High-Resolution fMRI

Chapter
Part of the Biological Magnetic Resonance book series (BIMR, volume 30)

Abstract

High-resolution functional magnetic resonance imaging (fMRI) is motivated by the desire to understand how the brain is organized and functions at the most fundamental levels. To date, there have been several submillimeter applications of fMRI which have been successful in mapping out columnar organizations as well as measuring depth-dependent information, reflective of neuronal processing and interactions across cortical layers. The usefulness and efficiency of high-resolution fMRI depends on a variety of different factors. Among these factors is the ability to acquire higher-resolution images over a sufficiently large field of view (FOV) in a reasonable acquisition time. Longer acquisition times result in an increase in the voxel point spread function and a decrease in the efficiency of the fMRI paradigm. Smaller FOVs limit the ability to obtain information and functional maps simultaneously across several cortical areas. Further, any motion in the data is difficult to correct. The sensitivity and efficiency of the high-resolution images can be improved by using localized coil arrays which provide higher signal-to-noise ratio (SNR) and the ability to accelerate the imaging. Alternative pulse sequences which affect SNR, efficiency, and functional contrast, are also integral parts of optimizing high-resolution acquisitions. Also, higher magnetic fields are paramount to obtaining sufficient sensitivity and specificity in the functional images. Ultimately, however, one of the single biggest factors in the successful acquisition of high-resolution fMRI is the ability and cooperation of human subjects to remain still and attentive over extended periods of time.

Keywords

Anisotropy Manifold Foam Mold Radar 

References

  1. Bandettini PA, Wong EC, Hinks RS, Tikofsky RS, Hyde JS (1992) Time course EPI of human brain function during task activation. Magn Reson Med 25:390–398CrossRefPubMedGoogle Scholar
  2. Bartfeld E, Grinvald A (1992) Relationships between orientation-preference pinwheels, cytochrome oxidase blobs, and ocular-dominance columns in primate striate cortex. Proc Natl Acad Sci U S A 89:11905–11909PubMedCentralCrossRefPubMedGoogle Scholar
  3. Blasdel GG (1992) Differential imaging of ocular dominance and orientation selectivity in monkey striate cortex. J Neurosci 12:3115–3138PubMedGoogle Scholar
  4. Blasdel GG, Salama G (1986) Voltage-sensitive dyes reveal a modular organization in monkey striate cortex. Nature 321:579–585CrossRefPubMedGoogle Scholar
  5. Bonhoeffer T, Grinvald A (1991) Iso-orientation domains in cat visual cortex are arranged in pinwheel-like patterns. Nature 353:429–431CrossRefPubMedGoogle Scholar
  6. Boxerman JL, Bandettini PA, Kwong KK, Baker JR, Davis TJ, Rosen BR, Weisskoff RM (1995) The Intravascular contribution to fMRI signal changes: Monte Carlo modeling and diffusion-weighted studies in vivo. Magn Reson Med 34:4–10CrossRefPubMedGoogle Scholar
  7. Chaimow D, Yacoub E, Uğurbil K, Shmuel A (2011) Modeling and analyzing mechanisms underlying fMRI-based decoding of information conveyed in cortical columns. Neuroimage 56(2):627–642Google Scholar
  8. Chaimow D, Yacoub E, Uğurbil K, Shmuel A (2015) Spatial specificity of the functional MRI blood oxygenation response relative to metabolic activity. Annual meting of the Society for Neuroscience, Chicago, USACrossRefPubMedGoogle Scholar
  9. Cheng K, Waggoner RA, Tanaka K (2001) Human ocular dominance columns as revealed by high-field functional magnetic resonance imaging. Neuron 32:359–374Google Scholar
  10. de Zwart JA, van Gelderen P, Kellman P, Duyn JH (2002) Application of sensitivity-encoded echo-planar imaging for blood oxygen level-dependent functional brain imaging. Magn Reson Med 48:1011–1020CrossRefPubMedGoogle Scholar
  11. Dechent P, Frahm J (2000) Direct mapping of ocular dominance columns in human primary visual cortex. Neuroreport 11:3247–3249CrossRefPubMedGoogle Scholar
  12. Duong TQ, Yacoub E, Adriany G, Hu X, Uğurbil K, Vaughan JT, Merkle H, Kim SG (2002) High-resolution, spin-echo BOLD, and CBF fMRI at 4 and 7 T. Magn Reson Med 48:589–593CrossRefPubMedGoogle Scholar
  13. Duong TQ, Yacoub E, Adriany G, Hu X, Uğurbil K, Kim SG (2003) Microvascular BOLD contribution at 4 and 7 T in the human brain: gradient-echo and spin-echo fMRI with suppression of blood effects. Magn Reson Med 49:1019–1027Google Scholar
  14. Duvernoy HM, Delon S, Vannson JL (1981) Cortical blood vessels of the human brain. Brain Res Bull 7:519–579CrossRefPubMedGoogle Scholar
  15. Duyn JH, Moonen CTW, Yperen GH, Boer RW, Luyten PR (1994) Inflow versus deoxyhemoglobin effects in BOLD functional MRI using gradient echoes at 1.5T. NMR Biomed 7:83–88CrossRefPubMedGoogle Scholar
  16. Engel SA, Rumelhart DE, Wandell BA, Lee AT, Glover GH, Chichilnisky EJ, Shadlen MN (1994) fMRI of human visual cortex. Nature 369:525CrossRefPubMedGoogle Scholar
  17. Engel SA, Glover GH, Wandell BA (1997) Retinotopic organization in human visual cortex and the spatial precision of functional MRI. Cereb Cortex 7:181–192CrossRefPubMedGoogle Scholar
  18. Feinberg DA, Oshio K (1991) GRASE (gradient- and spin-echo) MR imaging: a new fast clinical imaging technique. Radiology 181:597–602CrossRefPubMedGoogle Scholar
  19. Feinberg D, Hoenninger J, Crooks L, Kaufman L, Watts J, Arakawa M (1985) Inner volume MR imaging: technical concepts and their application. Radiology 156:743–747CrossRefPubMedGoogle Scholar
  20. Feinberg DA, Harel N, Ramanna S, Uğurbil K, Yacoub E (2008) Sub-millimeter single-shot 3D GRASE with inner volume selection for T2-weighted fMRI applications at 7 Tesla. 16th annual meeting of the International Society for Magnetic Resonance in Medicine, TorontoGoogle Scholar
  21. Fonta C, Imbert M (2002) Vascularization in the primate visual cortex during development. Cereb Cortex 12:199–211CrossRefPubMedGoogle Scholar
  22. Frahm J, Bruhn H, Merboldt KD (1992) Dynamic MRI of human brain oxygenation during rest and photic stimulation. J Magn Reson Imaging 2:501–505CrossRefPubMedGoogle Scholar
  23. Frahm J, Merboldt KD, Henicke W (1993) Functional MRI of human brain activation at high spatial resolution. Magn Reson Med 29:139–144CrossRefPubMedGoogle Scholar
  24. Frahm J, Merboldt KD, Hanicke W, Kleinschmidt A, Boecker H (1994) Brain or vein-oxygenation or flow? On signal physiology in functional MRI of human brain activation. NMR Biomed 7:45–53CrossRefPubMedGoogle Scholar
  25. Gati JS, Menon RS, Uğurbil K, Rutt BK (1997) Experimental determination of the BOLD field strength dependence in vessels and tissue. Magn Reson Med 38:296–302CrossRefPubMedGoogle Scholar
  26. Glover GH (1997) Basic and advanced concepts of spiral imaging. ISMRM Fast Workshop Syllabus, Asilomar, CA, pp 115–119Google Scholar
  27. Goense JB, Logothetis NK (2006) Laminar specificity in monkey V1 using high-resolution SE-fMRI. Magn Reson Imaging 24:381–392CrossRefPubMedGoogle Scholar
  28. Golay X, Pruessmann KP, Weiger M, Crelier GR, Folkers PJ, Kollias SS, Boesiger P (2000) PRESTO-SENSE: an ultrafast whole-brain fMRI technique. Magn Reson Med 43:779–786CrossRefPubMedGoogle Scholar
  29. Haase A, Frahm J, Matthaei D, Hanicke W, Merboldt, K.-D. (1986) FLASH imaging: rapid NMR imaging using low flip angle pulses. J Magn Reson 67:258–266Google Scholar
  30. Harel N, Lin J, Moeller S, Uğurbil K, Yacoub E (2006) Combined imaging-histological study of cortical laminar specificity of fMRI signals. Neuroimage 29:879–887CrossRefPubMedGoogle Scholar
  31. Haushofer J, Livingstone MS, Kanwisher N (2008) Multivariate patterns in object-selective cortex dissociate perceptual and physical shape similarity. PLoS Biol 6:e187PubMedCentralCrossRefPubMedGoogle Scholar
  32. Haxby JV, Gobbini MI, Furey ML, Ishai A, Schouten JL, Pietrini P (2001) Distributed and overlapping representations of faces and objects in ventral temporal cortex. Science 293:2425–2430CrossRefPubMedGoogle Scholar
  33. Haynes JD, Rees G (2005) Predicting the orientation of invisible stimuli from activity in human primary visual cortex. Nat Neurosci 8:686–691CrossRefPubMedGoogle Scholar
  34. Horton J, Hedley-Whyte ET (1984) Mapping of cytochrome oxidase patches and ocular dominance columns in human visual cortex. Philos Trans R Soc Lond Biol B 304:255–272CrossRefGoogle Scholar
  35. Hu X, Kim, S.-G. (1994) Reduction of physiological noise in functional MRI using navigator echo. Magn Reson Med 31:495–503CrossRefPubMedGoogle Scholar
  36. Hu X, Le TH, Parrish T, Erhard P (1995) Retrospective estimation and correction of physiological fluctuation in functional MRI. Magn Reson Med 34:201–212CrossRefPubMedGoogle Scholar
  37. Hubel DH, Wiesel TN (1962) Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J Physiol 160:106–154PubMedCentralCrossRefPubMedGoogle Scholar
  38. Hubel DH, Wiesel TN (1963) Shape and arrangement of columns in cat's striate cortex. J Physiol (Lond) 165:559–568CrossRefGoogle Scholar
  39. Hubel DH, Wiesel TN (1974) Sequence regularity and geometry of orientation columns in the monkey striate cortex. J Comp Neurol 158:267–293CrossRefPubMedGoogle Scholar
  40. Hubel DH, Wiesel TN (1977) Functional architecture of macaque monkey visual cortex. Proc R Soc Lond Biol 198:1–59CrossRefPubMedGoogle Scholar
  41. Hubener M, Shoham D, Grinvald A, Bonhoeffer T (1997) Spatial relationships among three columnar systems in cat area 17. J Neurosci 17:9270–9284PubMedGoogle Scholar
  42. Hyde JS, Biswal B, Jesmanowicz A (2001) High-resolution fMRI using multislice partial k-space GR-EPI with cubic voxels. Magn Reson Med 46:114–125CrossRefPubMedGoogle Scholar
  43. Issa NP, Trepel C, Stryker MP (2000) Spatial frequency maps in cat visual cortex. J Neurosci 20:8504–8514PubMedCentralPubMedGoogle Scholar
  44. Kalatsky VA, Stryker MP (2003) New paradigm for optical imaging: temporally encoded maps of intrinsic signal. Neuron 38:529–545CrossRefPubMedGoogle Scholar
  45. Kamitani Y, Tong F (2005) Decoding the visual and subjective contents of the human brain. Nat Neurosci 8:679–685PubMedCentralCrossRefPubMedGoogle Scholar
  46. Klarhofer M, Dilharreguy B, van Gelderen P, Moonen CT (2003) A PRESTO-SENSE sequence with alternating partial-Fourier encoding for rapid susceptibility-weighted 3D MRI time series. Magn Reson Med 50:830–838CrossRefPubMedGoogle Scholar
  47. Koopmans PJ, Barth M, Norris DG (2010) Layer-specific BOLD activation in human V1. Hum Brain Mapp 31:1297–1304CrossRefPubMedGoogle Scholar
  48. Kruger G, Glover GH (2001) Physiological noise in oxygenation-sensitive magnetic resonance imaging. Magn Reson Med 46:631–637CrossRefPubMedGoogle Scholar
  49. Kwong KK, Belliveau JW, Chesler DA, Goldberg IE, Weisskoff RM, Poncelet BP, Kennedy DN, Hoppel BE, Cohen MS, Turner R, Cheng H-M, Brady TJ, Rosen BR (1992) Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sci U S A 89:5675–5679PubMedCentralCrossRefPubMedGoogle Scholar
  50. Lai S, Hopkins AL, Haacke EM, Li D, Wasserman BA, Buckley P, Friedman L, Meltzer H, Hedera P, Friedland R (1993) Identification of vascular structures as a major source of signal contrast in high resolution 2D and 3D functional activation imaging of the motor cortex at 1.5 T: preliminary results. Magn Reson Med 30:387–392CrossRefPubMedGoogle Scholar
  51. Larkman DJ, Hajnal JV, Herlihy AH, Coutts GA, Young IR, Ehnholm G (2001) Use of multicoil arrays for separation of signal from multiple slices simultaneously excited. J Magn Reson Imaging 13:313–317CrossRefPubMedGoogle Scholar
  52. Lee AT, Glover GH, Meyer GH (1995) Discrimination of large venous vessels in time-course spiral blood-oxygen-level-dependent magnetic resonance functional neuroimaging. Magn Reson Med 33:745–754CrossRefPubMedGoogle Scholar
  53. Liu G, Sobering G, Duyn J, Moonen CT (1993) A functional MRI technique combining principles of echo-shifting with a train of observations (PRESTO). Magn Reson Med 30:764–768CrossRefPubMedGoogle Scholar
  54. Mansfield P (1977) Multi-planar image formation using NMR spin echoes. J Phys C: Solid State Phys 10:L55–L58CrossRefGoogle Scholar
  55. Mansfield P, Harvey PR, Stehling MK (1994) Echo-volumar imaging. MAGMA 2:291–294CrossRefGoogle Scholar
  56. Menon R, Ogawa S, Strupp JP, Uğurbil K (1997) Ocular dominance in human V1 demonstrated by functional magnetic resonance imaging. J Neurophysiol 77:2780–2787PubMedGoogle Scholar
  57. Meyer CH, Hu BS, Nishimura DG, Macovski A (1992) Fast spiral coronary artery imaging. Magn Reson Med 28:202–213CrossRefPubMedGoogle Scholar
  58. Miller KL, Jezzard P (2008) Modeling SSFP functional MRI contrast in the brain. Magn Reson Med 60:661–673CrossRefPubMedGoogle Scholar
  59. Moeller S, Yacoub E, Auerbach E, van de Moortele PF, Adriany G, Uğurbil K (2008) fMRI with 16 fold reduction using multibanded multislice sampling. Proc Int Soc for Mag Reson Med, TorontoGoogle Scholar
  60. Moeller S, Van de Moortele PF, Goerke U, Adriany G, Uğurbil K (2006) Application of parallel imaging to fMRI at 7 Tesla utilizing a high 1D reduction factor. Magn Reson Med 56:118–129CrossRefPubMedGoogle Scholar
  61. Moeller S, Yacoub E, Olman CA, Auerbach E, Strupp J, Harel N, Uğurbil K (2010) Multiband multislice GE-EPI at 7 T, with 16-fold acceleration using partial parallel imaging with application to high spatial and temporal whole-brain fMRI. Magn Reson Med 63:1144–1153PubMedCentralCrossRefPubMedGoogle Scholar
  62. Moon CH, Fukuda M, Park SH, Kim SG (2007) Neural interpretation of blood oxygenation level-dependent fMRI maps at submillimeter columnar resolution. J Neurosci 27:6892–6902CrossRefPubMedGoogle Scholar
  63. Mountcastle VB (1957) Modality and topographic properties of single neurons of cat’s somatic sensory cortex. J Neurophysiol 20:408–434PubMedGoogle Scholar
  64. Neggers SF, Hermans EJ, Ramsey NF (2008) Enhanced sensitivity with fast three-dimensional blood-oxygen-level-dependent functional MRI: comparison of SENSE-PRESTO and 2D-EPI at 3 T. NMR Biomed 21:663–676CrossRefPubMedGoogle Scholar
  65. Noll D, Cohen J, Meyer C, Schneider W (1995) Spiral K-space MR imaging of cortical activation. J Magn Reson Imaging 5:49–57CrossRefPubMedGoogle Scholar
  66. Ogawa S, Lee T-M, Kay AR, Tank DW (1990) Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci U S A 87:9868–9872PubMedCentralCrossRefPubMedGoogle Scholar
  67. Ogawa S, Tank DW, Menon R, Ellermann JM, Kim S-G, Merkle H, Uğurbil K (1992) Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. Proc Natl Acad Sci U S A 89:5951–5955PubMedCentralCrossRefPubMedGoogle Scholar
  68. Ogawa S, Lee TM, Barrere B (1993) Sensitivity of magnetic resonance image signals of a rat brain to changes in the cerebral venous blood oxygenation. Magn Reson Med 29:205–210Google Scholar
  69. Olman CA, Van de Moortele PF, Schumacher JF, Guy JR, Uğurbil K, Yacoub E (2010) Retinotopic mapping with spin echo BOLD at 7T. Magn Reson Imaging 28:1258–1569Google Scholar
  70. Parkes LM, Schwarzbach JV, Bouts AA, Deckers RH, Pullens P, Kerskens CM, Norris DG (2005) Quantifying the spatial resolution of the gradient echo and spin echo BOLD response at 3 Tesla. Magn Reson Med 54:1465–1472Google Scholar
  71. Pfeuffer J, Van De Moortele PF, Yacoub E, Adriany G, Andersen P, Merkle H, Garwood M, Uğurbil K, Hu X (2002) Zoomed functional imaging in the human brain at 7 Tesla with simultaneously high spatial and temporal resolution. Neuroimage 17:272–286CrossRefPubMedGoogle Scholar
  72. Polimeni JR, Fischl B, Greve DN, Wald LL (2010) Laminar analysis of 7T BOLD using an imposed spatial activation pattern in human V1. Neuroimage 52:1334–1346PubMedCentralCrossRefPubMedGoogle Scholar
  73. Poser BA, Norris DG (2007) Fast spin echo sequences for BOLD functional MRI. MAGMA 20:11–17PubMedCentralCrossRefPubMedGoogle Scholar
  74. Poser BA, Koopmans PJ, Witzel T, Wald LL, Barth M (2010) Three dimensional echo-planar imaging at 7 Tesla. Neuroimage 51:261–266PubMedCentralCrossRefPubMedGoogle Scholar
  75. Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P (1999) SENSE: sensitivity encoding for fast MRI. Magn Reson Med 42:952–962CrossRefPubMedGoogle Scholar
  76. Ress D, Glover GH, Liu J, Wandell BA (2007) Laminar profiles of functional activity in the human brain. Neuroimage 34:74–84CrossRefPubMedGoogle Scholar
  77. Schafer A, van der Zwaag W, Francis ST, Head KE, Gowland PA, Bowtell RW (2007) High resolution SE-fMRI in humans at 3 and 7 T using a motor task. MAGMA 21:113–120Google Scholar
  78. Shmuel A, Grinvald A (1996) Functional organization for direction of motion and its relationship to orientation maps in cat area 18. J Neurosci 16:6945–6964PubMedGoogle Scholar
  79. Shmuel A, Yacoub E, Chaimow D, Logothetis NK, Uğurbil K (2007) Spatio-temporal point-spread function of fMRI signal in human gray matter at 7 Tesla. Neuroimage 35:539–552PubMedCentralCrossRefPubMedGoogle Scholar
  80. Shmuel A, Chaimow D, Raddatz G, Uğurbil K, Yacoub E (2010) Mechanisms underlying decoding at 7 T: ocular dominance columns, broad structures, and macroscopic blood vessels in V1 convey information on the stimulated eye. Neuroimage 49:1957–1964CrossRefPubMedGoogle Scholar
  81. Shoham D, Hubener M, Schulze S, Grinvald A, Bonhoeffer T (1997) Spatio-temporal frequency domains and their relation to cytochrome oxidase staining in cat visual cortex. Nature 385:529–533CrossRefPubMedGoogle Scholar
  82. Silva AC, Koretsky AP (2002) Laminar specificity of functional MRI onset times during somatosensory stimulation in rat. Proc Natl Acad Sci U S A 99:15182–15187PubMedCentralCrossRefPubMedGoogle Scholar
  83. Silva AC, Barbier EL, Lowe IJ, Koretsky AP (1998) Radial echo-planar imaging. J Magn Reson 135:242–247CrossRefPubMedGoogle Scholar
  84. Sodickson DK, Griswold MA, Jakob PM (1999) SMASH imaging. Magn Reson Imag Clin N Am 7:237–254, vii–viiiGoogle Scholar
  85. Swisher JD, Gatenby JC, Gore JC, Wolfe BA, Moon CH, Kim SG, Tong F (2010) Multiscale pattern analysis of orientation-selective activity in the primary visual cortex. J Neurosci 30:325–330PubMedCentralCrossRefPubMedGoogle Scholar
  86. Triantafyllou C, Hoge RD, Krueger G, Wiggins CJ, Potthast A, Wiggins GC, Wald LL (2005) Comparison of physiological noise at 1.5 T, 3 T and 7 T and optimization of fMRI acquisition parameters. Neuroimage 26:243–250CrossRefPubMedGoogle Scholar
  87. Ts’o DY, Frostig RD, Lieke EE, Grinvald A (1990) Functional organization of primate visual cortex revealed by high resolution optical imaging. Science 249:417–420CrossRefPubMedGoogle Scholar
  88. Uğurbil K (2012) The road to functional imaging and ultrahigh fields. Neuroimage 62:726–735PubMedCentralCrossRefPubMedGoogle Scholar
  89. Uğurbil K (2014) Magnetic resonance imaging at ultrahigh fields. IEEE Trans Biomed Eng 61:1364–1379PubMedCentralCrossRefPubMedGoogle Scholar
  90. Uğurbil K, Adriany G, Andersen P, Chen W, Garwood M, Gruetter R, Henry PG, Kim SG, Lieu H, Tkac I, Vaughan T, Van De Moortele PF, Yacoub E, Zhu XH (2003) Ultrahigh field magnetic resonance imaging and spectroscopy. Magn Reson Imaging 21:1263–1281CrossRefPubMedGoogle Scholar
  91. Uğurbil K, Muller-Bierl B, Uğurbil K (2009) An integrative model for neuronal activity-induced signal changes for gradient and spin echo functional imaging. Neuroimage 48:150–165CrossRefPubMedGoogle Scholar
  92. Van de Moortele PF, Auerbach EJ, Olman C, Yacoub E, Uğurbil K, Moeller S (2009) T1 weighted brain images at 7 Tesla unbiased for Proton Density, T2 * contrast and RF coil receive B1 sensitivity with simultaneous vessel visualization. Neuroimage 46:432–446PubMedCentralCrossRefPubMedGoogle Scholar
  93. Vaughan JT, Garwood M, Collins CM, Liu W, DelaBarre L, Adriany G, Andersen P, Merkle H, Goebel R, Smith MB, Uğurbil K (2001) 7T vs. 4T: RF power, homogeneity, and signal-to-noise comparison in head images. Magn Reson Med 46:24–30CrossRefPubMedGoogle Scholar
  94. Weliky M, Bosking WH, Fitzpatrick D (1996) A systematic map of direction preference in primary visual cortex. Nature 379:725–728CrossRefPubMedGoogle Scholar
  95. Yacoub E, Shmuel A, Pfeuffer J, Van De Moortele PF, Adriany G, Andersen P, Vaughan JT, Merkle H, Uğurbil K, Hu X (2001) Imaging brain function in humans at 7 Tesla. Magn Reson Med 45:588–594CrossRefPubMedGoogle Scholar
  96. Yacoub E, Duong TQ, Van De Moortele PF, Lindquist M, Adriany G, Kim SG, Uğurbil K, Hu X (2003) Spin-echo fMRI in humans using high spatial resolutions and high magnetic fields. Magn Reson Med 49:655–664CrossRefPubMedGoogle Scholar
  97. Yacoub E, Shmuel A, Logothetis N, Uğurbil K (2007) Robust detection of ocular dominance columns in humans using Hahn Spin Echo BOLD functional MRI at 7 Tesla. Neuroimage 37:1161–1177PubMedCentralCrossRefPubMedGoogle Scholar
  98. Yacoub E, Harel N, Uğurbil K (2008) High-field fMRI unveils orientation columns in humans. Proc Natl Acad Sci U S A 105:10607–10612PubMedCentralCrossRefPubMedGoogle Scholar
  99. Yacoub E, Uğurbil K, Olman C (2009) Feasibility of detecting differential layer specific activations in humans using SE BOLD FMRI at 7 T. Proc Mag Reson Med, HonoluluGoogle Scholar
  100. Yang Y, Glover GH, van Gelderen P, Mattay VS, Santha AK, Sexton RH, Ramsey NF, Moonen CT, Weinberger DR, Frank JA, Duyn JH (1996) Fast 3D functional magnetic resonance imaging at 1.5 T with spiral acquisition. Magn Reson Med 36:620–626CrossRefPubMedGoogle Scholar
  101. Yang Y, Mattay V, Weinberger D, Frank J (1997) Localized Echo-volume Imaging- Methods for functional MRI. J Magn Reson Imaging 7:371–375CrossRefPubMedGoogle Scholar
  102. Ye Y, Zhuo Y, Xue R, Zhou XJ (2010) BOLD fMRI using a modified HASTE sequence. Neuroimage 49:457–466CrossRefPubMedGoogle Scholar
  103. Zhao F, Wang P, Hendrich K, Uğurbil K, Kim SG (2006) Cortical layer-dependent BOLD and CBV responses measured by spin-echo and gradient-echo fMRI: insights into hemodynamic regulation. Neuroimage 30:1149–1160CrossRefPubMedGoogle Scholar
  104. Zheng D, LaMantia AS, Purves D (1991) Specialized vascularization of the primate visual cortex. J Neurosci 11:2622–2629PubMedGoogle Scholar

Copyright information

© Springer New York 2015

Authors and Affiliations

  1. 1.Center for MR ResearchUniversity of MinnesotaMinneapolisUSA
  2. 2.Montreal Neurological Institute and HospitalMcGill UniversityMontrealCanada

Personalised recommendations