J Magn Reson 67:258–266

    CAS  Google Scholar 

  • Harel N, Lin J, Moeller S, Uğurbil K, Yacoub E (2006) Combined imaging-histological study of cortical laminar specificity of fMRI signals. Neuroimage 29:879–887

    Article  PubMed  Google Scholar 

  • Haushofer J, Livingstone MS, Kanwisher N (2008) Multivariate patterns in object-selective cortex dissociate perceptual and physical shape similarity. PLoS Biol 6:e187

    Article  PubMed Central  PubMed  Google Scholar 

  • Haxby JV, Gobbini MI, Furey ML, Ishai A, Schouten JL, Pietrini P (2001) Distributed and overlapping representations of faces and objects in ventral temporal cortex. Science 293:2425–2430

    Article  CAS  PubMed  Google Scholar 

  • Haynes JD, Rees G (2005) Predicting the orientation of invisible stimuli from activity in human primary visual cortex. Nat Neurosci 8:686–691

    Article  CAS  PubMed  Google Scholar 

  • Horton J, Hedley-Whyte ET (1984) Mapping of cytochrome oxidase patches and ocular dominance columns in human visual cortex. Philos Trans R Soc Lond Biol B 304:255–272

    Article  CAS  Google Scholar 

  • Hu X, Kim, S.-G. (1994) Reduction of physiological noise in functional MRI using navigator echo. Magn Reson Med 31:495–503

    Article  CAS  PubMed  Google Scholar 

  • Hu X, Le TH, Parrish T, Erhard P (1995) Retrospective estimation and correction of physiological fluctuation in functional MRI. Magn Reson Med 34:201–212

    Article  CAS  PubMed  Google Scholar 

  • Hubel DH, Wiesel TN (1962) Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J Physiol 160:106–154

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hubel DH, Wiesel TN (1963) Shape and arrangement of columns in cat's striate cortex. J Physiol (Lond) 165:559–568

    Article  CAS  Google Scholar 

  • Hubel DH, Wiesel TN (1974) Sequence regularity and geometry of orientation columns in the monkey striate cortex. J Comp Neurol 158:267–293

    Article  CAS  PubMed  Google Scholar 

  • Hubel DH, Wiesel TN (1977) Functional architecture of macaque monkey visual cortex. Proc R Soc Lond Biol 198:1–59

    Article  CAS  PubMed  Google Scholar 

  • Hubener M, Shoham D, Grinvald A, Bonhoeffer T (1997) Spatial relationships among three columnar systems in cat area 17. J Neurosci 17:9270–9284

    CAS  PubMed  Google Scholar 

  • Hyde JS, Biswal B, Jesmanowicz A (2001) High-resolution fMRI using multislice partial k-space GR-EPI with cubic voxels. Magn Reson Med 46:114–125

    Article  CAS  PubMed  Google Scholar 

  • Issa NP, Trepel C, Stryker MP (2000) Spatial frequency maps in cat visual cortex. J Neurosci 20:8504–8514

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kalatsky VA, Stryker MP (2003) New paradigm for optical imaging: temporally encoded maps of intrinsic signal. Neuron 38:529–545

    Article  CAS  PubMed  Google Scholar 

  • Kamitani Y, Tong F (2005) Decoding the visual and subjective contents of the human brain. Nat Neurosci 8:679–685

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Klarhofer M, Dilharreguy B, van Gelderen P, Moonen CT (2003) A PRESTO-SENSE sequence with alternating partial-Fourier encoding for rapid susceptibility-weighted 3D MRI time series. Magn Reson Med 50:830–838

    Article  PubMed  Google Scholar 

  • Koopmans PJ, Barth M, Norris DG (2010) Layer-specific BOLD activation in human V1. Hum Brain Mapp 31:1297–1304

    Article  PubMed  Google Scholar 

  • Kruger G, Glover GH (2001) Physiological noise in oxygenation-sensitive magnetic resonance imaging. Magn Reson Med 46:631–637

    Article  CAS  PubMed  Google Scholar 

  • Kwong KK, Belliveau JW, Chesler DA, Goldberg IE, Weisskoff RM, Poncelet BP, Kennedy DN, Hoppel BE, Cohen MS, Turner R, Cheng H-M, Brady TJ, Rosen BR (1992) Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sci U S A 89:5675–5679

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lai S, Hopkins AL, Haacke EM, Li D, Wasserman BA, Buckley P, Friedman L, Meltzer H, Hedera P, Friedland R (1993) Identification of vascular structures as a major source of signal contrast in high resolution 2D and 3D functional activation imaging of the motor cortex at 1.5 T: preliminary results. Magn Reson Med 30:387–392

    Article  CAS  PubMed  Google Scholar 

  • Larkman DJ, Hajnal JV, Herlihy AH, Coutts GA, Young IR, Ehnholm G (2001) Use of multicoil arrays for separation of signal from multiple slices simultaneously excited. J Magn Reson Imaging 13:313–317

    Article  CAS  PubMed  Google Scholar 

  • Lee AT, Glover GH, Meyer GH (1995) Discrimination of large venous vessels in time-course spiral blood-oxygen-level-dependent magnetic resonance functional neuroimaging. Magn Reson Med 33:745–754

    Article  CAS  PubMed  Google Scholar 

  • Liu G, Sobering G, Duyn J, Moonen CT (1993) A functional MRI technique combining principles of echo-shifting with a train of observations (PRESTO). Magn Reson Med 30:764–768

    Article  CAS  PubMed  Google Scholar 

  • Mansfield P (1977) Multi-planar image formation using NMR spin echoes. J Phys C: Solid State Phys 10:L55–L58

    Article  CAS  Google Scholar 

  • Mansfield P, Harvey PR, Stehling MK (1994) Echo-volumar imaging. MAGMA 2:291–294

    Article  Google Scholar 

  • Menon R, Ogawa S, Strupp JP, Uğurbil K (1997) Ocular dominance in human V1 demonstrated by functional magnetic resonance imaging. J Neurophysiol 77:2780–2787

    CAS  PubMed  Google Scholar 

  • Meyer CH, Hu BS, Nishimura DG, Macovski A (1992) Fast spiral coronary artery imaging. Magn Reson Med 28:202–213

    Article  CAS  PubMed  Google Scholar 

  • Miller KL, Jezzard P (2008) Modeling SSFP functional MRI contrast in the brain. Magn Reson Med 60:661–673

    Article  PubMed  Google Scholar 

  • Moeller S, Yacoub E, Auerbach E, van de Moortele PF, Adriany G, Uğurbil K (2008) fMRI with 16 fold reduction using multibanded multislice sampling. Proc Int Soc for Mag Reson Med, Toronto

    Google Scholar 

  • Moeller S, Van de Moortele PF, Goerke U, Adriany G, Uğurbil K (2006) Application of parallel imaging to fMRI at 7 Tesla utilizing a high 1D reduction factor. Magn Reson Med 56:118–129

    Article  PubMed  Google Scholar 

  • Moeller S, Yacoub E, Olman CA, Auerbach E, Strupp J, Harel N, Uğurbil K (2010) Multiband multislice GE-EPI at 7 T, with 16-fold acceleration using partial parallel imaging with application to high spatial and temporal whole-brain fMRI. Magn Reson Med 63:1144–1153

    Article  PubMed Central  PubMed  Google Scholar 

  • Moon CH, Fukuda M, Park SH, Kim SG (2007) Neural interpretation of blood oxygenation level-dependent fMRI maps at submillimeter columnar resolution. J Neurosci 27:6892–6902

    Article  CAS  PubMed  Google Scholar 

  • Mountcastle VB (1957) Modality and topographic properties of single neurons of cat’s somatic sensory cortex. J Neurophysiol 20:408–434

    CAS  PubMed  Google Scholar 

  • Neggers SF, Hermans EJ, Ramsey NF (2008) Enhanced sensitivity with fast three-dimensional blood-oxygen-level-dependent functional MRI: comparison of SENSE-PRESTO and 2D-EPI at 3 T. NMR Biomed 21:663–676

    Article  PubMed  Google Scholar 

  • Noll D, Cohen J, Meyer C, Schneider W (1995) Spiral K-space MR imaging of cortical activation. J Magn Reson Imaging 5:49–57

    Article  CAS  PubMed  Google Scholar 

  • Ogawa S, Lee T-M, Kay AR, Tank DW (1990) Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci U S A 87:9868–9872

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ogawa S, Tank DW, Menon R, Ellermann JM, Kim S-G, Merkle H, Uğurbil K (1992) Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. Proc Natl Acad Sci U S A 89:5951–5955

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ogawa S, Lee TM, Barrere B (1993) Sensitivity of magnetic resonance image signals of a rat brain to changes in the cerebral venous blood oxygenation. Magn Reson Med 29:205–210

    Google Scholar 

  • Olman CA, Van de Moortele PF, Schumacher JF, Guy JR, Uğurbil K, Yacoub E (2010) Retinotopic mapping with spin echo BOLD at 7T. Magn Reson Imaging 28:1258–1569

    Google Scholar 

  • Parkes LM, Schwarzbach JV, Bouts AA, Deckers RH, Pullens P, Kerskens CM, Norris DG (2005) Quantifying the spatial resolution of the gradient echo and spin echo BOLD response at 3 Tesla. Magn Reson Med 54:1465–1472

    Google Scholar 

  • Pfeuffer J, Van De Moortele PF, Yacoub E, Adriany G, Andersen P, Merkle H, Garwood M, Uğurbil K, Hu X (2002) Zoomed functional imaging in the human brain at 7 Tesla with simultaneously high spatial and temporal resolution. Neuroimage 17:272–286

    Article  PubMed  Google Scholar 

  • Polimeni JR, Fischl B, Greve DN, Wald LL (2010) Laminar analysis of 7T BOLD using an imposed spatial activation pattern in human V1. Neuroimage 52:1334–1346

    Article  PubMed Central  PubMed  Google Scholar 

  • Poser BA, Norris DG (2007) Fast spin echo sequences for BOLD functional MRI. MAGMA 20:11–17

    Article  PubMed Central  PubMed  Google Scholar 

  • Poser BA, Koopmans PJ, Witzel T, Wald LL, Barth M (2010) Three dimensional echo-planar imaging at 7 Tesla. Neuroimage 51:261–266

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P (1999) SENSE: sensitivity encoding for fast MRI. Magn Reson Med 42:952–962

    Article  CAS  PubMed  Google Scholar 

  • Ress D, Glover GH, Liu J, Wandell BA (2007) Laminar profiles of functional activity in the human brain. Neuroimage 34:74–84

    Article  PubMed  Google Scholar 

  • Schafer A, van der Zwaag W, Francis ST, Head KE, Gowland PA, Bowtell RW (2007) High resolution SE-fMRI in humans at 3 and 7 T using a motor task. MAGMA 21:113–120

    Google Scholar 

  • Shmuel A, Grinvald A (1996) Functional organization for direction of motion and its relationship to orientation maps in cat area 18. J Neurosci 16:6945–6964

    CAS  PubMed  Google Scholar 

  • Shmuel A, Yacoub E, Chaimow D, Logothetis NK, Uğurbil K (2007) Spatio-temporal point-spread function of fMRI signal in human gray matter at 7 Tesla. Neuroimage 35:539–552

    Article  PubMed Central  PubMed  Google Scholar 

  • Shmuel A, Chaimow D, Raddatz G, Uğurbil K, Yacoub E (2010) Mechanisms underlying decoding at 7 T: ocular dominance columns, broad structures, and macroscopic blood vessels in V1 convey information on the stimulated eye. Neuroimage 49:1957–1964

    Article  PubMed  Google Scholar 

  • Shoham D, Hubener M, Schulze S, Grinvald A, Bonhoeffer T (1997) Spatio-temporal frequency domains and their relation to cytochrome oxidase staining in cat visual cortex. Nature 385:529–533

    Article  CAS  PubMed  Google Scholar 

  • Silva AC, Koretsky AP (2002) Laminar specificity of functional MRI onset times during somatosensory stimulation in rat. Proc Natl Acad Sci U S A 99:15182–15187

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Silva AC, Barbier EL, Lowe IJ, Koretsky AP (1998) Radial echo-planar imaging. J Magn Reson 135:242–247

    Article  CAS  PubMed  Google Scholar 

  • Sodickson DK, Griswold MA, Jakob PM (1999) SMASH imaging. Magn Reson Imag Clin N Am 7:237–254, vii–viii

    CAS  Google Scholar 

  • Swisher JD, Gatenby JC, Gore JC, Wolfe BA, Moon CH, Kim SG, Tong F (2010) Multiscale pattern analysis of orientation-selective activity in the primary visual cortex. J Neurosci 30:325–330

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Triantafyllou C, Hoge RD, Krueger G, Wiggins CJ, Potthast A, Wiggins GC, Wald LL (2005) Comparison of physiological noise at 1.5 T, 3 T and 7 T and optimization of fMRI acquisition parameters. Neuroimage 26:243–250

    Article  CAS  PubMed  Google Scholar 

  • Ts’o DY, Frostig RD, Lieke EE, Grinvald A (1990) Functional organization of primate visual cortex revealed by high resolution optical imaging. Science 249:417–420

    Article  PubMed  Google Scholar 

  • Uğurbil K (2012) The road to functional imaging and ultrahigh fields. Neuroimage 62:726–735

    Article  PubMed Central  PubMed  Google Scholar 

  • Uğurbil K (2014) Magnetic resonance imaging at ultrahigh fields. IEEE Trans Biomed Eng 61:1364–1379

    Article  PubMed Central  PubMed  Google Scholar 

  • Uğurbil K, Adriany G, Andersen P, Chen W, Garwood M, Gruetter R, Henry PG, Kim SG, Lieu H, Tkac I, Vaughan T, Van De Moortele PF, Yacoub E, Zhu XH (2003) Ultrahigh field magnetic resonance imaging and spectroscopy. Magn Reson Imaging 21:1263–1281

    Article  PubMed  Google Scholar 

  • Uğurbil K, Muller-Bierl B, Uğurbil K (2009) An integrative model for neuronal activity-induced signal changes for gradient and spin echo functional imaging. Neuroimage 48:150–165

    Article  PubMed  Google Scholar 

  • Van de Moortele PF, Auerbach EJ, Olman C, Yacoub E, Uğurbil K, Moeller S (2009) T1 weighted brain images at 7 Tesla unbiased for Proton Density, T2 * contrast and RF coil receive B1 sensitivity with simultaneous vessel visualization. Neuroimage 46:432–446

    Article  PubMed Central  PubMed  Google Scholar 

  • Vaughan JT, Garwood M, Collins CM, Liu W, DelaBarre L, Adriany G, Andersen P, Merkle H, Goebel R, Smith MB, Uğurbil K (2001) 7T vs. 4T: RF power, homogeneity, and signal-to-noise comparison in head images. Magn Reson Med 46:24–30

    Article  CAS  PubMed  Google Scholar 

  • Weliky M, Bosking WH, Fitzpatrick D (1996) A systematic map of direction preference in primary visual cortex. Nature 379:725–728

    Article  CAS  PubMed  Google Scholar 

  • Yacoub E, Shmuel A, Pfeuffer J, Van De Moortele PF, Adriany G, Andersen P, Vaughan JT, Merkle H, Uğurbil K, Hu X (2001) Imaging brain function in humans at 7 Tesla. Magn Reson Med 45:588–594

    Article  CAS  PubMed  Google Scholar 

  • Yacoub E, Duong TQ, Van De Moortele PF, Lindquist M, Adriany G, Kim SG, Uğurbil K, Hu X (2003) Spin-echo fMRI in humans using high spatial resolutions and high magnetic fields. Magn Reson Med 49:655–664

    Article  PubMed  Google Scholar 

  • Yacoub E, Shmuel A, Logothetis N, Uğurbil K (2007) Robust detection of ocular dominance columns in humans using Hahn Spin Echo BOLD functional MRI at 7 Tesla. Neuroimage 37:1161–1177

    Article  PubMed Central  PubMed  Google Scholar 

  • Yacoub E, Harel N, Uğurbil K (2008) High-field fMRI unveils orientation columns in humans. Proc Natl Acad Sci U S A 105:10607–10612

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yacoub E, Uğurbil K, Olman C (2009) Feasibility of detecting differential layer specific activations in humans using SE BOLD FMRI at 7 T. Proc Mag Reson Med, Honolulu

    Google Scholar 

  • Yang Y, Glover GH, van Gelderen P, Mattay VS, Santha AK, Sexton RH, Ramsey NF, Moonen CT, Weinberger DR, Frank JA, Duyn JH (1996) Fast 3D functional magnetic resonance imaging at 1.5 T with spiral acquisition. Magn Reson Med 36:620–626

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Mattay V, Weinberger D, Frank J (1997) Localized Echo-volume Imaging- Methods for functional MRI. J Magn Reson Imaging 7:371–375

    Article  CAS  PubMed  Google Scholar 

  • Ye Y, Zhuo Y, Xue R, Zhou XJ (2010) BOLD fMRI using a modified HASTE sequence. Neuroimage 49:457–466

    Article  PubMed  Google Scholar 

  • Zhao F, Wang P, Hendrich K, Uğurbil K, Kim SG (2006) Cortical layer-dependent BOLD and CBV responses measured by spin-echo and gradient-echo fMRI: insights into hemodynamic regulation. Neuroimage 30:1149–1160

    Article  PubMed  Google Scholar 

  • Zheng D, LaMantia AS, Purves D (1991) Specialized vascularization of the primate visual cortex. J Neurosci 11:2622–2629

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Essa Yacoub .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer New York

About this chapter

Cite this chapter

Yacoub, E., Harel, N., Shmuel, A. (2015). High-Resolution fMRI. In: Uludag, K., Ugurbil, K., Berliner, L. (eds) fMRI: From Nuclear Spins to Brain Functions. Biological Magnetic Resonance, vol 30. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-7591-1_26

Download citation

Publish with us

Policies and ethics